
 

Chapter 12 
ALTERNATIVE APPROACHES 
TO INDEX NUMBER THEORY 

W. Erwin Diewert and Robert J. Hill1 

 

1. Introduction 
 

 The present paper reconsiders the fundamental concepts of true and exact indexes, as 
these concepts are defined in the index number literature. These concepts form the bedrock of the 
economic approach to index number theory. A true index is the underlying target – the thing we 
are trying to measure. An empirically calculable index is exact when, under certain conditions, it 
exactly equals the true index. Also discussed briefly is the fundamental distinction between the 
axiomatic and economic approaches.  

 This paper was inspired by the 2008 American Economic Review paper of Van Veelen 
and van der Weide, henceforth VW. VW provide some interesting new perspectives on these 
issues.  

 VW have two main objectives. First, they attempt to give precise meanings to the 
concepts of exact and true indexes. A few definitions of a true index have been provided in the 
literature. VW propose some new and broader definitions that aim to include all of these as 
special cases. Some of the existing definitions, however, are more established than others. In 
particular, a broad consensus is already established in favor of the Konüs (1924) and Allen 
(1949) index definitions (which are closely related). One problem with VW’s new definitions are 
that by seeking to embrace also the less established definition associated with Afriat (1981), they 
end up with outcomes that are quite abstract and differ considerably from the consensus position. 
Hence it might have been better if VW had introduced a new terminology rather than adding to 
the existing definitions of true indexes. VW also identify some problems with the standard 
definition of exactness, most notably that for some well known index number formulae the 
exactness property does not always hold for all strictly positive prices. This is an important 
finding. However, rather than changing the definition of exactness, we argue that what is 
required is a more careful analysis of the regularity region of exact indexes. 

Second, VW reinterpret the distinction between the axiomatic and economic approaches. 
Their findings rely on the perceived limitations of the economic approach. In our opinion their 
reinterpretation is problematic. In our view, the economic approach is more flexible than the 
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analysis of VW suggests, thus potentially invalidating their demarcations between the two 
approaches.  

Nevertheless, even though we disagree with some of their conclusions, VW’s method is 
novel and raises a number of issues relating to fundamental concepts of index number theory that 
deserve closer scrutiny. The differences distinguishing the various approaches are explained in 
the present paper in the context of earlier work of others. 

 

2. Existing Definitions of True Indexes 
 

 The first concept of a true index was introduced into the literature in the price index 
context by Konüs (1924). The theory assumes that a consumer has well defined preferences over 
different combinations of N consumer commodities or items. The consumer’s preferences over 
alternative possible nonnegative consumption vectors q  are assumed to be representable by a 
nonnegative, continuous, increasing and concave utility function . It is further assumed that 

the consumer minimizes the cost of achieving the period t utility level  for periods (or 
situations) . Thus it is assumed that the observed (nonzero) period i consumption vector 

 solves the following period i cost minimization problem: 

)(U q
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 The Konüs (1924) family of true cost of living indexes, pertaining to two periods where 
the consumer faces the strictly positive price vectors  and  in periods 0 and 1 respectively, 
is defined as the ratio of the minimum costs of achieving the same utility level  where 

 is a positive reference quantity vector. Thus, the Konüs true cost of living index with reference 
quantity vector q  is defined as follows:  

0p 1p
)(Uu q≡

q

(2) . ]),(U[C/]),(U[C),,(P 1221
K pqpqqpp ≡

We say that definition (2) defines a family of true price indexes because there is one such index 
for each reference quantity vector  chosen.  q

 If the utility function U happens to be linearly homogeneous (or can be monotonically 
transformed into a linearly homogeneous function2), then definition (2) simplifies to3  

(3) , )(c/)(c]},1[C)(U/{]},1[C)(U{),,(P 121221
K pppqpqqpp ==

                                                 
2 Shephard (1953) defined a homothetic function to be a monotonic transformation of a linearly homogeneous 
function. However, if a consumer’s utility function is homothetic, we can always rescale it to be linearly 
homogeneous without changing consumer behavior. Hence in what follows, we will simply identify the homothetic 
preferences assumption with the linear homogeneity assumption. 
3 See Afriat (1972) or Pollak (1983). 
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where  is the unit cost function . Thus in the case of homothetic preferences, the 
family of true cost of living indexes collapses to a unit cost or expenditure ratio. 

)(c ip ),1(C ip

 The second concept of a true index is the Allen (1949) family of true quantity indexes, 
which also uses the consumer’s cost or expenditure function in order to define these true indexes. 
Again, it is assumed that the consumer engages in cost minimizing behavior in each period so 
that assumptions (1) hold. For each choice of a strictly positive reference price vector p , the 

Allen true quantity index,  is defined as  ),,(Q 21
A pqq

(4) . ]),(U[C/]),(U[C),,(Q 1221
A pqpqpqq ≡

 The basic idea of the Allen quantity index dates back to Hicks (1942) who observed that 
if the price vector p were held fixed and the quantity vector q  is free to vary, then  is 
a perfectly valid cardinal measure of utility.

]),(U[C pq
4  

 As with the true Konüs cost of living, the Allen definition simplifies considerably if the 
utility function happens to be linearly homogeneous. In this case, (4) simplifies to:5 

(5) . )(U/)(U]},1[C)(U/{]},1[C)(U{),(Q 121221
A qqpqpqpq,q ==

Thus in the case of homothetic preferences (where preferences can be represented by a linearly 
homogeneous utility function), the family of Allen quantity indexes collapses to the utility ratio 
between the two situations.  

 Note that in the homothetic preferences case, the Allen quantity aggregate for the vector 
 is simply the utility level  and the Konüs price aggregate for the price vector p  is the 

unit cost or expenditure .
q )(U q

)(c p 6  

 A third concept for a true index that appears frequently in the literature is the Malmquist 
(1953) quantity index. This index can be defined using only the consumer’s utility function 

 but we will not study this index in any detail)(U q 7 since we will use the Allen quantity index 
concept to distinguish VW’s concept of a true quantity index from true quantity indexes that 
have been defined in the literature. 

 A fourth and somewhat  different concept for a true index is associated with Afriat (1981) 
and Dowrick and Quiggin (1997). If for each bilateral comparison subsumed within a broader 
multilateral comparison, the maximum of all the chained Paasche paths between the two periods 
or regions is less than the minimum of all the chained Laspeyres paths, then any index that for all 
pairs of bilateral comparisons lies between these so-called Afriat bounds is defined as true. The 
resulting index is true in the sense that there exists a nonparametric utility function that 
rationalizes the data and generates Konüs indexes that are identically equal to it. In our opinion, 
however, this alternative usage of the word “true” is misleading because it is at odds with a large 
literature that uses this term differently. VW seem to have been influenced by this fourth concept. 

                                                 
4 Samuelson (1974) called this a money metric measure of utility. 
5 See Diewert (1981) for references to the literature. 
6 Shephard (1953) was an early pioneer in developing this theory of aggregation. 
7 See Diewert (1981) and Caves, Christensen and Diewert (1982) for additional material on this index concept. 
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 Note that the concepts of a Konüs true price index and an Allen true quantity index are 
not immediately “practical” concepts since they assume that the functional form for the 
consumer’s utility function (or its dual cost function) is known.8 Note also that definition (2) for 
a true Konüs price index is defined for any given utility function U satisfying the regularity 
conditions listed above (with dual cost function C) for all strictly positive price vectors  and 

 and for all strictly positive reference quantity vectors q . Similarly, definition (4) for a true 
Allen quantity index is defined for any given utility function U satisfying the regularity 
conditions listed above (again with dual cost function C), for all strictly positive quantity vectors 

 and  and for all strictly positive reference price vectors p . 

1p
2p

1q 2q

 

3. The VW System of True Quantity Indexes 
 

 Having reviewed the literature on bilateral true indexes, we are now ready to consider 
van Veelen and van der Weide’s (VW’s) (2008) multilateral concepts for a system of true 
quantity indexes. They assume that price and quantity data,  and  for  are 
available for say M countries. Denote the N by M matrix of country price data by 

 and the N by M matrix of country quantity data by . A 
system of VW multilateral quantity indexes is a set of M functions, 

 where F is a vector valued function whose 
components are the country relative quantity aggregates, the 

mp
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 VW (2008; 1724-1725) provide three alternative definitions for the concept of a true 
quantity index in the multilateral context. These definitions are of interest, but none of their 
definitions coincide with the definitions for a true index that already exist in the literature. Their 
third definition of a true multilateral system is closest to what we think is the definition in the 
literature on true indexes and so we will repeat it here: 

 VW’s Third Definition: The vector valued function  is a true system of 
multilateral quantity indexes for the utility function U if for all data sets  that U 
rationalizes, the following inequalities hold: 

),(F QP
),( QP

(6) . Mk j,1 allfor    )(U)(U),(F),(F kj
kj ≤≤>↔> qqQPQP

 

                                                 
8 However, if preferences have been estimated econometrically, then these true index number concepts do become 
“practical”. Moreover, one can construct observable nonparametric bounds to these indexes and under certain 
conditions, these bounds again become practical; see Pollak (1983) and Diewert (1981) for expositions of this 
bounds approach to true indexes. The working paper version of Pollak (1983) was issued in (1971).  
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4. An Allen True Multilateral System of Quantity Indexes 
 

 Now we consider alternative definitions for a true multilateral system of quantity indexes 
based on the existing literature on true indexes. In the case where preferences are nonhomothetic, 
the system of true Allen multilateral quantity indexes consists of the following M functions 
where the positive price vector p  is an arbitrarily chosen reference price vector: 

(7)  )),(U(C,),),(U(C),),(U(C M21 pqpqpq K

where as usual, C is the cost or expenditure function that is dual to the utility function U. In the 
case where preferences are linearly homogeneous, then it is not necessary to specify a reference 
price vector and the system of true multilateral quantity indexes in this case becomes just the 
vector of country utilities: 

(8) . )(U,),(U),(U M21 qqq K

 Comparing (6), (7) and (8), it can be seen that (8) could be regarded as a special case of 
the VW definition; i.e., if we set  equal to , then it can be seen that the VW 
definition of a true multilateral index is equivalent to the definition of a true index that is in the 
traditional literature but of course, we need the homothetic preferences assumption in order to 
get this equivalence. In the general case where preferences are not homothetic, then it can be 
seen that the “traditional” definition of a true set of multilateral indexes (7) cannot be put into the 
VW form (6). Using the VW definition of a true system, their functions  depend on two 
matrices of observed price and quantity data, P  and Q . In contrast, using the Allen definition of 
a true system, the counterpart functions to the  depend only on the observed country j quantity 

vector  and the reference price vector . Thus, the definition that VW suggest differs from the 
literature’s existing definition of a true index.

),(Fj QP

p

)(U jq

jF
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jq
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5. Traditional Definitions for Exact Indexes 
 

 We now turn our attention to the concept of an exact index as it exists in the index 
number literature. We will first look at the concept of an exact index in the bilateral context; i.e., 
where we are comparing only two price quantity situations.   

 The concept of an exact index number formula dates back to the pioneering contributions 
of Konüs and Byushgens (1926) in the context of bilateral index number theory.10 In the price 
index context, the theory starts with a given bilateral index number formula for an axiomatic 
price index P which is a function of the price and quantity vectors pertaining to two situations 

                                                 
9 Of course, VW are entitled to make whatever definitions they find convenient. Our point is that they should 
carefully note that they are changing a well established definition of a true index. 
10 For additional material on the contributions of Konüs and Byushgens, see Afriat (1972) and Diewert (1976). 
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(time periods or countries) where the prices are positive, say . The function P is 
supposed to reflect the price level in, say, country 2 relative to the price level in country 1.  

),,,(P 2121 qqpp

 Now assume that the data  pertaining to the two countries is generated by 
utility maximizing behavior on the part of an economic agent, where the utility function  is 
defined over the nonnegative orthant, and is nonnegative, linearly homogeneous, increasing (if 
all components of q  increase) and concave. The unit cost function that is dual to  is . 

 The existing literature defines  to be an exact price index for  and 
its dual unit cost function  if  

2121 ,,, qqpp

,,(P 21 qpp

)(U q

(c q

)(U q

)(U q )

), 21 q
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(9) . )c/)(c),,,(P 122121 (ppqqpp =

The equality (9) is supposed to hold for all strictly positive price vectors  and  (and, of 

course, the corresponding  and  are assumed to be solutions to the cost minimization 
problems defined by (1). 

1p 2p
1q 2q

 There is an analogous theory for exact quantity indexes, . Under the 
homothetic (actually linearly homogeneous) preference assumptions made in the previous 
paragraph and under the assumption that the data are consistent with cost minimizing behavior 
(1), the existing literature says that  is an exact quantity index for  if  

),,,(Q 2121 qqpp

(U),,,(Q 2121 qqpp )q

(10) . )(U/)(U),,,(Q 122121 qqqqpp =

 Many examples of exact bilateral price and quantity indexes are presented in Konüs and 
Byushgens (1926), Afriat (1972), Pollak (1983) and Diewert (1976). 

 Note that the above theory of exact quantity indexes does not guarantee that a given set of 
bilateral price and quantity vectors, , are actually consistent with utility maximizing 
(or cost minimizing) behavior. The theory only says that given a particular functional form for U, 
given arbitrary strictly positive price vectors  and , and given that  solves the cost 

minimization problem (1) for , then a given function of 4N variables  is 
an exact quantity index for the preferences defined by U if (10) holds. The problem that VW 
have uncovered with this definition has to do with the assumption that (10) holds for all strictly 
positive price vectors  and : this is not always the case for many of the commonly used 
exact index number formulae. We will return to this important point later.   

2121 ,,, qqpp

p

2

1 2p iq

(Q,1i =

2p

),,, 2121 qqpp

1p

 The theory of exact quantity indexes in the multilateral situation is not as well developed 
as in the bilateral context. Note that in the bilateral context, an exact index number formula is 
exact for a utility ratio; i.e., the exact index number literature does not attempt to determine 
utility up to a cardinal scale but rather it only attempts to determine the utility ratio between the 
two situations. In the multilateral context, we could attempt to determine utility ratios relative to 
a numeraire country but then one country would be asymmetrically singled out to play the role of 
the numeraire country. Thus Diewert (1988) developed an axiomatic approach to multilateral 
quantity indexes that is based on a system of country share functions, 
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),(S)],(S,),,(S),,(S[ M21 QPQPQPQP ≡K  where S is a vector valued function whose 
ntity aggregates, the ),(Scomponents are the country relative qua m QP , where each mS  

represents the share of country m in world output (or consumption)  practical purpos  
Diewert’s system of share functions, ),(S QP , is equivalent to VW’s system of multilateral 
indexes, ),(F QP .  

 Diewert (19

.11 For all es,

99; 20-23) developed a theory of exact indexes in the multilateral context and 

wert’s economic approach to multilateral indexes is that the 

(11) 

 where  is the utility level for country m,  is the vector of 

we will explain his theory below.12 

 The basic assumption in Die
country m quantity vector mq  is a solution to the following country m utility maximization 
problem: 

mmmm u} :)(U{max == qpqpqq , 
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homogeneous, increasing and concave utility function that is a be the same across 
countries.

ssumed t
13 As usual, the utility function has a dual unit cost or expenditure function )(c p  which 

is defined as the minimum cost or expenditure required to achieve a unit utility level if the 
consumer faces the positive commodity price vector p.14 Since consumers in country m are 
assumed to face the positive prices mp , we have the following equalities:  

mmm(12) ;    

where Pm is the (unobserved) minimum expenditure that is required for country m to achieve a 

;     M

In order to make further progr function  is once 

(14) ;       M . 

                                                

P}1)(U :{min)(c ≡≥≡ qqpp q M,,1m K= , 

unit utility level when it faces its prices mp , which can also be interpreted as country m’s PPP, 
or Purchasing Power Parity. Under the above assumptions, it can be shown that the country data 
satisfy the following equations: 

(13) mmmm mmuP)(U)(c == qpqp ,,1m K= . 

 ess, we assume that the unit cost )(c p
continuously differentiable with respect to the components of p . Then Shephard’s Lemma 

implies the following equations which relate the country m quantity vectors mq  to the country m 

price vectors mp  and utility levels mu : 

mmm u)(c pq ∇= ,,1m K=

 

)(c p

11 This multilateral axiomatic approach was further refined by Balk (1996) and Diewert (1999). 
12 See also Diewert (2008). 
13 Note that in Diewert’s multilateral approach to exact indexes (1999) (2008), he did not consider the case of 
nonhomothetic preferences whereas in the bilateral case, Diewert (1976) did consider the nonhomothetic case. 
14 The unit cost function  is an increasing, linearly homogeneous and concave function in p  for .  N0p >>
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 y to define the concept of exactness for a multilate yst
say that l system of share functions, ),(S QP , is exact

Now we are read ral share s em. We 
the multilatera  for the linearly 

omogh eneous utility function U and its differentiable dual unit cost function c if the following 
system of equations is satisfied for all strictly positive country price vectors ],,[ M1 ppP K≡  and 

all positive utility levels M1 u,,u K : 
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Thus an exact multilateral share system gives us exactly the underlying utilities up to an 
arbitrary positive scaling factor. Diewert (1999, 2008) gives many examples of exact multilateral 

stem

s for all strictly 
ositiv
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 these theoretical concepts (as they exist in the index number literature) with a 

. The Problems Associated with Finding the Regularity Region for Exact Indexes 

In the previous section, we noted that there can be a problem with some well known 
xact index number formulae in that the exactness property does not always hold for all strictly 
ositive

                                                

M,,1j,i K= . 

 

sy s. Diewert also goes on to define a superlative multilateral system to be an exact system 
where the underlying utility function U or dual unit cost function can approximate an arbitrary 
linearly homogeneous function to the second order around any given data point. 

 As in the bilateral case, VW have uncovered a problem with our definition (15) above for 
an exact multilateral system. The problem is that it is assumed that (15) hold
p e price vector matrices P : this is not always the case for many of the commonly used 
exact index number formulae. We will return to this important point in the following section.   

 Van Veelen and van der Weide (2008; 1723) also give their definition of an exact 
multilateral system (which we will not reproduce here due to its complexity). However, the
de on is rather far from the above definition of multilateral exactness that is out there in the 
literature.15   

 In our view, the “problem” with the VW definitions of true and exact indexes is that they 
are mixing up
related but different question: namely, is a given set of, say, M price and quantity vectors 
consistent with utility maximizing behavior under various assumptions? This latter question is an 
interesting one and there is certainly room for more research in this area. However, some care 
should be taken to not redefine well established concepts as this research takes place. 

 

6
 

 
e
p  prices. We will explain the problem by giving two examples of exact index number 
formulae: one where there is no problem, and a second where there could be a problem.  

 

 
15 A major problem with their definition is this: the VW definition is conditional on a set of admissible price and 
quantity vectors D but this admissible set is not well specified. If we take the set D to be a single price quantity point 
for each country where the country price vectors are all equal to the same p and the country quantity vectors are all 
equal to the same q, and the function F treated countries in a symmetric manner, then F would be exact for any 
utility function.   
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Example 1: The Jevons Price Index 
 cost function c has the following Cobb-Douglas functional 

rm:

, 

e the are positive constants which sum to one and 

 Suppose each consumer’s unit
16fo  

(16) ∏ =
αβ≡ N

1n n np)(c p

wher nα  β  is a positive constant. If we are 

(17) 

where the unit cost function c is defined by (16) and the nth expenditure share for country 1,  

(18) 

 Thus under our assumptions on consumer behavior, (18) tells us that the true Allen 

Thus the theory of exact indexes works well under the assumption of Cobb Douglas 

                                                

comparing the level of prices in country 2 relative to country 1, then the Jevons (1865) price 
index, JP  is defined as the first line in (17): 

s1N 22121 1
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is defined as 111
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1
n /qp qp  for N,,1n K= . Thus under the assumption that consumers in the two 

countries have obb references )(U q  that are dual to the unit cost function c 
defined by (16) and assuming cost minimizing behavior on the part of consumers in both 
countries, then (17) tells us that the true Konüs price index between the two countries is exactly 
equal to the observable Jevons price index ),,,(P 2121

J qqpp  and that this equality will hold for 

all strictly positive price vectors 1p  and 2p untries. The corresponding Jevons 

quantity index ),,,(Q 2121
J qqpp  is defined as the expenditure ratio divided by the Jevons price 

index and we ha equalities: 
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quantity index between the two countries is exactly equal to the observable Jevons quantity index 
),,,(Q 2121

J qqpp  and again, this equality will hold for all strictly positive price vectors 1p  and 

 countries (with the corresponding quantity vectors 1q  and 2q eing 
genously determined). If we want to put the above results into the format at VW , then 

the VW system of country quantity indexes could be defined as follows: 

(19) ),,,(Q),,,(F  ;1),,,(F 2121
J

2121
2
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1 qqppqqppqqpp ≡≡ . 

2p  for the two
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se th  u

 
preferences. However, note that the theory does not investigate whether consumers in the two 
countries actually minimize their costs of achieving their utility targets and whether they actually 

 
16 The Cobb Douglas case is treated in some detail by Afriat (1972) and Pollak (1983). 
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have Cobb Douglas preferences.17 The theory is a conditional one: if consumers have certain 
preferences and if they engage in cost minimizing behavior, then their true price (or quantity) 
index will be exactly equal to a certain index number formula which in turn is a function of the 
observable price and quantity data pertaining to the two countries.  

 We turn to our second example of an exact index. 

 

Example 2: The Fisher Price Index 
 Suppose each consumer has preferences that are dual to the following unit cost 
function:18 

(20) ; , 2/1T )()(c Bppp ≡ TBB =

where  is an N by N symmetric matrix which has one positive eigenvalue (with a strictly 
positive eigenvector) and the remaining N−1 eigenvalues are negative or zero. The vector of first 
order partial derivatives of this unit cost function, 

B

)(c p∇ , and the matrix of second order partials, 

, are equal to the following expressions: )(c2 p∇

(21) ; 2/1T )/()(c BppBpp =∇

(22) . })({)()(c T1T2/1T2 BpBppBpBBppp −− −=∇

 At this point, we encounter the problem which we believe bothered VW; namely, that the 
unit cost function defined by (20) will generally not provide a representation of well behaved 
consumer preferences for all strictly positive price vectors p . In order for a unit cost function to 
provide a valid global representation of homothetic preferences, it must be a nondecreasing, 
linearly homogeneous and concave function over the positive orthant. However, in order for c to 
provide a valid local representation of preferences, we need only require that  be positive, 
nondecreasing, linearly homogeneous and concave over a convex subset of prices, say S, where 
S has a nonempty interior.

)(c p

19 It is obvious that  defined by (20) is linearly homogeneous. The 
nondecreasing property will hold over S if the gradient vector 

)(c p
)(c p∇  defined by (21) is strictly 

positive for  and the concavity property will hold if ∇  defined by (22) is a negative 
semidefinite matrix for . We will show how the regularity region S can be determined 
shortly but first, we will indicate why the c  defined by (20) is a flexible functional form

Sp∈ )(pc2

Sp∈
)(p 20 

since this explanation will help us to define an appropriate region of regularity. 
                                                 

2
n

1
n s= N,,1n L

17 An implication of the Cobb Douglas preferences model is that the expenditure shares in the two countries should 
be equal; i.e., we should have s  for = . Of course, in the real world, these restrictions are unlikely to be 
satisfied. 
18 This is a special case of a functional form due to Denny (1974), which Diewert (1976; 131) called the quadratic 
mean of order r unit cost function, with 2= . r
19 See Blackorby and Diewert (1979) for more details on local representations of preferences using duality theory. 
20 A flexible functional form is one that is capable of providing a second order approximation to an arbitrary 
function in the class of functions under consideration; see Diewert (1976; 115) who introduced the term into the 
economics literature. 
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 Let  be a strictly positive reference price vector and suppose that we are given 

an arbitrary unit cost function  that is twice continuously differentiable in a neighborhood 

around .

N
* 0>>p
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)(c* p

)(p >>
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*p 21  Let  be the strictly positive vector of first order partial 

derivatives of  and let  be the negative semidefinite symmetric matrix of 

second order partial derivatives of  evaluated at . Euler’s Theorem on homogeneous 
functions implies that Σ  satisfies the following matrix equation: 

N
** c 0∇≡

(c*

*c

)*p
*p

(23) . N
* 0Σp =

 In order to establish the flexibility of the c defined by (20), we need only show that there 
are enough free parameters in the B  matrix so that the following equations are satisfied: 

(24) ; **)(c qp =∇

(25)  Σp =∇ )(c *2

 In order to prove the flexibility of c defined by (20), it is convenient to reparameterize the 
B matrix. Thus we now set B equal to: 

(26) , AbbB += T

where  is a positive vector and A  is a negative semidefinite matrix which has rank 
equal to at most  and it satisfies the following restrictions: 

N0b >>
1N −

(27) . N
* 0Ap =

 Note that  in (26) is a rank one positive semidefinite matrix with 
 and A is a negative semidefinite matrix and satisfies . 

Thus it can be seen that B  is a matrix with one positive eigenvalue and the other eigenvalues are 
negative or zero. 

Tbb
0)2 >( *T*TT* = pbpbbp 0App =*T*

 Substitute (21) into (24) in order to obtain the following equation: 

(28)  2/1*T*** )/( −= BppBpq

         using (26) 2/1*TT**T )][/(][ −++= pAbbppAbb

                                                 
*

*

*p * )*(*cT*p)(* p*p ∇=

N)(c ***2 0pp =∇ *p=

*

21 Of course, in addition, we assume that c  satisfies the appropriate regularity conditions for a unit cost function. 

Using Euler’s Theorem on homogeneous functions, the fact that c  is linearly homogeneous and differentiable at 

 means that the derivatives of c  satisfy the following restrictions: c  and 

. The unit cost function c defined by (20) satisfies analogous restrictions at p . These 

restrictions simplify the proof of the flexibility of c at the point p .   
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           using (27) 2/1*TT**T )/( pbbppbb=

     . b=

 Thus if we choose b equal to , equation (24) will be satisfied. Now substitute (22) into 
(23) and obtain the following equation: 

*q

(29)  })({)( T*1*T**2/1*T* BpBppBpBBppΣ −− −=

      using (26) and (27) TT*1*TT**TT2/1*TT* )({)( bbppbbppbbAbbpbbp −− −+=

            using . Apb 1*T )( −= 0pb *T >

Thus if we choose A equal to , equation (25) will be satisfied and the flexibility of c 
defined by (20) is established.

Σpb )( *T
22 

 Now we can define the region of regularity for c defined by (20). 23  Consider the 
following set of prices: 

(30) . }0 ;:{S NN >>>>≡ Bp0pp

 If , then it can be seen that  and using (21), . 
However, it is much more difficult to establish the concavity of  over the set S. We first 
consider the case where the matrix B  has full rank so that it has one positive eigenvalue and 

 negative eigenvalues. Let  and using equation (22), we see that ∇  will be 
negative semidefinite if and only if the matrix M  defined as: 

S∈p 0)()(c 2/1T >= Bppp N)(c 0p >>∇

)(c2 p

)(c p

1N − S∈p

(31)  BpBppBpBM T1T )( −−≡

is negative semidefinite. Note that M  is equal to the matrix B  plus the rank 1 negative 
semidefinite matrix − .  has one positive eigenvalue and the remaining 
eigenvalues are 0 or negative. Since M  is  plus a negative semidefinite matrix, the 
eigenvalues of  cannot be greater than the eigenvalues of B . Now consider two cases; the first 
case where B  has one positive and 

BpT

1

BppBp 1T )( −

N

B
B

M
−  negative eigenvalues and the second case where B  has 

 negative or zero eigenvalues in addition to its positive eigenvalue. Consider case 1, let 
 and calculate Mp : 

1N −
S∈p

(32) . N
T1T ])([ 0pBpBppBpBMp =−= −

 The above equation shows that p ≠ 0N is an eigenvector of M  that corresponds to a 0 
eigenvalue. Now the addition of a negative semidefinite matrix to B  can only make the 1N −  
negative eigenvalues of B  more negative (or leave them unchanged) so we conclude that the 

                                                 

Σ

22 We need to check that A is negative semidefinite (which it is since it is a positive multiple of the negative 
semidefinite substitution matrix Σ ) and that A satisfies the restrictions in (27), since we used these restrictions to 
derive (28) and the second line in (29). But A does satisfy (27) since  satisfies (23).  
23 The region of regularity can sometimes be extended to the closure of the set S. 
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addition of the negative semidefinite matrix −  to  has converted the positive 
eigenvalue of B  into a zero eigenvalue and hence M  is negative semidefinite. Case 2 follows 
using a perturbation argument. 

BpBppBp T1T )( −

2/12]q

)(U q

1p

),, 212 qqp

B

(F p
2

 We are now in a position to exhibit an index number formula that is consistent with the 
preferences that are dual to c defined by (20). Thus we again consider the two country case and 
define the Fisher (1922) ideal price index PF as follows:  

(33) . 1112212211
F /[),(F pqpqpqpqqp ≡2,,p

,, 2p

,2p

, 2p

 Assume that  is defined by (20) and S defined by (30) is nonempty. Suppose that 
consumers in the two countries have preferences  that are locally dual to  and that the 

country price vectors,  and , both belong to S. Finally, assume that consumers in both 
countries engage in cost minimizing behavior. Then, under all these hypotheses, we have the 
following equality:

)(c p

1p

)(c p
2p

24 

(34) . )(c/)(c),(F 12211
F ppqqp =

 Thus under our hypotheses, (34) tells us that the true Konüs price index between the two 
countries is exactly equal to the observable Fisher price index  and that this 

equality will hold for all strictly positive price vectors  and  for the two countries that 
belong to the set S. As was the case for the Jevons index, the corresponding Fisher quantity 
index  can be defined as the expenditure ratio divided by the Fisher price 
index and we have the following equalities: 

),,,P 2121 qqp

p

),,(Q 211
F qqp

(35)  
),(U/)(U

,(P/),,(Q
12

1
F

1122211
F

qq

pqpqpqqp

=

≡

where U is the utility function that is locally dual to c. 

 What are we to make of the above results in the light of the criticisms of VW? We think 
that VW are justified in noting the limitations of the above theory of exact index numbers. Some 
of these limitations are: 

• All consumers in all countries in the comparison are generally assumed to have the same 
homothetic preferences;  

• There are no checks done on the data to see if consumers really are maximizing a 
common linearly homogeneous utility function and finally, 

• The exact result (for example (34)) may not hold for all positive price vectors pertaining 
to the countries in the comparison but may only hold for a subset S  of prices and it will usually 
be difficult to figure out exactly what this set is. 

 

                                                 
224 See Diewert (1976; 134) and specialize his result to the case where = . r
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 Our response to these valid criticisms is the following one. We regard exact superlative 
indexes (indexes which are exact for flexible functional forms) as a useful screening device. 
There are an infinite number of index number formulae out there and it is useful to distinguish 
formulae that have “good” economic properties under at least some conditions.25 However, it is 
always useful to consider other noneconomic approaches to index number theory and it is 
perhaps “ideal” if the different approaches lead to the same index number formulae. Thus North 
American price statisticians tend to favor the use of the Fisher or Törnqvist Theil (1967) bilateral 
formula because of the connection of these indexes with the economic approach to index number 
theory whereas European statisticians tend to favor the axiomatic approach or the stochastic 
approach26 to index number theory. However, strong axiomatic justifications for the use of the 
Fisher index can be given27 and a strong axiomatic for the Törnqvist Theil formula can also be 
given.28 Furthermore, the Törnqvist Theil formula also does well from the viewpoint of the 
stochastic approach. Thus at the current state of index number theory, it appears that the Fisher 
and the Törnqvist Theil indexes are pretty good choices from multiple points of view.29     

 

7. The Distinction Between the Axiomatic and Economic Approaches 
 

 Although VW make many good points in their note, they make some points which we 
find are problematical. Consider the following quotation: 

“In the literature, two approaches to index numbers are distinguished: the axiomatic 
approach and the economic approach. ... In Neary’s paper the difference is described as 
one between an approach that does and an approach that does not assume that quantities 
arise from optimizing behavior. ... We will argue that a more accurate description is that 
the difference lies in whether or not optimizing agents, or representative consumers, are 
assumed to optimize the same utility function.” Matthijs van Veelen and Roy van der 
Weide (2008; 1722). 

 We do not agree with the above assertions: it seems to us that the economic approach 
definitely takes prices as exogenous variables and treats quantities as being endogenous, whereas 
the axiomatic approach treats both prices and quantities as being exogenous. That is, we agree 
with the consensus view, as stated in Neary (2004) and Balk (2008), which can be traced back at 
least to Frisch (1936). We do not think it is particularly helpful to try and blend the two 
approaches (although in the end, they may lead to the same index number formulae).  

VW argue that an advantage of the axiomatic approach is that it allows for heterogeneity 
in preferences. We take issue with this claim. The economic approach allows for heterogeneity 

                                                 
25 There are even an infinite number of superlative formulae as indicated by Diewert (1976) but Hill (2006) noted 
that not all of these formulae are really that super. 
26 See Theil (1967), Selvanathan and Rao (1994) and Clements, Izan and Selvanathan (2006) on the stochastic 
approach to index numbers. 
27 See Diewert (1992) and Balk (1995). 
28 See Diewert (2004). 
29 This argument follows along similar arguments made by Diewert (1997). Also Diewert (1978) showed that the 
Fisher and Törnqvist Theil indexes will numerically approximate each other to the second order around an equal 
price and quantity point. Thus, in the time series context, it will often not matter which of these indexes is used. 
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too, across households in each period and in tastes across periods. Pollak (1980, 1981, 1983) and 
Diewert (1984, 2001) extend the Konüs true index to the case of heterogeneous agents. For 
example, a plutocratic Konüs true index is defined as follows: 

(36) , ]),(U[C/]),(U[C),,,,(P 1
hh

H
1h h

2
hh

H
1h hH1

21
K pqpqqqpp ∑∑ ==≡K

where h indexes the households.30 A plutocratic Konüs true index measures the change in the 
minimum cost of each household h achieving its reference utility level  from period 1 to 
period 2. The plutocratic Konüs true index as formulated in (36) therefore explicitly allows 
preferences to differ across households. Similarly, true indexes that allow preferences to change 
over time are derived by Caves, Christensen and Diewert (1982) and Balk (1989). In short, the 
economic approach is more flexible than VW’s analysis suggests. 

)(U hh q

 

8. Conclusion 
 

 Van Veelen and van der Weide (2008) have raised a number of contentious issues that 
deserve closer scrutiny. While we take issue with some of their findings, we commend them for 
providing a fresh perspective on an old topic. 
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