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Chapter 1 
INTRODUCTION TO INDEX NUMBER THEORY 

FOR PRICE AND PRODUCTIVITY MEASUREMENT 
Bert M. Balk, W. Erwin Diewert and Alice O. Nakamura1 

 

 Formal index number theory is not needed for measurement when the definition of a 
measure is obvious and its properties are apparent. However, there is a need to choose among 
many seemingly appropriate ways that have been proposed to meet important economic 
measurement needs such as assessing the rates of inflation and productivity growth for a nation 
and the determinants of changes over time or differences in the standard of living. The papers in 
this volume attempt to meet needs for theory in price and productivity measurement. 

 The papers fall in two groups. Part I papers deal with alternative productivity measures 
and decompositions of productivity growth. Part II papers focus on the properties of alternative 
index number formulas for price and productivity measurement. This volume is intended for 
specialists, in contrast to most of the other volumes in this Price and Productivity Measurement 
series (the “Vancouver Volumes”) that should be accessible also for non specialists. The papers 
have been ordered within each of the two parts of this volume to assist students and others trying 
to attain a specialist level of understanding in mastering key terms.  

PART I  Productivity Measures and Decompositions 
 In chapter 2, Paul Schreyer of the Organization for Economic Co-operation and 
Development (OECD) explains that different ways of specifying computable measures of 
multifactor productivity (MFP) embed different assumptions about the technology and 
competition on output markets. The author focuses especially on assumptions often invoked in 
the absence of direct information about the prices and volumes of capital services.  

 Schreyer develops a very general model which provides a decomposition of traditional 
Total Factor Productivity or Multifactor Productivity growth (which he calls Apparent 
Multifactor Productivity, or AMFP, growth) into economic explanatory factors; see his equation 
(17c). The explanatory factors include: 

• Possible nonconstant returns to scale; 
• Technical progress (a shift in the production or cost function); 
• Possible monopolistic pricing of products, and 
• Possible omitted inputs. 
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Schreyer’s decomposition of apparent productivity growth into explanatory factors generalizes 
the analysis of Denny, Fuss and Waverman (1981), which developed a similar methodology that 
included the first three factors listed above but not the fourth. 2  Schreyer goes on to make 
additional assumptions that will allow statistical agencies to implement his general productivity 
formula. Schreyer lists five sets of assumptions and develops alternative empirical productivity 
growth estimates for Canada, France, Japan, and the United States. Empirically, the different 
assumptions are found to matter. The problem of deciding which set of assumptions is “best” has 
still not been solved in the literature but Schreyer’s chapter should be required reading for 
statistical agencies contemplating the implementation of a multifactor productivity measure.  

 Different investigators have chosen different methods for measuring the contributions to 
industry productivity growth of entering and exiting firms. In chapter 3, W. Erwin Diewert of 
the University of British Columbia and Kevin J. Fox of the University of New South Wales 
propose a new formula for decomposing industry productivity growth into terms that reflect the 
productivity growth of individual production units that operate in both the base and comparison 
time periods (the “continuing firms”) as well as the impacts on industry productivity growth of 
firm entry and exit. This formula is initially developed for the simplistic case in which each 
production unit produces a single homogeneous output and uses a single homogeneous input. 
 Diewert and Fox then take up the problems involved in combining many outputs and 
many inputs into aggregates. There are some significant index number problems. There is no 
problem in using normal index number theory to construct output and input aggregates for each 
continuing firm present for both periods under consideration. However, this approach does not 
work with entering and exiting firms, since there is no natural base or current period observation 
to use as a standard of comparison for the single period data for these firms. The authors address 
this problem (which has not been widely recognized in the literature) by applying multilateral 
index number theory. In this approach, the data for each firm in each period is regarded as if it 
pertained to a “country” and various multilateral methods are applied. They illustrate their 
methodology using an artificial data set.  

 In chapter 4, W. Erwin Diewert of the University of British Columbia first focuses on a 
decomposition derived by Tang and Wang (2004) of economy wide labour productivity into 
sectoral contributions. Diewert reworks the Tang-Wang result so as to provide a more 
transparent and simple decomposition. He also explores another decomposition approach due to 
Gini which is a generalization of the Fisher ideal index number methodology to aggregates that 
are products of three factors: (i) growth in the labour productivity of individual sectors, (ii) 
changes in sectoral real output prices, and (iii) changes in the allocation of labour across sectors.  

 Policy makers are also interested in estimates of the contributions to aggregate 
productivity growth of particular industries. Marshall Reinsdorf and Robert Yuskavage of the 
U.S. Bureau of Economic Analysis (BEA) explain in chapter 5 that the lack of an additive 
formula for industry contributions to real output growth means that formulas for industry 
contributions to aggregate productivity growth also generally add up to incorrect totals. The 
authors observe that the unavailability of exact formulas for industry contributions to aggregate 
productivity growth has led to reliance on approximate decomposition formulas. They show, 
however, that the approximate formulas examined can work well. In addition to its 

                                                 
2 Schreyer’s analysis is also related to Balk (2010a) and Diewert and Fox (2008).  These last authors do not consider 
the case where assets are missing and so Schreyer’s framework is more general. 
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methodological contributions, this paper makes an empirical contribution to the literature on the 
industry sources of the post-1995 rebound in productivity growth. Reinsdorf and Yuskavage note 
that interest in investigating industry sources of productivity change has been further heightened 
by the availability for the United States, since June 2004, of data on industry gross output, 
intermediate inputs and value added resulting from the integration of the GDP-by-industry 
accounts and the annual I-O accounts. Using these data, the authors find that information 
technology (IT) producing industries directly account for far less of the post-1995 speedup in 
productivity growth than the wholesale and retail trade industries.  

 In chapter 6, Ulrich Kohli, who was chief economist of the Swiss National Bank when 
this chapter was written and is now with the University of Geneva, points out that most headline 
productivity measures refer to the average product of labor. Kohli notes, however, that a more 
relevant measure might be the marginal product. Nevertheless, as long as the income share of 
labor remains essentially constant, the two measures give very similar results. In the case of the 
United States, Kohli observes, the share of labor has been quite steady over 1971-2001 and the 
paths of both measures have been similar. The stability of the labor share explains why the 
Cobb-Douglas production function fits U.S. data well. Yet Kohli shows that a more thorough 
look at the evidence reveals that the historical constancy is the outcome of opposing forces. 

 Kohli expands the model by adopting the GDP function framework. Using a functional 
form more flexible than the Cobb-Douglas, he finds on the one hand that the Hicksian elasticity 
of complementarity between labor and capital has been significantly greater than one. Thus 
capital deepening has tended to increase the share of labor and raise its marginal product by 
relatively more than its average product. On the other hand, he finds that technological change 
has had an offsetting effect. An improvement in the terms of trade and a depreciation of the 
home currency are also shown to have impacts on average labor productivity. This paper seeks to 
analytically disentangle these effects and proposes a measurement methodology which is then 
applied to produce a multiplicative decomposition of the average and marginal U.S. labor 
productivity over the past three decades. Both econometric and index number methods are used.
 In chapter 7, Bert M. Balk of the Rotterdam School of Management, Erasmus 
University, and Statistics Netherlands argues that official statistics agencies should adopt a 
definition for productivity growth that does not embed strong assumptions that are not supported 
by empirical evidence such as a constant returns to scale technology, competitive input and 
output markets, optimizing behaviour, and perfect foresight. Instead, Balk urges that total factor 
productivity growth (which official statistics agencies measure as MFP growth) should be 
defined as an output quantity index divided by an input quantity index.3 Balk also provides an 
alternative framework for measuring productivity growth that is based on a difference approach 
to index number theory as opposed to the usual ratio approach. Balk shows that this alternative 
approach has some advantages over the traditional approach. The difference approach to index 
number theory was originally developed by Montgomery (1937) and Diewert (2005) but has not 
attracted much attention in the index number literature. However, Balk shows that the difference 
approach to measuring productivity change has a significant advantage over the traditional ratio 
approach in that it is invariant to whether output is measured as gross output or real value added. 

 The paper systematically considers the measurement of productivity change using a 
KLEMS framework and illustrates how the analysis can be conducted without imposing 

                                                 
3 Diewert and Nakamura (2007) also advocate this definition of total factor productivity growth. 
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neoclassical assumptions. The paper also provides a rigorous discussion of the issues relating to 
the measurement of the cost of capital. When it comes to the explanation of productivity change, 
Balk explains that there are two main directions. The first is disaggregation: the explanation of 
productivity change at an aggregate level (economy, sector, industry) by productivity change at 
lower levels (firm, plant) and other factors subsumed under the heading of re-allocation 
(expansion, contraction, entry, and exit of production units). The second direction is concerned 
with the decomposition of productivity change into factors such as technological change, scale 
effects, input- and output-mix effects, and random chance. “And here come the neoclassical 
assumptions,” writes Balk, “at the end of the day rather than at its beginning.”  

 Balk’s contribution also has three valuable appendices. Appendix A gives the reader a 
brief overview of the axiomatic approach to bilateral index number theory (a ratio approach) and 
also the axiomatic approach to indicators4 (a difference approach to the aggregation of prices and 
quantities). For additional material on the axiomatic approach to bilateral index number theory, 
see Diewert (1992b); on the axiomatic approach to indicators, see Diewert (2005), and Diewert 
and Mizobuchi (2009); and on both approaches, see Balk (2008). Appendix B in Balk’s 
contribution shows how value added ratios can be decomposed into price and quantity 
components. Finally appendix C provides a comprehensive discussion of possible methods for 
decomposing time series depreciation into revaluation and depreciation or deterioration terms.  

PART II  Index Number Formulas 
 Many official statistical agencies state that they use a Laspeyres price index as a 
conceptual target for their consumer price index. However, in chapter 8, Bert M. Balk of the 
Rotterdam School of Management, Erasmus University, and Statistics Netherlands, and W. 
Erwin Diewert of the University of British Columbia note that the headline inflation figure for 
the Netherlands, for example, in 2007 was obtained as the percentage change between a current 
month and the corresponding month of the prior year, with 2006 serving as the reference year for 
the quantity weights. This is not a Laspeyres index; they call this a “Lowe index” since the 
English economist, Joseph Lowe, suggested this type of index in 1823. More specifically, they 
define a Lowe index to be a fixed basket index where the commodity basket corresponds to 
household consumption patterns in a base year and this basket is priced out using current month 
prices in the numerator and base month prices in the denominator of the index. Thus there are 
two separate bases for this index: a base year for the quantity basket and a base month for the 
prices. The base year always proceeds the base month. Most CPIs are actually Lowe indexes.  

 Suppose households had preferences defined over the commodities in the annual basket 
given by the utility function,  say, where q is a consumption vector. Let the base year 

consumption vector be . Then a Konüs true cost of living index comparing the cost of 

achieving utility level  at the month t prices, , to the cost of achieving the same 

utility level at the base month prices, , is equal to the cost ratio,  where 
 is the minimum cost of achieving the utility level u when the household faces the prices 

p. This true cost of living index can be compared to the corresponding Lowe index, 

)q(f

)qb

bq
q ≡ (fu tp

0p ),(/),( 0btb puCpuC ,
)p,u(C

                                                 
4 Diewert (1992a) introduced the term “indicator” into the economics literature as a term to describe the difference 
counterpart to a bilateral index number formula. 
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, and the bias in this Lowe index can be estimated. The authors derive first and 
second order approximations to the substitution bias of a Lowe index. They then make 
assumptions about price trends and substitution elasticities and develop approximations to the 
bias in a Lowe index relative to the corresponding true cost of living index. 

 In chapter 9, T. Peter Hill, the editor of the international Consumer Price Index Manual: 
Theory and Practice (ILO et al. 2004) explains that this Manual and a 2003 working paper by 
Balk and Diewert (published as chapter 8 in this volume) are where the term “Lowe Index” was 
introduced. For a Lowe price index, Hill explains, the quantity weights are fixed and 
predetermined but need not pertain to either time period for which prices are being compared. 
Hill also introduces the concept of a Lowe quantity index in which the price weights are fixed, 
but need not pertain to either time period for which quantities are being compared. Hill discusses 
the fact that there are many ways in which the reference quantities or prices might be specified 
for a Lowe index. His results make it clear that the importance of the Balk-Diewert chapter 8 
paper is rooted in the fact that in naming the Lowe index, they also defined a class of indexes, 
the members of which have valuable properties in common. For example, Lowe indexes are 
transitive and have additive decompositions, and can be expressed as ratios of Laspeyres indexes. 
They can also be viewed as chain indexes that link through some other period, country or group 
of countries. Two classes of indexes used in international comparisons that, in fact, are Lowe 
indexes are the average quantity methods and the average price methods. Hill reminds the reader, 
however, that these are not described as “Lowe” PPPs or indexes in earlier literature because the 
term was only introduced in 2003. Hill also argues that, in the case of temporal price or quantity 
indexes where the link is some past period, its relevance necessarily diminishes as it recedes into 
the past. Hill thus favours frequent updating of the reference prices in Lowe quantity indexes and 
of the reference quantity baskets in Lowe price indexes. 

 A recurrent theme when measuring aggregate price and quantity change between more 
than two periods is the choice between the computation of direct or chained index numbers. The 
impression one gets from the literature is that chained index numbers are closer to the truth than 
direct index numbers. Bert M. Balk of the Rotterdam School of Management, Erasmus 
University, and Statistics Netherlands rigorously explores this issue in chapter 10.  

 Balk notes that statistical agencies, until the recent past, favoured the use of fixed base or 
direct indexes, usually of the Paasche or Laspeyres variety (or perhaps of the Lowe type), but 
now opinion has shifted to the use of chained indexes, at least for annual data. Balk notes that the 
2004 CPI Manual recommends the use of chained indexes provided that the prices and quantities 
of adjacent periods are more similar than the prices and quantities of more distant periods. In this 
circumstance, chaining will tend to reduce the spread between Paasche and Laspeyres indexes 
and indeed of superlative indexes as well.5 Balk reviews the arguments for and against chaining 
as opposed to the use of direct indexes6 and then he goes on to show mathematically, that it is 
impossible to reconcile the two approaches.  

 
5 For an introduction to the use of similarity measures to determine a path for chaining indexes, see section 10 of the 
Diewert and Fox contribution to this volume (chapter 3), which in turn draws on the work of Robert Hill.  
6 Some of the problems associated with the use of fixed base indexes for measuring price and quantity change for 
adjacent periods within the sample period are discussed by Balk in section 2 but it should be noted that some of 
these problems were already anticipated by Hill (1988). 
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 In section 5 of this chapter, Balk relates the question “to chain or not to chain” to the 
modern theory of revealed preference developed by Afriat, Diewert and Varian. Balk develops 
criteria that may be helpful in answering the basic question as to whether one should use chained 
indexes or not. Of particular interest is Balk’s section 5.3, where he develops a theory for the 
cost of living index that is an extension of his earlier theory for Konüs type cost of living indexes 
when preferences change between the two periods in the comparison.7  

 In section 6, Balk reviews Divisia’s continuous time approach to index number theory 
and notes that this approach provides some justification for the use of chained index numbers 
over their direct counterparts since “chained index numbers also use the available data for the 
intermediate periods and map out a segmented path that coincides with the true one at the 
observation points.” In section 7, Balk concludes that chaining is probably preferable to the use 
of direct indexes provided that quantities (and prices) do not exhibit “cyclical behaviour”; i.e., 
they do not “bounce” up and down as over time.8 Balk also provides a useful appendix which 
looks (somewhat critically) at the index number program proposed by Claude Hillinger in 2002.  

 In chapter 11, W. Erwin Diewert of the University of British Columbia provides a 
selective review of the stochastic approach to index numbers, from its inception in the 1800s 
through a recent resurrection of interest. This paper was written in 1995 and has been much cited, 
including by other Vancouver Volume papers. Thus it is included in this volume to aide readers 
in checking this reference and because it ties in well with material in other papers in this volume. 

 Diewert explains that the two main competing approaches to index number theory are the 
test approach and the economic approach. In the test approach, the vectors of prices and 
quantities for the two periods being compared are regarded as independent variables. In contrast, 
in the economic approach, the prices are regarded as independent variables but the quantities are 
viewed as solutions to economic maximization or minimization problems. Diewert goes on to 
explain that the economic approach to index number theory concentrates on finding functional 
forms for price indexes that are exact for flexible unit cost functions, and on finding functional 
forms for quantity indexes that are exact for flexible linearly homogeneous utility functions. 
Index number formulas that are exact for flexible functional forms are called superlative.  

 Diewert notes that the traditional test and economic approaches to index number theory 
do not provide estimates of reliability for index number formulas: a shortcoming that proponents 
feel the stochastic approach can overcome. Basically, the early proponents of the stochastic 
approach to index number theory (Jevons and Edgeworth) looked at the price relatives or ratios 
for commodity i for periods 0 and t, or 0iit p/p  f N,,1i K= , and made the assumption that the 
price relatives have a common mean. This line of reasoning leads to the arithmetic mean index, 
called the Carli index and written as , as an estimator of the common 
trend in prices and an advantage of this estimator (over the economic and test approaches) is that 
a measure of precision can be attached to it. Edgeworth did not argue for this specification of the 
problem of measuring the trend in prices: rather he argued it would be more appropriate to 

)( 01= p/p)(N/1 iitP N
iC ∑≡

                                                 
7 See Balk (1989) for this earlier theory. 
8 This is consistent with Peter Hill’s (1988) earlier advice on this topic. The term “price bouncing behavior” was 
introduced by Szulc (1983), who showed that bad things can happen with chained index numbers if there is price 
bouncing behavior. For a more recent study that attempts to deal with the chain drift problem with sub-annual data, 
see Ivancic, Diewert and Fox (2010), who apply multilateral comparison methods to eliminate chain drift. 
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assume that the logarithms of the price ratios have a common mean, which leads to the Jevons 
index, , as the estimator of the common trend in prices. Diewert reviews 
these approaches in section 2-4, and in 6 he reviews the more recent approaches. He argues that 
the more recent approaches are flawed due to their assumptions about the variances of the price 
relative components.  

∏ =≡ N
1i

N/1
0iitJ )p/p(P

,q,p,p(P sts

isit p/p

 In the later sections of his paper, Diewert turns from being negative on the stochastic 
approach to being somewhat positive. Thus in section 5, he reformulates a stochastic model due 
to Edgeworth (which Irving Fisher thought was totally impractical) and shows that it can be 
estimated. The essence of this neo-Edgeworthian approach is that the variance for each of the N 
commodity classes is empirically determined. Thus an empirically determined parameter 
replaces the assumption that the error variances are known up to a multiplicative constant. In 
section 7, Diewert changes the focus from an econometric model (with assumptions about error 
variances) to descriptive statistics. He sets up his descriptive statistics framework along the lines 
suggested by the following quotation from the chapter: “A more direct approach to the reliability 
of a price index, , is to simply look at the variability of the individual price 

relatives, , around the index number “average” value, .” Diewert goes on 
to suggest several alternative measures of the variability of individual price relatives. The 
approach of Theil (1967; 136-137) to the Törnqvist-Theil index number formula is an example of 
this descriptive statistics approach. It can also be seen that Diewert’s work in section 7 of the 
present paper is a precursor to his work on similarity indexes; see Diewert (2009).  

)qt

)q,q,p,p(P tsts

As said, this chapter was written in 1995 and there are many further developments 
associated with the stochastic approach to index numbers. The models have become more 
complex than the original straightforward approaches proposed by Jevons and Edgeworth. For an 
up to date, excellent review of these later developments, see Clements et al. (2006).9  

 In chapter 12, W. Erwin Diewert of the University of British Columbia and Robert J. 
Hill of the University of Graz, Austria and also the University of New South Wales reconsider 
the fundamental concepts of true and exact indexes, as these concepts are defined in the index 
number literature. The authors explain that these concepts form the bedrock of the economic 
approach to index number theory. They review these concepts. In brief, a true index is the 
underlying target; it is a formal statement of the measurement objective. An empirically 
calculable index is exact when, under certain conditions, it exactly equals the true index. Van 
Veelen and van der Weide (2008) recently introduced alternative definitions of true indexes. 
These combine the existing literature’s identification of a true index, such as the Allen (1949) 
quantity index or the Konüs cost of living index, with some of Afriat’s (1981) ideas for checking 
whether a given set of data are actually consistent with the maximizing or minimizing 
hypotheses underlying the definitions of the ‘”true” indexes. Diewert and Hill conclude that it 
would be preferable for those authors to come up with a new term to describe their concept. 

 In chapter 13, Andrew Baldwin of Statistics Canada endorses the 1993 System of 
National Accounts (SNA93) recommendation for chain linking, but not its support for chain 
Fisher aggregates, nor, as a second-best solution, chain Laspeyres aggregates. Baldwin argues it 
is feasible and desirable to calculate chain fixed price aggregates that are not vulnerable to chain 

                                                 
9 See also the summary in Balk (2008, section 1.8). 
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drift. According to Baldwin, these aggregates can be calculated as direct series for the most 
recent period so that they are additive over commodities, industries or regions, in contrast to their 
chain Fisher counterparts. The Edgeworth-Marshall formula is what Baldwin recommends. He 
notes that it respects the property of transactions equality (i.e., the importance of a transaction in 
the formula does not depend on the period in which it occurs). Also, it does not discard 
commodities from a volume aggregate if the price goes to zero from a positive price or vice 
versa, nor does it discard commodities from a price index if the quantity goes to zero from a 
positive quantity or vice versa. Baldwin feels it is unfortunate that the index number theory 
literature has focused on two formulas -- the Laspeyres and the Fisher -- neither of which is well-
suited, in his view, for the calculation of chain aggregates.10  

 Ulrich Kohli who was chief economist of the Swiss National Bank when this chapter 
was written and is now with the University of Geneva reports in chapter 15 that several 
countries have switched – or are about to switch – to chained price and quantity indexes for their 
national accounts. In particular, the United States and Canada have adopted the chained Fisher 
indexes, whereas the United Kingdom, Switzerland, Australia and New Zealand have opted for 
chained Laspeyres indexes for real GDP, and chained Paasche for the implicit price deflator. Yet 
Kohli notes that the vast majority of countries, including most OECD members, still have not 
embraced chaining. In these countries the GDP implicit price deflator is still computed as a 
direct (or fixed-base) Paasche price index. Changes in the price level over consecutive periods 
are measured by the change in the direct Paasche index, a use for which Kohli feels this index is 
ill suited. Using the economic approach to index numbers, Kohli shows that because of this 
failure, the price index can register a drop between consecutive periods even though none of the 
disaggregate prices has fallen, and some have actually increased. He notes that a similar result 
holds for the direct Fisher index. In his view (and our view as well), this provides a powerful 
argument in favor of chaining, at least for annual data subject to smooth trends. Kohli gives 
strong arguments against the use of direct indexes in addition to the arguments that were 
suggested in the earlier work of Hill (1988) and in chapter 10 by Balk in this volume.  

 Kohli argues that the fact that the direct Paasche GDP deflator is not monotonically 
increasing in prices makes it a poor indicator of inflation, since it might point at a price increase 
when prices are actually falling, and vice versa. Yet it is widely used in the literature. According 
to Kohli, there are other reasons why the use of the direct Paasche GDP deflator as a measure of 
the price level should be avoided, independently of whether chaining takes place or not. GDP 
price deflators incorporate terms-of-trade changes, which are fundamentally a real – not a price – 
phenomenon. The problem with the standard procedure becomes apparent if import prices fall, 
for instance. This will increase the GDP price deflator (since import prices enter the calculation 
of the GDP deflator with a negative weight), even though this shock is clearly not inflationary. 

 Ludwig van Auer in chapter 15 follows up on Kohli’s chapter 15. He extends Kohli’s 
results to show that a run of direct Laspeyres indexes can also violate a monotonicity property if 
there are more than two periods in the run of time periods. This extension provides a more 
symmetric definition of the basic monotonicity test used by Kohli. The net impact of von Auer’s 
paper is to reinforce the case for using chained indexes when we have annual data.  

                                                 
10 However, the reader is reminded of Balk’s appendix in his chapter 10 where he finds some problems with the use 
of the Edgeworth-Marshall index number formula. 
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 In chapter 16, W. Erwin Diewert of the University of British Columbia considers 
problems involved in collecting and aggregating price and quantity information at the lowest 
level of aggregation. This chapter was originally written in 1995 and, like chapter 11 above, it 
was not updated. However, it proved to be an important source on elementary indexes for the 
2004 Consumer Price Index Manual. Diewert develops an axiomatic approach for finding an 
appropriate functional form for an elementary level price index. The axiomatic properties of the 
Carli (arithmetic average of price relatives), Jevons (geometric average of the price relatives), 
and Dutot (ratio of average prices) elementary indexes are obtained and the Jevons index 
emerges as the winner. Finally, Diewert also discusses the problem of price and quantity 
aggregation at the very first stage of aggregation when individual transactions over a time period 
must be aggregated into price and quantity aggregates that can be inserted into a bilateral index 
number formula. It turns out that unit value prices and total quantities transacted (over a set of 
transactions involving a “homogeneous” commodity) emerge as reasonable aggregates at this 
first stage of aggregation. Finally, the paper catalogues sources of bias in consumer price indexes 
and makes rough guesses as to the likely magnitude of the biases. Diewert’s rough guesses 
proved to be very similar to the Boskin Commission’s guestimates of biases.  
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CHAPTER 2 
MEASURING MULTI-FACTOR PRODUCTIVITY WHEN 

RATES OF RETURN ARE EXOGENOUS 
Paul Schreyer1 

 

1. Introduction: Gross Operating Surplus and the Remuneration of Capital 
 

 Official statistics do not normally provide direct observations on the price and volume of 
capital services. What is available from the national accounts is a residual measure of gross 
operating surplus (GOS): a measure often interpreted as profits from normal business activity, 
including mixed income which is the income of self-employed persons. Thus, the national 
accounts provide the researcher with data according to the following accounting identity: 
(1)   
where  is the sum of current-price output in the economy, 

GOSwLQP +=⋅
QP ⋅ [ ]M21 P,...P,PP =  denotes the 

vector of prices and  denotes the vector of quantities of output. To simplify 

notation, we use  for the inner product between P and Q. Note, however, that 
normally the quantities in Q are not directly measured. Output is defined and measured as value-
added, and prices are defined and measured at basic prices, i.e., they exclude all product taxes 
but include subsidies on products. The term wL is the remuneration of labour, with wage 
component w and volume component L, with the value and price components measured directly. 
For simplicity, it will be assumed here that mixed income is either zero or is split up between the 
labour and the GOS components. Thus, the two sides of (1) represent the total production and the 
total income sides of the national accounts.  

[ 21 Q,QQ =

∑ =≡⋅ M
1i iQPQP

]

                                                     

MQ,...

i

 The national accounts provide no guidance as to the factors of production that are 
remunerated through GOS. Fixed assets certainly are among these factors, but there could be 
others too. The business literature has discussions about the importance of intangible assets, and 
there are good reasons to argue that such assets account at least for part of GOS. While this may 
appear a minor point, it calls into question an assumption often made by analysts of productivity 
and growth, namely that GOS exactly represents the remuneration of the fixed assets recognised 
in the System of National Accounts (SNA), or the value of the services of these. 
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 Let  denote a vector of user costs for N types of capital services and 
]N  denote the corresponding vector of the quantities of capital service 

flows. The assumption typically ma

]u,...u,u[u *
N

*
2

*
1

* =
 K,,K, 21 Klet

de is: 

                                                     

K[K =

(2)  ,  GOSKu* =⋅

where  denotes the inner product of the price and quantity vectors: i.e., where 

. In other words, it is assumed that remuneration of capital services exactly 

exhausts gross operating surplus. Empirically, the equality  is obtained by choosing 
what is thought to be an appropriate value for the net rate of return on assets, which is part of the 
user costs.

Ku* ⋅

∑ =≡ N
1i u⋅ i

*
i

* KKu

GOSKu* =⋅

2 With this formulation, the rate of return is assumed to adjust endogenously. This 
setup is consistent with competitive behaviour on product and factor markets and a production 
process that exhibits constant returns to scale. Under these conditions, (1) can be restated as 

(3)  , KuwLQP * ⋅+=⋅

since these conditions ensure that the gross operating surplus corresponds exactly to the 
remuneration of the assets included in K; hence if only fixed assets are assumed to be in K, this 
is equivalent to assuming that GOS corresponds to the remuneration of fixed assets. Note that 
this setup also depends on the following being true: 

• the set of assets  is complete; i.e., all assets are observed by the 
official statisticians who compile the national accounts and there are only the stated 
fixed assets;  

]K,...K,K[ N21

• the ex-post rate of return on each asset (implicitly observed by the national 
accountants as part of GOS) equals its ex-ante rate of return, which is the 
economically relevant part in the user cost of capital services; 

• there are no residual profits (or losses) such as might arise in the presence of market 
power, or with non-constant returns to scale, or owing to the availability of publicly 
available or any other uncounted or miscounted capital assets. 

 Several questions arise when some of the above conditions do not hold. For example, 
when there is independent information about the rates of return to capital services, there is no 
guarantee that the sum of labour remuneration and the observed capital remuneration will equal 
measured total value added at current prices. How should multi-factor productivity (MFP) be 
conceptually defined, computed and interpreted? How should growth accounting exercises be 
carried out? How should measures of technical change be defined and evaluated? These are the 
questions explored in this paper. In the rest of this paper, a preference is expressed for a simple 

 

)dt/qlndr(q iiii −δ+= )t(i )t(r
iδ

2 In a simple continuous-time formulation, the user cost or rental price of an asset (Jorgenson and Griliches, 1967) is 
given by u  where q  is the purchase price of a new asset of type i, is the net rate 

of return, is a rate of depreciation, and dtqlnd iq is the rate of change of . 
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MFP measure that is consistent with index number traditions. Such a measure cannot be 
interpreted as capturing only, or all, technical change.3  

 

2. Why GOS May Differ from Remuneration of Capital 

 

 This paper generalizes the formulation of the income-production relationship (3) by 
allowing for and utilizing independent measures of capital remuneration,  that 
may not satisfy condition (2). Under these circumstances, equation (3) is replaced by 

[ ]N21 u,...u,uu =

(4)  MKuGOSwLQP +⋅==−⋅ , 

where the term M denotes the difference obtained by subtracting from current-price output both 
the remuneration of assets included in K,4 Ku ⋅ , and the value of the labour input; i.e., it is the 
observed current price output minus observed factor payments. KuwLC ⋅+≡  is used as 
shorthand for observed factor payments. Hence gross operating surplus can be split into a 
component that reflects observable factor remuneration plus a residual M with several possible 
interpretations. In principle, there is no restriction on the sign of M. However, if the sign were 
negative over an extended period of time, this would imply sustained losses. Since this seems 
economically implausible, in what follows, the non-negativity of M is assumed.5 

 Four possible reasons for nonzero values of M are considered in this paper. 

 Models of short-run disequilibrium over the business cycle provide a first possible 
theoretical justification for the existence of nonzero values of M.6  

 A second possibility is that M reflects the existence of pure profits as a consequence of 
the presence of decreasing returns to scale combined with marginal cost pricing for outputs, or of 
increasing returns to scale and a positive mark-up over marginal costs. If returns to scale are the 
key source of non-zero values of M, then the size of M will depend on the degree of competition 
in output markets: free market entry and competition would be expected to drive mark-ups and 
prices to a level where total revenues just cover total costs, implying M = 0.  

 The Lucas-Romer model of endogenous growth (Romer, 1990) provides a third possible 
justification for non-zero M values. According to this model, at the firm level, returns to scale 
are constant, but at the aggregate level there are increasing returns to scale due to externalities. 

 A fourth possibility is that M reflects the existence of unobserved inputs and hence 
reflects a measurement problem. This situation could arise if not all of the capital inputs that give 
rise to operating surplus are recognised in the national accounts. In contrast to the second 
                                                      
3 Aspects of the interpretation and derivations that follow build on Jorgenson and Griliches (1967), Fuss and 
McFadden (eds.) (1978), Diewert and Nakamura (2007) and Harper et al. (1989). 
4 As the context makes clear, the symbol M is also used sometimes to denote the number of output goods.  
5 In the empirical part of the paper, M is positive for the four countries reviewed (Canada, France, Japan, United 
States) for most years over 1980-2002. If M were negative over an extended period of time, this would cast doubt on 
the measures for the remuneration of capital, and in particular on the choice of the exogenous rates of return.  
6 These include models of time-varying capacity utilisation of the sort investigated by Berndt and Fuss (1986) and 
Hulten (1986). The cyclicality of productivity measures and the relation of these to technical change are dealt with 
by Basu and Kimball (1997). They find strong effects of variable capacity utilisation on measures of productivity. 
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interpretation, in this case we would expect M to remain positive even in the longer run because 
true total costs are higher than what the observed assets would justify and M would cover these.7 

 

3. Production Technology and Producer Behaviour 

 

 We let Z(t) denote a feasible set of inputs and outputs in period t. We further assume that 
there is a total cost function TC that shows the minimum costs of production, given a vector Q of 
quantities  for the M outputs and given a corresponding set of input prices. Inputs 
comprise labour L, N types of observed capital services  and one unobserved asset 
D. The corresponding prices are the wage rate, w, the user costs of capital, , 
and the price of the unobserved input D, 

[ M21 Q,...Q,Q ]
N21 K,...K,K

[ ]M21 u,...u,uu =
φ . The total cost function is defined as: 

(5)  [ ] { } Z(t) tobelongs D)K,L,(Q, :DKuwLmint,,u,w,QTC
D,K,L

φ+⋅+=φ . 

 The cost function is linearly homogenous in input prices and non-decreasing, but not 
necessarily linearly homogenous in the vector of outputs [ ]M1 Q,...Q

u,w,Q(TC

. Thus, there is no 
assumption of constant returns to scale. However, producers are assumed to minimise total cost, 
so that actual costs equal minimum costs ( )t,,DKuwL φ=φ+⋅+ ). Furthermore, 
producers are assumed to face competitive factor markets so that Shephard’s (1970) conditions 
for optimality for factor inputs apply: 

(6a)  ⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

=
w

TCL ; 

(6b)  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

=
i

i u
TCK ,  ; 

(6c)  

N,,1i K=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
φ∂

∂
=

TCD . 

 On the output side, imperfect product markets are allowed for with the sole stipulation 
that output prices are proportional to marginal costs. No explicit assumption is made about the 
kind of imperfect competition that prevails or concerning whether producers are profit 
maximising or not. All that is needed is a relationship between prices and marginal costs so that 
if the price of output i is  and if iP i/11 μ≤  is a product-specific, time-varying mark-up factor, 
producer behaviour on the output side is described by 

(7)  . 
 Next, we follow the literature (e.g., Panzar 1989) and define the local elasticity of cost 
with respect to scale as 

M,...,1iQ/TCP iii =∂∂=μ

                                                      
7 Non-observed inputs and their link to measured MFP growth and technical change have been investigated by Basu 
et al. (2003). They introduce unobserved intangible organisational capital that they take as complementary to 
observed investment in information technology. Unlike the present model, however, theirs is a general equilibrium 
setting that tries to account not only for the unobserved intangible inputs but also for their unobserved production. 
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(8)  ∑ = ∂
∂

≡ε M
1i iQln

TCln . 

Hence,  indicates the percentage change in total cost for a given percentage change in all 
outputs. The inverse of this parameter can readily be interpreted as a measure of local returns to 
scale for the production unit. For instance, 

0>ε

1>ε  implies that a one percent rise in the quantity of 
each of the outputs increases total costs by more than one percent, which is tantamount to a 
situation of decreasing returns to scale. Similarly, 1<ε  and 1=ε  correspond to increasing and 
constant returns to scale, respectively.8  

 Given (7), the measure of the cost elasticity defined in (8) can be further transformed: 

(9)  

.
QP

QPwhere
TC

QP
TC

QP
QP

QP
TC
QP

Qln
TCln

i
M

1i
ii

M
1i

iii

M
1i

iiiM
1i i

μ
⋅

≡μ
⋅

μ=

⋅
⋅
μ

=

μ
=

∂
∂

≡ε

∑

∑

∑∑

=

=

==

 

In (9), μ  is the economy-wide inverted average mark-up factor – a weighted average of industry-
specific mark-ups with simple output shares as weights. Expression (9) can be rearranged as  

(10)  TC)/(QP με=⋅ .  

Thus, the value of total output revenues equals total costs, adjusted by a mark-up factor μ1  and 
, the parameter for the scale elasticity. ε

 The equalities in (9) can now be combined with the national accounts information 
mentioned earlier. In particular, it was pointed out that gross operating surplus is defined as the 
difference between the value of output and labour income: wLQPGOS −⋅= . Using the result 

 in (10), from (4), one obtains  ( )TC/QP με=⋅

(11)  .  wL)/(TCGOS −με=

Recall that the difference between GOS and observed capital income has been labelled M: 
. Using the expression (11) for GOS and taking into account the definition of 

TC now allows us to derive a relation for M that can readily be interpreted: 
KuGOSM ⋅−=

                                                      
8 As we operate with a multi-product cost function, a distinction needs to be made between general economies of 
scale and product-specific economies of scale. The former – treated here – deals with changes in costs when all 
outputs are changed by the same proportion. The latter deals with changes in costs as one particular output is 
increased while holding all other outputs constant. For the latter form of economies of scale, see Panzar (1989). 
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(12a)

DTC1

(5) using   DTCTC)KuwLTC(TCTC

(10) from     KuwLTC

(4)from    KuwLPQKuGOSM

φ+⎟⎟
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⎝
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or alternatively 

(12b) ⎟
⎠

⎞
⎜
⎝

⎛
⋅
φ

+
ε
μ

−⋅=
QP

D1QPM     using (10). 

Expressions (12a) and (12b) show how the difference M between GOS from the national 
accounts and the sum of payments to observed factors reflects mark-ups and returns to scale 
(captured by ) and the influence of unobserved capital inputs (captured by με / Dφ ). The 
expressions in (12) will be instrumental for the discussion in the following sections.  

 

4. Technical Change 
 

 In an environment of constant returns to scale, Hicks-neutral technical change can be 
defined either as a shift of the production function over time (an output-based measure) or as a 
shift of the cost function over time (an input-based measure). Here producer behaviour has been 
described by way of a cost function, so we shall use the input-based approach to derive measures 
of technical change. One important advantage of the cost-based measure is that no assumptions 
about profit or revenue maximisation need to be made for the output markets. 

 If there were an assumption of constant returns to scale, and competitive markets, the 
choice of the input-based productivity measure would simply be a matter of convenience, with 
no consequences for results. However, for the moment we have imposed no such a-priori 
condition, and the input-based measure will in general be different from the output-based 
measure, as will be shown in section 5.2.5.  

 Technical change is measured here as a downward shift over time of the total cost 
function. To derive an analytical expression, TC is differentiated totally and technical change is 
then defined as the negative of the partial derivative of the cost function with respect to time: 

(13)  
.

dt
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To interpret (13), consider its parts in turn. On the right-hand side, first there is a Divisia-type 

output quantity change index, ∑= ∂
∂N

1i
i

i dt
Qlnd

Qln
TCln , that aggregates the growth rates of the 

quantities of individual outputs. To find a computable expression for the growth rate of output, 
use (7) and (9) to obtain:  

(14a)  
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Thus, the output aggregate resembles a traditional output aggregate with revenue shares as 
weights, but the latter are now corrected for the relative mark-ups μμ /i  and the scale factor ε . 

 Moving on to the terms in brackets on the right hand side of (13), it can be seen that these 
measure the difference in the growth rate of total costs and the growth rates of the various types 

of input prices. In fact, ⎟⎟
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of input prices. This is apparent by invoking the optimality conditions for factor inputs (6a)-(6c) 
and then inserting them into the above expression which now becomes 
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the Divisia index of total costs and the Divisia index of input prices is the Divisia index of input 
quantities. The term in brackets on the right hand side of (13) can be rewritten as 
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Hence, the theoretical index (13) becomes: 
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Turned around, the ‘growth accounting’ form of (15a) is: 
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Expression (15b) delivers an explicit formula for the change in aggregate inputs and outputs. If 
there were no unobserved factor D, and if mark-up factors and the local scale elasticity were 
known, (15b) could readily be implemented. However, with an unobserved factor D, things are 
more complicated. We start with a proposal for a computable MFP measure and follow with a 
discussion of its interpretation. 
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5. Deriving Computable Measures 
 

 There are essentially three strategies for the implementation of expression (15b): (i) to 
introduce additional, and typically restrictive, hypotheses about the size or nature of the 
unknown variables until an expression emerges that is both computable and that offers a 
(seemingly) clear interpretation of productivity growth; (ii) to stay away from invoking 
additional hypotheses, and define a computable measure of productivity growth while allowing 
for the fact that it may reflect more than pure technology shifts; or (iii) impose the assumptions 
needed to apply econometric methods to estimate or correct for the unknown factor and construct 
estimates of the conceptually correct aggregates of outputs, inputs and productivity.  

 We discard the third possibility simply because it is not a practical way for statistical 
offices when they have to compute and publish periodic and easily reproducible statistical series. 
We do, however, acknowledge that this econometric option may be an important one for more 
research-oriented, one-off projects. As such it may also deliver useful insights concerning the 
empirical importance of the unobserved factor. Similarly, to assess some of the choices among 
non-parametric methods as described below, econometric studies (such as Paquet and Robidoux, 
2001 or Oliveira-Martins et al., 1996) can be very useful. 

 

5.1 Apparent Multi-Factor Productivity 

 We first follow avenue (ii) and propose a measure of ‘apparent multi-factor productivity’. 
Then, in the following subsection we consider strategy (i). 

 For the purpose at hand, let there be an aggregator X that combines the quantities of the 
observable inputs K and L. Specifically, define  

(16)  
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as a Divisia quantity index of observable inputs, noting that the weights correspond to the shares 
of each input in total observable inputs, as KuwLC ⋅+≡ . Next, define the rate of apparent 
multi-factor productivity growth (AMFP) as the difference between a Divisia quantity index of 
output and the quantity index of observable inputs as specified above in (16): 

(17a)  
dt
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dt

QlndAMFP −≡ . 

 The Divisia output index in (17a) is a ‘traditional’ one, i.e., an average of rates of change 

for individual outputs, each weighted by its revenue share: ∑ = ⎟
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iii
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that this Divisia output index differs from the more general output growth index identified in 
(15). The growth accounting equation that corresponds to (17a) is: 
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where, in conjunction with (15b), it can be shown that: 
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According to (17b), the direct growth contribution of observed capital inputs and labour is given 
by the rate of change in these variables weighted by their respective average shares in observed 
costs C. The productivity term AMFP reflects the three factors shown in (17c): pure technical 
change or the shift of the cost function, a term that captures the effects of mark-ups and non-
constant returns, and a term that captures the effects of the non-observed variable D. Consider 
the following special cases: 

• If there is no unobserved input (D=0), the third term in (17c) disappears and AMFP 
captures technical change plus a term that reflects the non-constant returns and mark-ups – a 
result similar to the one developed by Denny, Fuss and Waverman (1981). AMFP will exactly 
correspond to technical change if there are constant returns to scale ( 1=ε ) and if the same mark-
up factor applies throughout the economy ( μ=μ i ). 

• If the volume change of the unobserved input equals the volume change of observed 
inputs, the third term disappears also and AMFP reflects only technical change and the effects of 
non-constant returns and mark-ups. 

 We conclude that, whatever the exact nature of the unobserved factor D, the AMFP 
computation will capture ‘pure’ technical change, the growth contributions of unobserved assets 
and scale effects, and also the distribution of mark-ups. With the exception of the mark-ups that 
can be a consequence of market power, these effects are technology-related and could be 
considered analytically meaningful expressions of productivity growth. These effects are now 
path independent – they vary with the levels and growth rates of observed and non-observed 
inputs, and the latter depend in turn on prices of inputs and outputs as well as on mark-up size. 

 The contribution of productivity change to output growth is given by AMFP. Clearly, the 
interpretation of AMFP has to be kept in mind: it reflects the combined effects of technical 
change, of non-observed inputs, of non-constant returns to scale and of deviations from perfect 
competition in product markets. In other words, AMFP is a true ‘residual’ or a non-theoretic 
productivity measure. But for many practical purposes, it will fulfil its role as a multi-faceted 
measure of productivity growth.9 We note in passing that AMFP could also serve as a useful 
measure of productivity growth when technical change is of a more general nature, and not 
necessarily Hicks-neutral.  

 If one wants to extend the analysis, an additional analytical step could be taken to 
decompose AMFP into its technical change component and other effects. However, this requires 
invoking parametric methods of estimation if one does not want to impose competitive behaviour 
on output product markets. 

 

                                                      
9 As can be seen from the list of assets in our empirical implementation, one important asset that is left out is land, 
which is not considered a produced asset by the national accounts. This asset presumably does not grow much so the 
last term in (17c) is likely to be negative in OECD countries, pointing to a downward bias of AMFP as a measure of 
technical change.  
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5.2 Invoking Additional Assumptions 

 This subsection follows the approach (i) outlined at the start of the section: additional 
hypotheses are invoked to deal with the possible presence of unobserved inputs, non-constant 
returns to scale and mark-ups. Each set of hypotheses is designed so as to lead to a ‘correct’ 
measure of MFP in the sense that it reflects Hicks neutral technical change if the hypotheses 
hold. In addition, consideration is given to how, under the assumed circumstances, the pragmatic 
AMFP measure would fare. It is of interest, for example, whether its use would imply an upward 
or downward bias for measuring technical change and when the values would coincide with 
those for the conventional MFP measure. 

5.2.1 Assuming no unobserved input, common mark-up factors and CRS 
 If one assumes that there are no unobserved inputs (D = 0), and a common mark-up 
factor in the different output markets ( μ=μ i ), the only possibility to explain a difference 
between total costs of observed measures and GOS are the combined effects of a positive mark-
up and non-constant returns. In this case, the mark-up/returns to scale ratio is given by 

QP
M1
⋅

−=
ε
μ , so it is determined by the ratio QP/M ⋅  where M corresponds to the difference 

between non-labour income (GOS) and the sum of observed capital costs and where QP ⋅  is the 
sum of revenues. If empirical information exists on the average mark-up factor, , it can be used 
to determine ε . Alternatively, information may exist on the average degree of returns to scale in 
the economy. If not, an additional assumption has to be invoked – typically that of constant 
returns to scale ( ). Having defined away D, one finds that total costs equal observed costs, 
or TC = C. 

μ

1=ε

 In this case, the growth accounting equation (15b) can be expressed as 
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Here, TC1 is the modified cost function that applies under the conditions D = 0, μ=μ i  and 
1=ε . Expression (18b) indicates that MFP1 correctly traces technical change provided the 

assumptions D = 0, μ=μ i  and 1=ε  are accurate. Under the stated assumptions, it is easy to see 

that 
dt

Xlnd
−

dt
Qlnd1MFP = , where this is the definition of AMFP given in (17a). Thus, if the 

assumptions above hold, the true productivity measure MFP1 given in (18b) coincides with the 
result obtained from applying an AMFP measure. 

5.2.2 Assuming proportionality of D and K, absence of mark-up factors and CRS 

 A second possibility is to allow for an unobserved factor (D > 0) but to impose marginal 
cost pricing (hence 1i =μ  for ) and constant returns to scale. This is equivalent to 
assuming fully competitive output markets, and means that (10) implies that . With 
this setup, it follows that the entire difference between GOS and the sum of observed payments 
to capital is identified with payments to the unobserved input: 

M,,1i K=
TCQP =⋅

DM φ= . To evaluate (15b) for 
this situation, an additional assumption is needed. One possibility would be to assume that the 
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rate of change of the unobserved input D equals that of the observed capital inputs: 
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≡  is a Divisia quantity index of observed fixed 

assets. Under these conditions, the growth accounting equation (15b) can be written as 
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 Now MFP2 given in (19b) traces the shift of the cost function TC2 correctly as long as 
the assumptions hold. The measured growth contribution of the observed capital inputs merits 

further discussion. It is easily verified that 1
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 so that the weight that now 

attaches to the observed capital inputs, 
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production, which in turn is the complement to the labour share in total income. Thus, the 
income of the unobserved factor D is distributed across the observed capital inputs, and (19a) can 
be rewritten as: 
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using the expression for  in the paragraph that follows equation (17a). Equation (19c) 
bears a strong resemblance to a model with endogenous net rates of return as described below in 
section 5.2.3. In both cases, the overall rate of growth of capital services, 

)dt/Qlnd(

dtKlnd , enters with 
the same weight – one minus the labour share in total income.  Of course, in the endogenous 
model, the growth rate of observed capital services, , will in general be different from 

 in the present case since each asset’s user cost term is based on an endogenous rather 
than an exogenous rate of return. Nonetheless, as will be apparent from the empirical section, the 
two MFP measures trace each other quite closely, at least for the four countries examined and for 
the time period used in the empirical part of this paper. 

dt/Klnd *

dt/Klnd

 Suppose the above assumptions are true but an AMFP measure is applied. What would be 
the resulting bias with regard to the ‘true’ MFP2 measure? After some manipulations, it can be 
shown that 
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PQ
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Thus, AMFP will overstate MFP2 if the growth rate of observed capital assets – and by 
assumption the growth rate of the unobserved asset – exceeds the growth rate of all observed 
inputs. In the empirical examples presented in section 6, this is the case and AMFP turns out to 
be consistently higher than MFP2. 
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5.2.3 Defining away mark-ups and unobserved inputs and assuming CRS 

 These are the assumptions invoked when MFP computations rely on endogenous rates of 
return: output markets are taken as competitive ( 1i =μ ; M,,1i K= ), there are no unobserved 
factors (D = 0) and there are constant returns to scale. The endogenous approach goes back to 
Christensen and Jorgenson (1969), and has been applied in many subsequent studies of 
productivity growth, including many carried out by national statistical offices (e.g., BLS 2003). 
This is the most widely-used methodology but also the one that requires the most restrictive set 
of assumptions: the assumptions needed to justify the use of endogenous rates of return10. In 
addition to the above assumptions, there must be perfect anticipation of asset price changes and 
depreciation. This implies that . The growth accounting model (15b) becomes KuwLQP * ⋅+=⋅

(21a)  where,3MFP
dt

Klnd
QP
Ku

dt
Llnd

QP
wL

dt
Qlnd

QP
QP N

1i
ii

*
iiM

1i
ii +⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

⋅
+

⋅
=⎟

⎠

⎞
⎜
⎝

⎛
⋅ ∑∑ ==  

(21b)   
t

3TCln3MFP
∂

∂
−= , 

and where TC3 denotes a cost function with observed inputs only. If the additional restrictions 
hold, measured productivity change corresponds to the shift of a cost function TC3 with CRS 
and only observed inputs. As alluded to above, there is similarity with (19c) because (21a) can be 
re-written as 
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so that the contribution of capital assets is the product of the rate of growth of observed capital 
services and the share of GOS in total output or cost. 

 If the above assumptions are correct, and if an endogenous rate of return is used, the 

evaluation of AMFP* would yield the correct result since 3MFP
t

3TCln*AMFP =
∂

∂
−=  in this 

case. We have marked AMFP* with an asterisk here to draw attention to the fact that AMFP is 
based on a capital measure that reflects endogenous rates of return. If AMFP is computed on the 
basis of exogenous rates, it would clearly differ from MFP3. This is also borne out in the 
empirical example below.  However, no a-priori statement can be made as to the sign of this 
difference.  

5.2.4 Assuming no mark-ups, no unobserved input and decreasing returns to scale: an 
input-based measure 
 This constitutes yet another possibility for dealing with the difference between revenues 
and observed factor payments: the unobserved factor is defined away (D = 0) as well as mark-
ups of prices over marginal costs ( 1i =μ ; i = 1,…M), but the production technology is assumed 

                                                      
10 The endogenous rate of return is computed by choosing that net rate of return that just equalizes the sum of user 
costs of observed assets with non-labour income (GOS for simplicity). Using the same notation for user costs as in 
footnote 2, this means that iN

1i
iii K)dtqlnd*r(qGOS ∑ −δ+= = . 

 24



Paul Schreyer 

to exhibit decreasing returns to scale ( 1>ε ). Then, the entire difference between GOS and 
observed asset rental payments is ascribed to the effects of marginal cost pricing under 
decreasing returns to scale:  and TC = C. Under these circumstances, the returns 
to scale parameter can be computed as 

( )1M −ε= TC
1TC/M +=ε . Given a value for ε , (15b) can be 

rewritten as 
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and where TC4 is a cost function with decreasing returns to scale and with observed factor inputs 
only. Some more discussion is useful here. First, because all costs are observed, TC = C and 
(23a) can be written as 

(23c)  4MFP
dt

Xlnd
dt

Qlnd
+=ε . 

We note in passing that the same growth accounting equation and/or productivity measure MFP4 
could have been derived from a model with a constant returns to scale cost function for observed 
and unobserved inputs, but with the added assumption that the quantity of the unobserved input 
is positive and fixed.11 The unobserved input then acts as the additional cost factor that is 
equivalent to a decreasing returns to scale technology. 

 If the assumptions above are correct, how does MFP4 relate to AMFP? It is easily 

established that under these circumstances, 
dt

Qlnd)1(4MFPAMFP −ε−= . If returns to scale are 

decreasing ( ), and if the quantity of output increases ( ), AMFP will be smaller 
than MFP4, since AMFP captures both the effects of pure technical change and non-constant 
returns. This is borne out in the empirical section 6. 

1>ε 0dt/Qlnd >

5.2.5 Assuming no mark-ups, no unobserved input and decreasing returns to scale: an 
output-based measure 

 It is well known that a production technology with non-constant returns to scale gives rise 
to several productivity measures (see, for example, Balk 1998). In particular there are differences 
between output-based measures of technology such as the shift of a production function or of a 
revenue function over time and input-based measures of technology such as the shift of a cost 
function or of an input distance function over time. In the sections above, the analysis has been 
based on a cost function, i.e., an input-based measure. To introduce an alternative and output-
based measure of technical change, we shall consider a revenue function and its shift over time. 
As in section 5.2.4, we assume that there is no unobserved input and that there are no mark-ups. 
As a consequence, the value of M is entirely determined by the decreasing returns to scale and 
total costs equal observed costs (since TC)1(M −ε=  where TC = C). 

                                                      
11 The idea is based on Diewert and Nakamura (2007) who introduce an unknown variable into a cost function to 
deal with decreasing returns to scale. 
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 To derive the output-based productivity measure, consider the revenue function12 R, 
defined so as to show maximum revenues given a vector of inputs and a vector of output prices: 

(24)  { })t(Ztobelongs)K,L,Q(:QPmax)t,K,L,P(R
Q

⋅= . 

 Diewert (1983) first used a revenue function to define a theoretical productivity index, 
albeit in discrete time. We follow his approach and define the continuous-time equivalent as the 
partial derivative of the revenue function with respect to time: total differentiation of R yields the 
following output-based measure of technical change: 
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 To derive a computable measure of the output-based productivity measure, an additional 
assumption has to be introduced: revenue-maximising behaviour on the part of producers. Then, 
observed revenues equal maximum revenues: RQP =⋅ . If in addition firms are price takers, one 
gets . It is then straightforward to obtain a computable expression for the elasticity 
of revenues with respect to output prices:  
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Note that the assumptions of revenue maximisation and price taking on output markets were not 
necessary for the derivation of the input-based measure in section 5.2.4. Thus, the output-based 
productivity statistic requires different assumptions than the input-based statistic.  

 Now define the Divisia decomposition of total revenues into a price and a quantity index: 
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The first two expressions on the right hand side of (25) are equivalent to a Divisia quantity index 

of outputs: 
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 To find computable expressions for the input elasticities of the revenue function, we 
invoke the profit-maximising behaviour of producers. This implies that they solve a 
maximisation problem of the kind { }KuwL)t,K,L,P(Rmax

K,L
⋅−− . The first order conditions for 

a maximum are  and w= ii uK/RL/R ∂∂ =∂∂  (i=1,…N). Consequently, 
and R/wLLln/Rln =∂∂ R/KuKln/ iiiRln =∂∂ (i=1,…N). Then, the third and fourth 

expression on the right-hand side of (25) can be rewritten as 

                                                      
12 The concept of a revenue function is due to Samuelson (1953-54). 
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But  and the final computable expression for the output side-based 
productivity measure in (25) is 
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The link to AMFP is readily established: it can be shown that  
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Thus, MFP5 will exceed AMFP if the quantity index of inputs grows at a positive rate as can be 
observed in the country examples in section 6. 

5.2.6 A note on increasing returns to scale 

 There is no reason to believe that returns to scale may not be locally increasing; hence 
this case must be treated as well. Suppose that 1<ε . Unless the case of M < 0 is allowed, 
implying continuing losses for producers, increasing returns to scale must go together with 
positive mark-ups over marginal costs. Thus, in order to have M > 0 under increasing returns to 
scale, iμ  must be positive, but also less than unity for at least one product.  

 Then,  if we assume that there is no unobserved input (D = 0). Under 
these assumptions, the growth accounting and productivity equation (15b) takes the form: 

( εμ−⋅= /1QPM )

(31)  ∑ = +=μ
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dt
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QP

QP . 

 While (31) is a valid measure for the shift in a cost function, TC6, given increasing 
returns to scale and without unobserved inputs, it is apparent that with the observable 
information on prices, quantities and factor remuneration (31) still cannot be computed. 
Although  is known, there is not enough information to deduce values for product-specific 
mark-up factors . Extraneous information about mark-ups is required to compute MFP6. 
While such information sometimes is available, this cannot be expected on an ongoing, timely 
and comprehensive basis. For example, Oliveira-Martins et al. (1996) estimated mark-up ratios 
for 14 OECD countries by industry and report estimates of the typically positive mark-ups. But 
one-off studies are quickly outdated. Also, industry-level mark-up estimates are frequently 
confined to manufacturing industries, leaving uncovered important areas of the service sector. 
Overall, it would not seem practical for a statistical office to rely on mark-up estimates for 
purposes of productivity statistics. For the same reason, we are not in a position to compute 
empirical results for MFP6.  

με /

iμ
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6. Empirical Implementation 

 

 After the theoretical derivations in section 5, we shall now move on to empirical 
considerations. Several questions arise. One concerns index numbers: how should the 
continuous-time formulae be translated into discrete index number formulae to accommodate the 
fact that data observations come in discrete form? A second question relates to how exactly some 
of the variables should be measured, in particular capital services and user costs of capital. 
Finally, we wish to compare the various productivity measures to get a sense of the importance 
of choices of assumptions.  

 

6.1 Choice of Index Number Formulae 

 Concerning the index number issue, our approach has been one of approximating the 
continuous-time Divisia indices in the theoretical part of the paper by Törnqvist-type indices for 
the present empirical part. We are aware of the methodological shortcomings of this procedure: 
this discrete approximation is essentially an arbitrary choice,13 not rigorously backed up by 
theory. A more thorough procedure would have been to start out with discrete formulations for 
the cost and revenue functions and then derive the appropriate index number formulae together 
with the productivity measure.14  However, we feel that the theoretical advantages of a full 
derivation in discrete time are outweighed by the algebraic complications that such an approach 
brings along with including all the interaction terms which would add little to the message 
delivered in the present paper while making the exposition much less readable.  

 For the purpose at hand then, we chose the following Törnqvist-type approximations to 
the above Divisia-type formulations of the various productivity indices: 
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13 That nearly all common index number formulae can be considered as discrete approximations to the Divisia index 
has already been shown by Frisch (1936). For a more recent statement, see Diewert (1980) or Balk (2005). 
14 Examples are provided by Balk (1998, section 3.7). 
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6.2 Measuring Outputs and Inputs 

 The empirical productivity measures developed in the present paper all relate to the total 
economy. This reflects data constraints rather than a preferred choice which would have been to 
limit computations to the corporate or business sector. Neither capital input measures nor hours 
worked are easily available in such a sectoral breakdown and calculations remain at the 
aggregate level, in line with the data available from the OECD Productivity Database.15  

6.2.1 Outputs 
 Value-added has been measured at basic prices, i.e., excluding taxes on products but 
including product subsidies, because this valuation constitutes the economically relevant variable 
from a producer perspective. Time series on value-added and net indirect taxes were taken from 
the OECD Annual National Accounts.  

 A second adjustment to aggregate value-added is also required to maintain consistency 
between input and output data: capital input in the OECD Productivity Database is limited to 
non-residential, fixed assets in scope and consequently, the value-added produced with 
residential assets should be excluded from productivity calculations. Thus, total value-added is 
corrected for the production of owner-occupiers.16 Note that both adjustments (valuation of 
output at basic prices and exclusion of the production of owner-occupiers of dwellings) have 
immediate consequence for the size of the endogenous rate of return as computed in MFP3 and 
for the weights that attach to capital and labour in MFP2. AMFP, on the other hand, is influenced 

                                                      
15 www.oecd.org/statistics/productivity. 
16 The need for this exclusion and possible consequences for the measurement of the endogenous rates of return 
were pointed out to me by Mathilde Mas (University of Valencia). 
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by these adjustments only to the extent that they bear on the volume growth rate of output. 
Moreover, current-price value-added does not enter the AMFP computation because labour and 
capital weights are determined independently of the output measure. This is a distinct advantage 
in the presence of the AMFP approach.17   

6.2.2 Inputs 
 Labour input is measured as total hours worked in the economy – a difficult task, 
especially at the international level. Even so, this remains an imperfect measure: no account is 
taken of differences in the value of hours of persons with different skill and experience levels. A 
more appropriate index of labour input would weight different types of hours worked by their 
corresponding shares in overall compensation. The most important measurement issues are 
described in a note available on the site of the OECD Productivity Database.  

 Capital inputs are derived with the perpetual inventory method. The estimation of capital 
service flows starts with identifying those assets that correspond to the breakdown currently 
available from the OECD/Eurostat National Accounts questionnaire, augmented by information 
on information and communication technology assets. Only non-residential gross fixed capital 
formation is considered for seven types of assets or products: Products of agriculture, metal 
products and machinery (IT hardware; communications equipment; other); transport equipment; 
non-residential construction; other products (software; other).  

 Investment. For each type of asset, a time series of current-price investment expenditure 
and the corresponding price indices are assembled starting with 1960. For many countries, this 
involves a certain amount of estimation, in particular for the period 1960-80. Such estimates are 
typically based on national accounts data prior to the introduction of SNA93, or on relationships 
between different types of assets that are established for recent periods and projected backwards. 
For purposes of exposition of the methodology, the current price investment series for asset type 
i in year t are denoted by  (i=1,2, ..., 7) and the corresponding price index is denoted by . 

Price indices are normalised to the reference year 1995 where . 

i
tIN i

0,tq

1qi
0,t =

 Price indices should be constant quality deflators that reflect price changes for a given 
investment good. This is particularly important for those items that have seen rapid quality 
change such as information and communication technology (ICT) assets. For instance, observed 
price changes of ‘computer boxes’ had to be quality-adjusted to permit comparison of different 
vintages. Schreyer (2000) used a set of ‘harmonised’ ICT deflators to control for some of the 
differences in methodology.18 We follow this approach and assume that the ratios between ICT 
and non-ICT asset prices evolve in a similar manner across countries, using the United States as 
the benchmark. Although no claim is made that the ‘harmonised’ deflator is necessarily the 

                                                      
17 For example, the available OECD national accounts data do not allow us to single out the production of the 
owner-occupied dwellings industry – only the parent aggregate with real estate, renting and business activities is 
available. For purposes of the present computations, an assumption had to be made that the production of owner-
occupiers accounts for one third of the entire industry. Obviously, this introduces a potential bias in those 
computations that depend on this adjustment. 
18 Wyckoff (1995) was one of the first to point out that the large differences that could be observed between 
computer price indices in OECD countries were likely much more a reflection of differences in statistical 
methodology than true differences in price changes. In particular, those countries that employ hedonic methods to 
construct ICT deflators tend to register a larger drop in ICT prices than countries that do not. 
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correct price index for a given country, the possible error due to using a harmonised price index 
is smaller than the bias arising from comparing capital services based on national deflators19.  

 Productive stocks. Given price and volume series for investment goods, for each of the 
(supposedly) homogenous asset types, a productive stock  has been constructed as follows: i

tS

(33)  ,     i=1, …, 7. ∑ =τ τττ−τ−=
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i
t

i
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In this expression, the productive stock of asset i at the beginning of period t is the sum over all 
past investments for this asset, where current price investment in past periods, has been 

deflated with the purchase price index of new capital goods, .  represents the maximum 
service life of asset type i. Because past vintages of capital goods are less efficient than new 
ones, an age efficiency function  has been applied. It describes the efficiency time profile of 
an asset, conditional on its survival and is defined as a hyperbolic function of the form used by 
the United States Bureau of Labor Statistics (BLS 1983), . 
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 Capital goods of the same type purchased in the same year do not generally retire at the 
same moment. More likely, there is a retirement distribution around a mean service life. In the 
present calculations, a normal distribution with a standard deviation of 25 percent of the average 
service life is chosen to represent the probability of retirement. The distribution was truncated at 
an assumed maximum service life of 1.5 times the average service life. The parameter  is the 
cumulative value of this distribution, describing the probability of survival over a cohort’s life 
span. The following average service lives are assumed for the different assets: 7 years for IT 
equipment; 15 years for communications equipment, other equipment and transport equipment; 
60 years for non-residential structures; 3 years for software; and 7 years for the remaining 
products. The parameter β in the age-efficiency function was set to 0.8. Service lives and 
parameter values were specified following BLS practices. 

iFτ

 User costs of capital. In a fully functioning asset market, the purchase price of an asset 
will equal the discounted flow of the value of services that the asset is expected to generate in the 
future. This equilibrium condition is used to derive the rental price or user cost expression for 
assets. Let  denote the purchase price in year t of a new (zero-year old) asset of type i, and 

let  be the rental price that this asset is expected to fetch in period  (first subscript to 
the right) when the asset will be of age 

i
0,tq

i
,tu ττ+ τ+t

τ  (second subscript to the right). With r as the nominal 
discount rate valid at time t, the asset market equilibrium condition for a new asset (age zero) is:  
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19 See Schreyer et al. (2003) for details. There is a difficulty with the harmonised deflator that should be noted. From 
an accounting perspective, adjusting the price index for investment goods for any country implies an adjustment of 
the volume index of output. In most cases, such an adjustment would increase the measured rate of volume output 
change. At the same time, effects on the economy-wide rate of GDP growth appear to be relatively small (see 
Schreyer (2002) for a discussion). 
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This formulation implies that rentals are paid at the end of each period. To solve this expression 
for the rental price, the price for a one year old asset in period t+1 is computed as 

 and then subtracted from the expression above to obtain 

 or  which can be transformed into 
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 This is the user cost formulation20 applied in the present paper, where the rate of 
depreciation of asset i has been defined as  and the rate of price change of 

the same asset is given by . Note that the different variables in the user cost 
equation are expectations because they invoke knowledge about price changes in future periods.  
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 These expectations govern the rental price. The System of National Accounts that capital 
stock data should tie into is based on ex-post prices, observed in the context of actual 
transactions. Would the use of user cost expressions such as those discussed above be in 
contradiction with the principles of national accounts?  

 The answer is ‘no’. The presence of expectations does not make the user cost term less 
‘real’: transactions are concluded at this price, even if with hindsight (ex post) the expectations 
underlying the transactions may turn out to be wrong. This is most apparent when one thinks of a 
case where capital goods are rented: the observed rental price characterises the transaction and is 
the relevant market price, typically dependent on expectations on the side of the lessor and the 
lessee. Nobody would challenge using such observed prices in the national accounts. If rental 
prices are not observable, values have to be imputed, and the expression above indicates how this 
can be done on the basis of economic theory. Imputations are numerous in the national accounts, 
and in this sense, the imputation of user costs would not constitute an exception. 

 Thus, it is not the presence of an expected variable as such that is at issue. The real issue 
from a capital and productivity measurement viewpoint is whether the realised, but unobserved, 
marginal productivity of fixed assets is better approximated by an ex-ante or an ex-post measure 
of user costs.21 On this matter, Berndt (1990) points out that: “…if one wants to use a measure of 
capital to calculate actual multifactor productivity growth, then theory tells us quite clearly that 
we should weight the various traditionally measured capital inputs by their realised marginal 
products, not their expected marginal products. This means that in choosing capital service price 
weights, one should employ shadow values or ex post rates of return, and not the ex ante rates of 
return that are appropriate in the investment context.”  

 While we concur with Berndt’s statement that for purposes of productivity measurement, 
realised marginal products are the appropriate weights, this does not mean that ex post rates of 
return are always the preferred approximation to realised marginal productivity. Suppose that a 

                                                      
20 Jorgenson and Yun (2001) show how tax considerations enter the user cost of capital and how they affect 
measured economic performance. This is one of the projects for expansion of the OECD Productivity Database. At 
present, however, these parameters are not considered in our set of user costs and capital measures.   
21 The distinction between ex-ante and ex-post user costs has been discussed by Berndt and Fuss (1986), Harper et 
al. (1989), Diewert (2001), Berndt (1990) in his discussion of Hulten (1990) and Hill and Hill (2003).  
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capital asset is rented by a producer at a given, pre-agreed rental price to be paid by the end of 
the period. The lessee of the asset will use it in his production process as planned regardless of 
the ex-post rental price. Therefore, the marginal productivity of the asset in the production 
process would best be approximated by the ex-ante rental price that is the price at which the 
rental transaction actually took place. 

 Take another case of an owner/producer and suppose that there has been investment at 
the beginning of the period in line with the ex-ante user cost. Now let there be a change in 
market conditions that leads to a modification of expectations and of user costs. If capital is fully 
flexible and can be adjusted continuously, it will be adjusted in line with the new user cost term. 
But the user cost term is governed by expectations, even though the expectations may have 
changed. It is only when capital cannot be adjusted that the ex-post user cost term would furnish 
the preferred approximation to the realised marginal productivity of an asset. This is the case that 
Berndt (1990) and Berndt and Fuss (1986) have in mind and it relies on quasi-fixity of capital in 
the production process. Thus, there is no general conclusion that ex-post user cost measures 
should always be preferred to ex-ante ones for measuring and aggregating capital input. 

 There is another conceptual difficulty with ex post user costs: the computation of the 
realised rates of return is commonly done by choosing a rate of return so that the ensuing user 
cost and total value of capital services just exhausts the measured gross operating surplus 
available from the national accounts. This computation relies, however, on the assumption that 
there is only one ex-post rate of return that applies to all assets. While equalisation of rates of 
return across assets is a natural assumption in an ex-ante context, it is much harder to justify in 
an ex-post context, especially given states of disequilibrium. Essentially it amounts to imposing 
an equilibrium condition to implement an (ex-post) measure that was specifically chosen on the 
grounds that it captures the nature of a situation of disequilibrium. 

 Diewert (2001) also points out that while the ex-post measure (of the nominal rate of 
return) is widely used in empirical research, it is subject to measurement error and it may not 
reflect the economic conditions facing producers at the beginning of the period. 

 A practical argument against the use of an ex-post rate is that its calculation requires 
information on the level of the productive capital stock at current prices (or alternatively on the 
wealth stock at current prices). However, levels of capital stocks tend to be less reliable statistics 
than their rates of change, especially when long historical investment series have to be estimated. 
This problem does not arise when user costs and nominal rates of return are of an ex-ante nature 
and therefore are exogenous variables. On the other hand, ex-post rates of return are of interest as 
such, and straightforward to compute. In sum then, there is no clear conclusion on this matter. In 
the present work, preference is given to an ex-ante approach, mainly because it allows us to 
develop capital service measures independently from measures of labour compensation, gross 
operating surplus and mixed income in the national accounts.  

 Exogenous net rate of return. To compute the net rate of return, following a suggestion 
of Diewert (2001), the starting point is the constant value for the expected real interest rate rr. 
The constant real rate is computed by taking a series of annual observed nominal rates (an 
unweighted average of interest rates with different maturities22) and deflating them by the 

                                                      
22 These are the average bank rate, the bank rate on prime loans, long-term government bond yields, short-term 
government bond yields, the interest rate on a 90 day bank fixed deposit, and the treasury bill rate. 
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consumer price index. The resulting series of real interest rates is averaged over the period 
(1980-2000) to yield a constant value for rr. The expected nominal interest rate for every year is 
then computed as 1)p1)(rr1(r tt −++=  where p is the expected value of an overall deflator, the 
consumer price index.  

 To obtain a measure for p, the expected overall inflation, we construct a 5-year centered 

moving average of the rate of change of the consumer price index , where 

is the annual percentage change of the consumer price index. This equals the expected rate 
of overall price change and, by implication, the nominal net rate of return. 

∑+
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 Expected asset price changes, another element in the user cost equation, are derived as a 
smoothed series of actual asset price changes: a 5-year centered moving average filter is used. 

 Depreciation rates have been computed using the definition given above, 
. So, the rate of depreciation for a new asset equals one minus the ratio of the 

market price for a year old asset over the market price for a new asset. The market price for a 
new asset can be observed directly, but the price for a one-year old asset must be computed using 
the asset market equilibrium condition (34), the age-efficiency function h and the discount rate.  
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6.3 Results 
 Tables 1-4 summarise empirical results for Canada, France, the United States and Japan. 
They show the rates of change of output (GDP) and labour input as well as the volume changes 
of capital services alternatively based on exogenous and endogenous rates of return as well as the 
various MFP measures. The first observation is that moving from an endogenous to an 
exogenous rate of return leads to a rise in the observed measure of capital input – at least in the 
case of the countries considered and for the period at hand. Also, labour and capital shares turn 
out to be quite different when based on total costs rather than total revenue.  

 The second panel in each table reviews results for the five alternative MFP measures 
presented in the text above. It is immediately apparent that the different options – each associated 
with a particular set of assumptions about market structures or production technology – can lead 
to considerable variation in the resulting MFP measures, France being a noticeable exception. 
Unless a-priori knowledge about technology and market structure are available, it will be 
difficult to choose between the different options. Also, every different MFP measure implies a 
different message about the relative contribution of capital services to output growth. For all four 
countries examined, measured productivity growth turns out to be slowest when based on 
endogenous rate models (MFP3) or when assuming proportionality between capital input and an 
unobserved factor (MFP2). The output-based productivity measure that allows for decreasing 
returns to scale (MFP5) is generally the fastest-growing item in each country, followed by the 
input-based productivity measure with decreasing returns to scale (MFP4). 

 However, a simple geometric average of the five specific MFP measures yields a time 
series that is very close to the simple AMFP measure. In the absence of a-priori information on 
mark-ups, returns to scale, or unobserved assets, the choice of a measure that is close to the 
average of the different options may be a reasonable one. This is one of our conclusions. 
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Table 1.  Canada 
Basic series 

 Output Hours worked Capital services 
    Exogenous RoR Endogenous RoR 

Volume 
index Cost share Volume 

index Cost share Volume 
index 

Revenue 
share 

Volume 
index 

1985 100.0 71.70% 
  

100.0 28.30% 100.0 33.30% 100.0 
1986 102.4 72.69% 102.9 27.31% 105.0 32.28% 105.8 
1987 106.7 73.54% 106.4 26.46% 110.6 32.41% 112.1 
1988 112.0 73.69% 110.7 26.31% 116.9 32.07% 119.2 
1989 114.9 71.39% 112.9 28.61% 123.1 31.36% 126.5 
1990 115.1 70.34% 112.6 29.66% 128.7 30.49% 133.1 
1991 112.6 69.61% 109.2 30.39% 133.7 28.71% 139.1 
1992 113.6 73.23% 108.0 26.77% 138.3 28.19% 144.5 
1993 116.3 72.76% 110.1 27.24% 142.7 28.52% 149.7 
1994 121.8 75.35% 113.3 24.65% 147.6 30.91% 155.4 
1995 125.2 74.38% 114.6 25.62% 152.9 32.32% 161.2 
1996 127.3 76.10% 116.8 23.90% 158.6 32.16% 167.3 
1997 132.7 74.31% 118.5 25.69% 166.5 32.65% 175.5 
1998 138.1 74.22% 121.5 25.78% 175.3 31.48% 184.6 
1999 145.8 73.00% 125.4 27.00% 184.9 32.94% 194.5 
2000 153.5 74.31% 128.4 25.69% 194.3 34.56% 204.3 
2001 156.4 72.66% 128.4 27.34% 202.9 .. 204.3 
2002 161.6 72.29% 130.3 27.71% 209.7 .. 204.3 

        
85-90 2.81% 72.23% 2.37% 27.77% 5.05% 31.98% 5.71% 
90-95 1.70% 72.61% 0.35% 27.39% 3.45% 29.86% 3.84% 
95-00 4.07% 74.38% 2.28% 25.62% 4.80% 32.69% 4.73% 
95-02 3.64% 73.91% 1.84% 26.09% 4.51% 32.69% 3.38% 

                

Productivity measures 

 
MFP1 

=AMFP MFP2 MFP3 MFP4 MFP5   Average 

1985 100.0 100.0 100.0 100.0 100.0  100.0 
1986 99.0 98.9 98.6 99.2 99.2  99.0 
1987 99.2 99.1 98.6 99.8 99.8  99.3 
1988 99.7 99.4 98.8 100.6 100.6  99.8 
1989 99.3 98.9 98.1 100.4 100.4  99.4 
1990 98.4 97.9 96.9 99.5 99.5  98.5 
1991 97.3 96.9 95.7 98.4 98.4  97.3 
1992 98.0 97.5 96.2 99.1 99.0  98.0 
1993 98.1 97.6 96.2 99.2 99.2  98.0 
1994 99.7 99.2 97.7 101.1 101.0  99.7 
1995 100.7 100.1 98.4 102.4 102.2  100.8 
1996 100.0 99.2 97.6 101.9 101.7  100.0 
1997 101.9 100.8 99.2 104.3 103.8  102.0 
1998 102.7 101.5 99.9 105.5 105.0  102.9 
1999 104.5 103.1 101.5 107.9 107.1  104.8 
2000 106.7 105.1 103.5 110.7 109.7  107.1 
2001 107.5 .. .. 110.7 ..  109.1 
2002 108.8 .. .. 108.5 ..   108.7 

        
85-90 -0.31% -0.42% -0.63% -0.09% -0.10%  -0.31% 
90-95 0.46% 0.43% 0.32% 0.58% 0.53%  0.46% 
95-00 1.15% 0.97% 0.99% 1.56% 1.42%  1.22% 
95-02 1.10% .. .. 0.82% ..   1.08% 

Source: OECD Productivity Database May 2004.    
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Table 2.  France 
Basic series 

 Output Hours worked Capital services 
    Exogenous RoR Endogenous RoR 

Volume 
index Cost share Volume 

index Cost share Volume 
index 

Revenue 
share 

Volume 
index 

1985 100.0 69.53% 
  

100.0 30.47% 100.0 24.32% 100.0 
1986 102.4 70.42% 99.8 29.58% 102.7 26.56% 102.8 
1987 105.0 71.36% 100.3 28.64% 105.7 27.46% 105.9 
1988 109.8 71.48% 101.3 28.52% 109.4 28.88% 109.6 
1989 114.4 70.06% 101.9 29.94% 113.7 30.06% 113.9 
1990 117.4 69.81% 102.8 30.19% 118.4 29.80% 118.6 
1991 118.6 69.11% 102.4 30.89% 122.7 29.94% 123.0 
1992 120.4 68.10% 101.8 31.90% 126.5 30.39% 126.9 
1993 119.3 68.26% 99.7 31.74% 129.4 30.59% 129.9 
1994 121.8 67.91% 99.5 32.09% 132.3 31.64% 132.7 
1995 123.8 68.67% 98.8 31.33% 135.0 31.89% 135.4 
1996 125.2 68.86% 99.5 31.14% 137.7 31.71% 138.2 
1997 127.5 69.50% 99.5 30.50% 140.5 32.30% 141.0 
1998 131.9 70.50% 100.3 29.50% 144.0 33.09% 144.4 
1999 136.1 71.89% 101.9 28.11% 148.5 32.87% 148.6 
2000 141.3 71.12% 101.3 28.88% 153.6 33.21% 153.5 
2001 144.2 68.83% 101.5 31.17% 158.5 33.00% 158.3 
2002 146.0 69.40% 101.1 30.60% 161.7 32.38% 161.5 

        
85-90 3.21% 70.44% 0.56% 29.56% 3.37% 27.85% 3.42% 
90-95 1.06% 68.64% -0.79% 31.36% 2.62% 30.71% 2.64% 
95-00 2.64% 70.09% 0.50% 29.91% 2.59% 32.51% 2.50% 
95-02 2.36% 69.85% 0.33% 30.15% 2.59% 32.56% 2.52% 

        
Productivity measures 

 
MFP1 

=AMFP MFP2 MFP3 MFP4 MFP5   Average 

1985 100.0 100.0 100.0 100.0 100.0  100.0 
1986 101.8 101.9 101.9 101.6 101.7  101.8 
1987 103.1 103.3 103.2 102.9 103.0  103.1 
1988 106.0 106.2 106.2 105.7 105.9  106.0 
1989 108.8 109.0 108.9 108.5 108.7  108.8 
1990 109.6 109.8 109.7 109.3 109.5  109.6 
1991 109.8 110.0 109.9 109.5 109.7  109.8 
1992 110.8 111.1 111.0 110.5 110.7  110.8 
1993 110.5 110.9 110.8 110.3 110.4  110.6 
1994 112.2 112.6 112.5 111.9 112.1  112.3 
1995 113.9 114.3 114.1 113.6 113.8  113.9 
1996 113.9 114.3 114.2 113.6 113.8  114.0 
1997 115.3 115.7 115.6 115.0 115.2  115.4 
1998 117.7 118.1 118.0 117.6 117.7  117.8 
1999 119.1 119.4 119.3 119.2 119.2  119.2 
2000 122.9 122.9 123.0 123.3 123.1  123.1 
2001 124.2 124.1 124.1 124.7 124.4  124.3 
2002 125.2 125.1 125.1 125.8 125.4   125.3 

        
85-90 1.83% 1.86% 1.85% 1.78% 1.81%  1.83% 
90-95 0.77% 0.80% 0.80% 0.77% 0.77%  0.78% 
95-00 1.53% 1.46% 1.49% 1.65% 1.57%  1.54% 
95-02 1.35% 1.29% 1.31% 1.46% 1.39%   1.36% 
Source: OECD Productivity Database May 2004.    
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Table 3: Japan 
Basic series 

 Output Hours worked Capital services 
    Exogenous RoR Endogenous RoR 

Volume 
index Cost share Volume 

index Cost share Volume 
index 

Revenue 
share 

Volume 
index 

1985 100.0 73.61% 
  

100.0 26.39% 100.0 29.35% 100.0 
1986 103.0 75.51% 100.7 24.49% 104.4 29.98% 104.4 
1987 106.9 77.02% 101.1 22.98% 109.3 30.28% 109.2 
1988 114.1 77.74% 102.0 22.26% 115.2 31.72% 114.8 
1989 120.1 77.24% 102.4 22.76% 122.2 32.42% 121.3 
1990 126.4 73.80% 102.2 26.20% 129.1 32.60% 128.0 
1991 130.6 73.72% 102.6 26.28% 136.4 32.19% 135.1 
1992 131.9 72.24% 102.0 27.76% 143.2 32.16% 141.8 
1993 132.2 72.20% 99.3 27.80% 149.2 31.81% 147.7 
1994 133.7 72.84% 99.0 27.16% 154.4 31.49% 152.9 
1995 136.2 72.40% 98.4 27.60% 160.2 31.23% 158.6 
1996 140.9 71.80% 99.3 28.20% 167.2 32.28% 165.2 
1997 143.5 70.92% 98.8 29.08% 174.4 32.22% 172.0 
1998 141.9 69.20% 97.0 30.80% 181.0 31.91% 178.6 
1999 142.0 71.00% 94.5 29.00% 187.3 32.11% 184.5 
2000 146.0 71.88% 95.0 28.12% 192.9 32.60% 189.5 
2001 146.7 69.41% 93.8 30.59% 197.2 32.61% 194.0 
2002 146.1 71.57% 92.0 28.43% 198.9 32.80% 195.5 

        
85-90 4.68% 75.82% 0.43% 24.18% 5.11% 31.06% 4.94% 
90-95 1.50% 72.87% -0.75% 27.13% 4.32% 31.91% 4.29% 
95-00 1.38% 71.20% -0.71% 28.80% 3.71% 32.06% 3.56% 
95-02 1.00% 71.02% -0.96% 28.98% 3.08% 32.22% 2.99% 

                
Productivity measures 

 
MFP1 

=AMFP MFP2 MFP3 MFP4 MFP5   Average 

1985 100.0 100.0 100.0 100.0 100.0  100.0 
1986 101.3 101.1 101.2 101.5 101.4  101.3 
1987 103.7 103.3 103.4 104.3 103.9  103.7 
1988 108.6 107.8 108.2 110.1 109.1  108.7 
1989 112.5 111.1 111.8 114.8 113.2  112.7 
1990 117.0 115.0 115.7 120.1 117.9  117.1 
1991 118.9 116.4 117.2 122.4 119.9  118.9 
1992 118.9 116.1 116.7 122.6 120.1  118.9 
1993 120.2 117.1 117.4 123.9 121.3  119.9 
1994 120.6 117.3 117.3 124.4 121.7  120.2 
1995 122.3 118.7 118.8 126.2 123.4  121.8 
1996 124.2 120.4 120.8 128.5 125.5  123.8 
1997 125.3 121.3 121.7 129.8 126.7  124.9 
1998 124.2 120.0 120.3 128.5 125.6  123.7 
1999 125.2 120.9 121.1 129.6 126.6  124.6 
2000 127.3 122.7 122.8 132.0 128.7  126.7 
2001 128.1 123.4 123.3 132.9 129.6  127.4 
2002 129.1 124.3 123.5 133.8 130.5   128.2 

        
85-90 3.14% 2.79% 2.91% 3.67% 3.29%  3.16% 
90-95 0.88% 0.63% 0.54% 0.99% 0.92%  0.79% 
95-00 0.80% 0.68% 0.66% 0.89% 0.84%  0.77% 
95-02 0.78% 0.66% 0.56% 0.84% 0.79%   0.72% 
Source: OECD Productivity Database May 2004.    
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Table 4: United States 
Basic series 

 Output Hours worked Capital services 
    Exogenous RoR Endogenous RoR 

Volume 
index Cost share Volume 

index Cost share Volume 
index 

Revenue 
share 

Volume 
index 

1985 100.0 73.26% 
  

100.0 26.74% 100.0 27.77% 100.0 
1986 103.4 73.67% 101.1 26.33% 103.7 27.54% 103.7 
1987 106.8 74.09% 104.0 25.91% 107.3 27.42% 107.1 
1988 111.3 74.58% 107.1 25.42% 110.7 27.06% 110.5 
1989 115.2 73.18% 110.0 26.82% 114.5 28.07% 114.2 
1990 117.2 72.79% 110.7 27.21% 118.0 27.51% 117.7 
1991 116.6 72.21% 108.9 27.79% 121.0 27.12% 120.7 
1992 120.2 73.41% 109.2 26.59% 124.2 27.33% 123.9 
1993 123.4 75.19% 112.0 24.81% 127.6 27.55% 127.1 
1994 128.4 75.47% 114.8 24.53% 131.4 28.19% 130.7 
1995 131.9 76.20% 117.4 23.80% 136.3 28.50% 135.2 
1996 136.7 76.16% 119.0 23.84% 142.4 29.37% 140.6 
1997 142.8 76.71% 122.3 23.29% 150.2 29.91% 147.3 
1998 148.9 76.08% 125.3 23.92% 159.4 28.95% 155.1 
1999 155.1 76.76% 127.7 23.24% 169.6 28.59% 163.8 
2000 161.0 76.51% 129.4 23.49% 179.5 27.52% 172.4 
2001 161.4 74.35% 128.4 25.65% 186.9 27.56% 179.1 
2002 165.3 73.32% 127.8 26.68% 192.6 .. .. 

        
85-90 3.17% 73.60% 2.03% 26.40% 3.32% 27.56% 3.25% 
90-95 2.36% 74.21% 1.18% 25.79% 2.88% 27.70% 2.78% 
95-00 3.98% 76.40% 1.95% 23.60% 5.51% 28.81% 4.86% 
95-02 3.22% 75.76% 1.21% 24.24% 4.94% 28.63% .. 

                
Productivity measures 

 
MFP1 

=AMFP MFP2 MFP3 MFP4 MFP5   Average 

1985 100.0 100.0 100.0 100.0 100.0  100.0 
1986 101.6 101.6 101.5 101.6 101.6  101.6 
1987 101.9 101.8 101.7 102.0 102.0  101.9 
1988 103.0 103.0 102.8 103.2 103.2  103.0 
1989 103.6 103.6 103.5 103.9 103.9  103.7 
1990 104.1 104.0 103.8 104.4 104.3  104.1 
1991 104.1 104.1 103.7 104.4 104.3  104.1 
1992 106.3 106.2 105.9 106.6 106.5  106.3 
1993 106.4 106.3 106.0 106.7 106.7  106.4 
1994 107.9 107.8 107.6 108.4 108.3  108.0 
1995 108.0 107.8 107.9 108.7 108.5  108.2 
1996 109.6 109.3 109.6 110.6 110.3  109.9 
1997 110.7 110.2 111.0 112.1 111.7  111.1 
1998 111.8 111.1 112.4 113.7 113.1  112.4 
1999 113.1 112.1 113.7 115.3 114.6  113.7 
2000 114.6 113.4 115.1 117.2 116.4  115.3 
2001 114.4 113.0 114.4 117.0 116.2  115.0 
2002 116.7 .. .. .. ..   116.7 

        
85-90 0.80% 0.79% 0.75% 0.86% 0.84%  0.81% 
90-95 0.73% 0.72% 0.76% 0.81% 0.79%  0.76% 
95-00 1.19% 1.00% 1.30% 1.50% 1.39%  1.28% 
95-02 1.11% .. .. .. ..   1.08% 
Source: OECD Productivity Database May 2004.    
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7. Conclusions 
 This paper examined productivity and growth accounting measures when rates of return 
to capital inputs are exogenously determined. Several hypotheses about competition on output 
markets and about technology are invoked, each of which is compatible with exogenous rates of 
return. The following conclusions emerge. 

 The endogenous case – widely used in empirical research – imposes quite stringent 
assumptions: constant returns to scale and fully competitive output markets, no unobserved 
capital inputs and perfect foresight for producers regarding the expected changes in prices and 
rates of return and depreciation. 

 Different hypotheses are consistent with different MFP measures. In the absence of 
further a-priori information or recourse to parametric techniques, there is no obvious way of 
discriminating among the different hypotheses and hence making an informed choice among the 
alternative productivity and growth accounting measures. 

 This is evidenced for the four countries. In total, five different productivity measures 
were computed, each consistent with a set of assumptions. Empirically, the differences matter.  

 The paper suggests a pragmatic way forward: using an ‘Apparent’ MFP (AMFP) measure 
that is simply the ratio between a volume index of output and a volume index of the observed 
inputs. AMFP is not a pure measure of technical change defined as a path-independent shift in 
the production or cost function. However, AMFP is shown to have the following properties:  

• The measure is close to the average of other measures. 

• It is easy to explain. 

• It can be applied when assumptions about the nature of ‘pure’ technical change are 
relaxed allowing, for example, formulations that encompass neutral and biased technical change. 

• It relies on input measures that are independent from output measures and whose quality 
therefore does not vary with the quality and available detail of production or value-added data.  

 Clearly, the interpretation of AMFP has to be kept in mind: it reflects the combined 
effects of technical change, of unobserved inputs, of non-constant returns to scale and, indirectly, 
of deviations from perfect competition in product markets. In other words, AMFP is a true 
‘residual’. But for many practical purposes, it should prove useful as a multi-faceted measure of 
productivity growth.   
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Chapter 3 
ON MEASURING THE CONTRIBUTION 

OF ENTERING AND EXITING FIRMS 
TO AGGREGATE PRODUCTIVITY GROWTH 

W. Erwin Diewert and Kevin J. Fox1 

 

1. Introduction 

 
 A recent development in productivity analysis is the increased focus on the impact of 
firm entry and exit on aggregate levels of productivity growth. Haltiwanger, and Bartelsman and 
Doms, in their survey papers make the following observations:2 

“There are large and persistent differences in productivity across establishments 
in the same industry... − for total factor productivity [TFP] the ratio of the 
productivity level for the plant at the 75th percentile to the plant at the 5th 

percentile in the same industry is 2.4 (this is the average across industries) − the 
equivalent ratio for labour productivity is 3.5.”             John Haltiwanger (2000; 9) 

“The ratio of average TFP for plants in the ninth decile of the productivity 
distribution relative to the average in the second decile was about 2 to 1 in 1972 
and about 2.75 to 1 in 1987.”         Eric J. Bartelsman and Mark Doms (2000; 579) 

 Thus the recent productivity literature has demonstrated empirically that increases in the 
productivity of the economy can be obtained by reallocating resources 3  away from low 
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productivity firms in an industry to the higher productivity firms. 4  However, different 
investigators have chosen different methods for measuring the contributions to industry 
productivity growth of entering and exiting firms and the issue remains open as to which method 
is “best”. We propose yet another method for accomplishing this decomposition. It differs from 
existing methods in that it treats time in a symmetric fashion so that the industry productivity 
difference in levels between two periods reverses sign when the periods are interchanged, as do 
the various contribution terms. 5  Our proposed productivity decomposition is explained in 
sections 2 and 3 below, assuming that each firm in the industry produces only one homogeneous 
output and uses only one homogeneous input. In the literature, it is often assumed there is only 
one output and one input that each firm produces and uses.  

 With multiple outputs and inputs, so long as the list of outputs being produced and inputs 
being used by each firm is constant across firms, then there is no problem in using normal index 
number theory to construct output and input aggregates for each continuing firm that is present 
for the two periods under consideration.6 We turn our attention to the multiple input, multiple 
output case beginning with section 4. However, this approach does not work with entering and 
exiting firms, since there is no natural base observation for comparing the single period data for 
these firms. This problem does not seem to have been widely recognized in the literature, though 
there are notable exceptions.7 Hence in the remainder of the paper, we focus on this problem. 
Our proposed approach is to use multilateral index number theory so that each firm’s data in 
each time period is treated as if it were pertaining to a “country.” There are many multilateral 
methods that could be used, and we compare our new method with some of the alternatives.  

 In section 5 below, we construct an artificial data set involving three continuing firms, 
one entering firm and one exiting firm. In the remaining sections of the paper, we use various 
multilateral aggregation methods in order to construct firm output and input aggregates, which 
we then use in our suggested productivity growth decomposition formula. The multilateral 
aggregation methods we consider are: the star system (section 6); the GEKS system (section 7); 
the own share system (section 8); the “spatial” linking method due to Robert Hill (section 9), and 
a simple deflation of value aggregates method (section 10). Section 11 concludes. 

 

2. Aggregate Productivity Level Measurement in the One Output One Input Case  
 

 We begin with a very simple case where firms produce one output with one input so it is 
very straightforward to measure the productivity of each firm by dividing its output by its input.8 

                                                 
4 This conclusion has also emerged from the extensive literatures on benchmarking and on data envelopment 
analysis; e.g., see Coelli, Prasada Rao and Battese (1998). 
5 Balk (2003; 29) also emphasized the importance of a symmetric treatment of time. A symmetric decomposition 
was proposed by Griliches and Regev (1995) and a modification of it was used by Aw, Chen and Roberts (2001). 
6 An economic justification for using a superlative index to accomplish this aggregation can be supplied under some 
separability assumptions; see Diewert (1976). 
7 Aw, Chen and Roberts (2001) and Aw, Chung and Roberts (2003) recognized the importance of this problem and 
used a modification of a multilateral method proposed by Caves, Christensen and Diewert (1982). The modification 
is due to Good (1985) and explained in Good, Nadiri and Sickles (1997). The Caves, Christensen and Diewert 
method was designed for a single cross section and is not suitable for use in a panel data context with inflation. 
8 We will consider the case of many outputs and many inputs in sections 4-10 below. 
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We assume that these firms are all in the same industry, producing the same output and using the 
same input, so that it is very straightforward to measure industry productivity for each period by 
dividing aggregate industry output by aggregate industry input. Our measurement problem is to 
account for the contributions to industry productivity growth of entering and exiting firms.  

 In what follows, C denotes the set of continuing production units that are present in 
periods 0 and 1, X denotes the set of exiting firms that are present in only period 0, and N 
denotes the set of new firms present in only period 1. Let  and  denote, 

respectively, the output and input for continuing firm i∈C during periods t = 0, 1. Let  

and  denote the output and input of exiting firm i∈X in period 0. Finally, let  

and  denote the output and input of the new firm i∈N in period 1. 

0yt
Ci > 0xt

Ci >

0y0
Xi >

0y1
Ni >0x0

Xi >

0x1
Ni >

 The productivity level  of a continuing firm i∈C in each period t can be defined as:  t
CiΠ

(1) ,     i∈C,     t = 0,1.  ttt x/y≡Π CiCiCi

1
Ni

1
Ni

1
Ni x/y≡Π

The productivity levels of each exiting firm in period 0 and each entering firm in period 1 are 
defined in a similar fashion, as follows: 

(2) ,     i∈X;  0
Xi

0
Xi

0
Xi x/y≡Π

(3) ,     i∈N.  

 Assuming for now that the output and input products are the same for all firms, a natural 
definition for period 0 industry productivity 0Π  is aggregate output divided by aggregate input:9  

(4)  
,

Xi XiCi CiXi XiCi Ci ∈∈∈∈

]x/[xS Xi
0
Xi

0
Ci

0
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]xx Xi
0
Xi
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0
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0
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0
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]xx/[]yy[ 00000 ++≡Π ∑∑∑∑

where the aggregate input shares of the continuing and exiting firms in period 0 are:  

(5) ; x0
Ci +CiCi

/[xS CiXi
0
Xi

0
X ∑∑ ∈∈≡(6) . 

The period 0 micro input share, , for a continuing firm i∈C is defined as follows:  

(7) k
0
Ck

0
Ci

0
Ci x/xs

                                                

,     i∈C. 

Similarly, the period 0 micro input share for exiting firm i∈X is: 

 
9 It is possible to rework our analysis by reversing the role of inputs and outputs so that output shares replace input 
shares in the decomposition formulae. Then at the end, we can take the reciprocal of the aggregate inverse 
productivity measure and obtain an alternative productivity decomposition. We owe this suggestion to Bert Balk. 
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(8) ∑ ∈≡ Xk
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0
Xi x/xs ,     i∈X. 

 The period 0 aggregate productivities for continuing and exiting firms, , and , 

can be defined in a similar manner to the definition in (4) of 

0
CΠ 0

XΠ
0Π  for the entire industry as:  
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Substituting of (9) and (10) back into (4) for the aggregate period 0 level of productivity of the 
industry and using  leads to the following decomposition of period 0 productivity:  00 S1S −=C

00000(11)  XXCC SS Π+Π=Π

(12) . 

In expression (12), the first term, , represents the productivity contribution of continuing 

firms while the second term, , represents the contribution of exiting firms, relative 
to continuing firms, to the overall period 0 productivity level. Usually the exiting firm will have 
lower productivity levels than the continuing firms so that Π  will be less than Π . Thus, 
under normal conditions, the second term on the right-hand side of (12) will make a negative 
contribution to the overall level of period 0 productivity.

0
CΠ

0
X Π− )(S 0

C
0
X Π

10 Substituting (9) and (10) into (12) 
leads to the following decomposition of the period 0 productivity into the contributions of firms 
grouped by whether they are continuing or exiting: 

(13) , (s 0
XiX

0
Xi Π∈

where we have also used the fact that ∑  sums to unity. ∈X
0s

 The above material can be repeated with minor modifications to provide a decomposition 
of the industry period 1 productivity level 1Π 1 into its components. Thus, Π  is defined as:  
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where the period 1 aggregate input shares of continuing and new firms, S  and , and 

individual continuing and new firm shares,  and s , are defined as follows:  

 
10  Olley and Pakes (1996; 1290) have an alternative covariance type decomposition of the overall level of 
productivity in a given period into firm effects but it is not suitable for our purpose, which is to highlight the 
differential effects on overall period 0 productivity of the exiting firms compared to the continuing firms.  
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The period 1 counterparts to  and  in (9) and (10) are the aggregate period one 

productivity levels of continuing firms  and entering firms , defined as follows:  
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 Substituting (19) and (20) back into definition (14) for the aggregate period 1 level of 
productivity leads to the following decomposition counterparts of (11) and (12) -- a 
decomposition of aggregate period 1 productivity into its continuing and new components:  

(21)  

(22)       = , NC

)(S 111 Π−Π

where (22) follows from (21) using . Thus the aggregate period 1 productivity level 

 is equal to the aggregate period 1 productivity level of continuing firms, , plus a second 

term, , which represents the contribution of the new entrants’ productivity levels, 

, relative to that of the continuing firms, .

1
N

1
C S1S −=

1Π 1
CΠ

1
CΠ 11 Substituting (19) and (20) into (22) leads to 

the following decomposition of the aggregate period 1 productivity level Π  into its individual 
firm contributions: 

(23) Ni
1
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. 

 This completes our discussion of how the levels of productivity in periods 0 and 1 can be 
decomposed into individual firm contribution effects. In the following section, we study the 
more difficult problem of decomposing the aggregate productivity change, Π / Π , into 
individual firm growth effects, taking into account that not all firms are present in both periods. 

                                                 
11 Baldwin (1995) in his study of the Canadian manufacturing sector showed that on average, the productivity level 
of new entrants is below that of continuing firms. However, he found that for new entrants that survive, they reach 
the average productivity level of continuing firms in about a decade. For additional empirical evidence on the 
relative productivity levels of entering and exiting firms, see Bartelsman and Doms (2000; 581). See also Aw, Chen 
and Roberts (2001) (who also find that the productivity level of new entrants is below that of incumbents) and 
section 5 of Bartelsman, Haltiwanger and Scarpetta (2004).  
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3. The Measurement of Productivity Change between Two Periods  

 

 It is traditional to define productivity change from period 0 to period 1 as a ratio of the 
productivity levels in the two periods rather than as a difference. This is because the ratio 
measure will be independent of the units of measurement while the difference measure will not 
(unless some normalization is performed). However, in the present context, as we are attempting 
to calculate the contribution of new and disappearing production units to overall productivity 
change, it is more convenient to work with the difference concept, at least initially.  

 Using formula (13) for the period 0 productivity level 0Π  and (23) for the period 1 
productivity level Π , we obtain the following decomposition of the productivity difference:  1
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where (25) follows from (24) using (12) and (22). Thus the overall industry productivity change, 
, is equal to the productivity change of the continuing firms, , plus a term that 

reflects the contribution to overall productivity change of new entrants, S ,
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term that reflects the contribution to overall productivity change of exiting firms, 
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13 Note that the reference productivity levels that the productivity levels of the 

entering and exiting firms are compared with,  and  respectively, are different in general, 

so even if the average productivity levels of entering and exiting firms are the same (so that  

equals ), the contributions to overall industry productivity growth of entering and exiting 

firms can still be nonzero if Π  or Π .

1
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1
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1
CΠ

0
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12 This term is positive if and only if the average level of productivity of the new entrants in period 1, Π , is 

greater than the average productivity level of continuing firms in period 1, . 
13 This term is positive if and only if the average level of productivity of the firms who exit in period 0, Π , is less 

than the average productivity level of continuing firms in period 0, . 
14 Haltiwanger (1997) (2000; 10) argues that if the productivity levels of entering and exiting firms or establishments 
are exactly the same, then the sum of the contribution terms of entering and exiting firms should be zero. However, 
our perspective is different: we want to measure the differential effects on productivity growth of entering and 
exiting firms and so what counts in our framework are the productivity levels of entering firms relative to continuing 
firms in period 1 and the productivity levels of exiting firms relative to continuing firms in period 0. Thus if 
continuing firms show productivity growth over the two periods, then if the entering and exiting firms have the same 
productivity levels, the effects of entry and exit will be to decrease productivity growth compared to the continuing 
firms. Balk (2003; 28) follows the example of Haltiwanger (1997) in choosing a common reference level of 
productivity to compare the productivity levels of entering and exiting firms but Balk chooses the arithmetic average 
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 The first two terms on the right-hand side of (24) give the aggregate effects of the 
changes in productivity levels of the continuing firms. It is useful to further decompose this 
aggregate change in the productivity levels of continuing firms into two sets of components: the 
first set of terms measures the productivity change of each continuing production unit, 

, and the second set reflects the shifts in the share of resources used by each 

continuing production unit, . As Balk (2003; 26) notes, there are two natural 
decompositions for the difference in the productivity levels of the continuing firms, (27) and (29) 
below, that are the difference counterparts to the decomposition of a value ratio into the product 
of a Laspeyres (or Paasche) price index times a Paasche (or Laspeyres) quantity index: 
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 We now note a severe disadvantage associated with either (27) 15  or (29): these 
decompositions are not invariant with respect to the treatment of time. If we reverse the roles of 
periods 0 and 1, we would like the decomposition of the aggregate productivity difference for 
continuing firms,  (an aggregate productivity 

difference that involves the individual productivity differences  and share differences 

) to satisfy a symmetry or invariance property, but unfortunately it does not.

1
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1
Ci

0
Ci Π−Π

10 16  A 
solution to this problem is to take the arithmetic average of (26) and (28), leading to a Bennet 
(1920) type decomposition of the productivity change of continuing firms: 

(30) . 

The use of this decomposition for continuing firms dates back to Griliches and Regev (1995; 
185).17 Balk (2003; 29) also endorsed the use of this symmetric decomposition.18 We endorse it 
since it is symmetric and can also be given a strong axiomatic justification.19 

 
of the industry productivity levels in periods 0 and 1 (which is at least a symmetric choice) whereas Haltiwanger 
chooses the industry productivity level of period 0 (which is not a symmetric choice). In any case, our approach 
seems to be different from other approaches suggested in the literature.  
15 The decomposition defined by (26) is the one used by Baily, Hulten and Campbell (1992; 193) for continuing 
firms except that they used logs of the TFP levels ∏Ci

t instead of the levels themselves. 
16 We want the difference decomposition to satisfy a differences counterpart to the index number time reversal test. 
17 Griliches and Regev (1995; 185) also have a symmetric treatment of the industry difference in total factor 
productivity (TFP) levels, but firms that exit and enter during the two periods being compared are treated as one 
firm and they make a direct comparison of the change in productivity of all entering and exiting firms on this basis. 
There are problems in interpretation if there happen to be no entering (or exiting) firms in the sample or more 
generally, if there are big differences in the shares of entering and exiting firms. Aw, Chen and Roberts (2001; 73) 
also use this symmetric methodology, except they work with logs of TFP. 
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 Substitution of (30) into (24) gives our final “best” decomposition of the aggregate 
productivity difference  into micro firm effects: 01 Π−Π

(31) 
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The first set of terms on the right hand side of (31), , gives 
the contribution of the productivity growth of each continuing firm to the aggregate productivity 
difference between periods 0 and 1, 
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 Note that the decomposition in (31) is symmetric: if we reverse the role of periods 0 and 
1, then the new aggregate productivity difference will equal the negative of the original 
productivity difference and each individual firm contribution term on the new right hand side 
will equal the negative of the original firm contribution effect. The only decomposition we are 
aware of in the literature that has this time reversal property is due to Balk (2003; 28). His 
decomposition differs from what we propose in that he compares the productivity levels of 
entering and exiting firms to the arithmetic average of the industry productivity levels in periods 
0 and 1 instead of to the average productivity level of continuing firms in period 1 for entering 
firms, and continuing firms in period 0 for exiting firms as we do. 

 We now make a final adjustment to (31) in order to achieve invariance to changes in the 
units of measurement of output and input: we divide both sides of (31) by the base period 
productivity level .0Π 20 With this adjustment, (31) becomes the following TFPG expression: 
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In the following sections, we illustrate the aggregate productivity decomposition (32) using an 
artificial data set. Note that (32) is only valid for an industry that produces a single output and 

 

0
ii

0
i

1
ii

1
i qpqp ∑−∑

0
ii

0
i

1
ii

1
i spsp ∑−∑

0 0

18 “In view of its symmetry it should be the preferred one.” Bert M. Balk (2003; 29). 
19 Diewert (2005) showed that the Bennet decomposition of a difference of the form  into a sum of 
terms reflecting price change and a sum of terms reflecting quantity change can be given an axiomatic justification 
that is analogous to the axiomatic justification for the use of the Fisher (1922) ideal index in index number theory. 
The adaptation of this axiomatic theory to provide a decomposition of  is straightforward. 

120 Instead of dividing by Π , we could divide by the logarithmic mean of Π  and Π . The left hand side of the 
resulting counterpart to (32) reduces to ln( , which is completely symmetric in the data whereas the left 
hand side of (32) is not. We owe this suggestion to Bert Balk.  

)/ 10 ΠΠ
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uses a single input. However, in practice, firms in an industry produce many outputs and use 
many inputs. Hence, before decomposition (32) can be implemented, it is necessary to aggregate 
the many outputs produced and inputs used by each firm into aggregate firm output and input. 
This problem is not straightforward because of firms entering and exiting. In the following 
section, we address this unconventional aggregation problem.21  

 

4. How Can the Inputs and Outputs of Entering and Exiting Firms Be Aggregated? 
 

 The aggregate productivity decomposition defined by (32) above assumes that each firm 
produces only one output and uses only one input. However, firms in the same industry typically 
produce many outputs and utilize many inputs. Thus in order to apply (32), we have to somehow 
aggregate all of the outputs produced by each firm into an aggregate output that is comparable 
across firms and across time periods and aggregate all of the inputs utilized by each firm into an 
aggregate input that is comparable across firms and across time periods. It can be seen that these 
two aggregation problems are in fact multilateral aggregation problems;22 i.e., the output, or 
input, vector of each firm in each period must be compared with the corresponding output, or 
input, vectors of all other firms in the industry over the two time periods involved in the 
aggregate productivity comparison.23 In the following sections of this paper, we will illustrate 
how these firm output and input aggregates can be formed using several methods that have been 
suggested in the multilateral aggregation literature.  

 In order to make the comparison of alternative multilateral methods of aggregation more 
concrete, we will utilize an artificial data set. In the following section, we table our data set and 
calculate the aggregate productivity of the industry using normal index number methods. 

 

5. Industry Productivity Aggregates Using an Artificial Data Set 
 

 We consider an industry over two periods, 0 and 1, that consists of five firms. Each firm f 
produces varying amounts of the same two outputs and uses varying amounts of the same two 
inputs. The output vector of firm f in period t is defined as  and the corresponding 

input vector is defined as  for t = 0,1 and f = 1,2,…,5. Firms 1,2 and 3 are 
continuing firms, firm 4 is present in period 0 but not 1 (and hence is an exiting firm) and firm 5 
is not present in period 0 but is present in period 1 (and hence is an entering firm). Firm 1 is 
medium sized, firm 2 is tiny and firm 3 is very large. The output price vector of firm f in period t 
is p  and the corresponding input price vector is  for t = 0,1 and f = 
1,2,…,5. The firm price and quantity data are listed in table 1. 
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21 As noted earlier, Aw, Chen and Roberts (2001) (2003) also addressed this aggregation problem. 
22 Bilateral index number theory compares the price and quantity vectors pertaining to two situations whereas 
multilateral index number theory attempts to construct price and quantity aggregates when there are more than two 
situations to be compared. See Balk (1996) (2001) and Diewert (1999) for recent surveys of multilateral methods. 
23 Fox (2002) seems to have been the first to notice that aggregating firm outputs and inputs into aggregate outputs 
and inputs should be treated as a multilateral aggregation problem in order to avoid paradoxical results. 
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Table 1.  Firm Price and Quantity Data for Periods 0 and 1 
 Firm 1 Firm 2 Firm 3 Firm 4 Firm 5 

 Output prices 

 t
11p  t

12p  t
21p  t

22p  t
31p  t

32p  t
41p  t

42p  t
51p  t

52p  

t=0 1 1 0.8 1.2 0.9 0.8 1.2 1.1 --- --- 
t=1 15 7 13 8 14 7 --- --- 16 8 

 Output quantities 

 t
11y  t

12y  t
21y  t

22y  t
31y  t

32y  t
41y  t

42y  t
51y  t

52y  

t=0 12 8 1 1 50 50 7 9 --- --- 
t=1 15 8 3 2 60 45 --- --- 16 8 
 Input prices 

 t
11w  t

12w  t
21w  t

22w  t
31w  t

32w  t
41w  t

42w  t
51w  t

52w  

t=0 1 1 0.7 0.8 0.9 1.1 1.2 1 --- --- 
t=1 10 23 13 16 8 26 --- --- 14 20 
 Input quantities 

 t
11x  t

12x  t
21x  t

22x  t
31x  t

32x  t
41x  t

42x  t
51x  t

52x  

t=0 10 10 1 1 45 35 13 12 --- --- 
t=1 8 6 2 2 35 30 --- --- 7 6 

 

 Thus the period 0 output price vector for firm 1 is , the period 1 output price 

vector for firm 1 is  and so on. Note that there has been a great deal of general price 
level change going from period 0 to 1.
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 In the following sections, we will look at various methods for forming output and input 
aggregates for each firm and each period but before we do this, it is useful to compute total 
industry supplies of the two outputs, ]y,y[y t
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 for each period t and total industry demands 

for each of the two inputs x[x tt
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1 ••≡ .25  This information is listed in (33) below: 

(33) ; ; ; ; ]869.0 ,946.0[p0 = ]7.159 ,468.14[p1 = ]1.057 ,968.0[w0 = ]24.318 ,308.9[w1 =
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24 In some applications of the literature on the contribution of entry and exit to aggregate productivity growth, the 
comparison periods are a decade apart and so the period 0 and 1 price levels can differ considerably.  
25 The unit value price of output n in period t is defined as  for n = 1,2 and t = 0,1. The 

unit value price of input n in period t is defined as  for n = 1,2 and t = 0,1.  
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Note that industry output 1 has increased from 70 to 94 but industry output 2 decreased slightly 
from 68 to 63. However, both industry input demands dropped markedly; input 1 decreased from 
69 to 52 and input 2 decreased from 58 to 45. Thus overall, industry productivity improved 
markedly going from period 0 to 1. 

 In order to benchmark the reasonableness of the various productivity decompositions 
given by (32) above for different multilateral methods to be discussed in the following four 
sections, it is useful to use the industry data in (33) to construct normal index number estimates 
of industry total factor productivity growth (TFPG). Following Jorgenson and Griliches (1967) 
(1972),26 TFPG can be defined as a quantity index of output growth, , divided 

by a quantity index of input growth, : 

)q,q,p,p(Q 1010

)x,x,w,w(Q 1010*

(34) TFPG ≡ / . ) x,x,w,w(Q 1010*q,q,p,p(Q 1010 )

F T

]y,y[ t
2f

t
1f

t
f ≡ ]x,x[x t

2f
t
1f

t
f ≡

                                                

 In order to implement (34), one needs to choose an index number formula for Q and  
From an axiomatic perspective, the “best” choices seem to be the Fisher (1922) ideal formula

*Q .
27 

or the Törnqvist (1936) Theil (1967) formula.28 With these two choices of index number formula, 
the resulting TFP growth rates29 for the data listed in (33) are as follows: 

(35) ; . 5553.1TFPG = 5573.1TFPG =

 If we subtract 1 from the above TFPG rates, we obtain industry aggregate counterparts to 
the left hand side of (32), . Thus using the Fisher formula, industry productivity 
improved 55.53% and using the Törnqvist Theil formula, industry productivity improved 55.73%. 
These productivity growth rates should be kept in mind as we look at alternative multilateral 
methods for constructing output and input aggregates for each firm in each period so that we can 
implement the decomposition formula (32). In other words, a multilateral method that leads to an 
aggregate productivity growth rate  that is different from the range of .5553 to .5573 
is probably not very reliable. We now turn to our first multilateral method. 

1]/[ 01 −ΠΠ

/[ 1Π 1]0 −Π

 

6. The Star System for Making Multilateral Comparisons 
 

 Recall that in the previous section, we defined the firm f and period t output and input 
vectors as y  and  for t = 0,1 and f = 1,2,…,5. However, for t = 0 
and f = 5 and also for t = 1 and f = 4, there are no data, since these two firms are entering and 
exiting respectively. Thus there are actually a total of 8 output and input quantity vectors instead 
of 10. It will prove to be more convenient to relabel our data so that there are only 8 distinct 

 

)q,q,p,p(Q 1010
F

2/101001110 ]qpqp/qpqp

26 For recent surveys on how to measure TFPG, see Balk (2003) and Diewert and Nakamura (2003). 
27 See Diewert (1992). The Fisher output quantity index is defined as  ≡ [  
where p⋅q denotes the inner product of the vectors p and q. 
28 See Diewert (2004). Both of these formulae can be given economic justifications as well; see Diewert (1976). 
29 Actually these rates are 1 plus the total factor productivity growth rates. 
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output and input quantity vectors. Thus define the output quantity vectors s 

the previously defined vectors  respectively (these are the nonzero period 0 

output quantity vectors) and define the vectors  as the previously defined 

vectors  respectively (these are the nonzero period 1 output quantity vectors). 

Similarly, define the output price vectors  as the previously defined vectors 

 respectively and define the vectors  as the previously defined 

vectors , respectively. Undertake the same reordering of the data for inputs. 
Now we can apply multilateral methods. In effect, we treat each of the 8 output (or input) price 
and quantity vectors as if they corresponded to the data for a country.
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 The first multilateral method we consider is the star system.31 To implement this, we 
choose a bilateral index number formula, say the Fisher formula , and choose one observation 
as the base (or star), say observation k, and then compute the Fisher quantity aggregate of each 
observation relative to the base k, , ,…, . 
The resulting sequence of 8 numbers can serve as output aggregates for our 8 observations. 

)2 )

 Of course, the problem with the star system aggregates is that it is necessary to 
asymmetrically choose one observation as the “star” and usually, it is not clear which 
observation should be chosen.32 Thus in tables 2 and 3 below, we list each of the 8 output and 
input aggregates respectively, choosing each observation as the base in turn. In order to make 
these output and input aggregates comparable, we divide each set of parities by the parity for the 
first observation. Thus the output and input parities listed in tables 2 and 3 for are the following 
normalized parities for outputs and inputs, for k = 1,…,8, respectively:33 

(36) 1, / , …, / , ) (QF )

)2
F )8 )Q

                                                

p(F

(37) 1, / Q , …, / . 

The input aggregates for observations 1 and 2 are the same regardless of the base. This is due to 
the use of the Fisher formula and the fact the input vectors for observations 1 and 2 are 
proportional.34 If the quantity vectors for the observations being compared are proportional, then 
the Fisher quantity index will reflect this factor of proportionality.35 In general, however, the 
choice of the base observation affects the output and input parities. 

 

1 2x

30 Note that we need to make two multilateral comparisons: one for outputs and one for inputs. 
31 This terminology is due to Kravis (1984; 10). 
32 In our particular example, a case could be made for choosing either observation 3 or 7; i.e., the observations that 
correspond to the very large firm. So, there are two choices and again, it is not clear which of these two is better.  
33 Recall that our final decomposition of the industry productivity change defined by (32) does not depend on our 
rather arbitrary units of measurement for aggregate firm outputs and inputs. 
34 The input vector for firm 1 in period 0 is x  = [10,10] and for firm 2 in period 0 is  = [1,1]. 
35 Similarly, if the two price vectors are proportional, then the Fisher price index between the two observations will 
reflect this factor of proportionality. The Fisher formula seems to be the only superlative formula that is consistent 
with both Hicks’ and Leontief’s aggregation theorems; see Allen and Diewert (1981). 
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Table 2.  Fisher Star Output Aggregates 

Outputs 1y  2y  3y  4y  5y  6y  7y  8y  

Base=1 1 0.102 4.971 0.794 1.170 0.250 5.203 1.225 
Base=2 1 0.102 5.103 0.824 1.199 0.256 5.405 1.247 
Base=3 1 0.099 4.971 0.79 1.216 0.256 5.365 1.270 
Base=4 1 0.098 4.997 0.794 1.243 0.26 5.482 1.296 
Base=5 1 0.100 4.785 0.748 1.17 0.247 5.070 1.232 
Base=6 1 0.100 4.857 0.764 1.184 0.25 5.169 1.243 
Base=7 1 0.098 4.821 0.754 1.201 0.252 5.203 1.261 
Base=8 1 0.100 4.794 0.751 1.163 0.246 5.052 1.225 

Table 3.  Fisher Star Input Aggregates 

 Inputs 1x 2x 3x 4x 5x 6x 7x 8x        

 Base=1 1 0.100 3.975 1.252 0.680 0.200 3.183 0.646 
 Base=2 1 0.100 3.958 1.251 0.677 0.200 3.175 0.644 
 Base=3 1 0.100 3.975 1.243 0.692 0.201 3.281 0.650 
 Base=4 1 0.100 4.005 1.252 0.690 0.200 3.229 0.650 
 Base=5 1 0.100 3.904 1.234 0.680 0.201 3.260 0.644 
 Base=6 1 0.100 3.949 1.250 0.675 0.200 3.170 0.643 
 Base=7 1 0.100 3.856 1.235 0.664 0.201 3.183 0.637 
 Base=8 1 0.100 3.946 1.244 0.682 0.201 3.228 0.646 

 

 Now go along each row of table 2 and divide by the corresponding input aggregate listed 
in the corresponding row of table 3. This determines the productivity level of each observation. 
These star productivity levels are listed in table 4. There can be considerable variation in the 
productivity levels for each observation, depending on which observation is chosen as the base in 
the star system comparison. Thus if we choose the base to equal 1 (firm 1 in period 0), the 
productivity level of firm 2 in period 0 is 1.021 whereas if we choose the base to equal 7 (firm 3 
in period 1), the productivity level of firm 2 in period 0 is 0.980: a 4% variation in 
productivity.36  

 Aggregate output prices that correspond to the 8 output aggregates that are listed in table 
2 for each choice of base observation can be obtained by dividing the value of output produced 
by each firm in each period by the corresponding output listed for that observation in table 2. 
Similarly, aggregate input prices that correspond to the 8 input aggregates that are listed in table 
3 for each choice of base observation can be obtained by dividing the value of inputs used by 
each firm in each period by the corresponding input listed for that observation in table 3. Once 
these aggregate output and input prices have been constructed, then we are in a position to apply 
the decomposition analysis that was discussed in sections 2 and 3 above. 

                                                 
36 Ideally, we would like all the entries in each column of table 4 to be identical so that the productivity levels of 
each firm observation do not depend on the choice of index number base. 
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Table 4.  Fisher Star Productivity Levels 

 Prod Levels 11 x/y  22 x/y  33 x/y  44 x/y  55 x/y  66 x/y  77 x/y  88 x/y  

 Base=1 1 1.021 1.251 0.634 1.721 1.250 1.635 1.897 
 Base=2 1 1.021 1.289 0.659 1.771 1.279 1.703 1.937 
 Base=3 1 0.990 1.251 0.636 1.756 1.271 1.635 1.953 
 Base=4 1 0.982 1.247 0.634 1.802 1.296 1.698 1.993 
 Base=5 1 0.992 1.226 0.606 1.721 1.226 1.555 1.914 
 Base=6 1 0.997 1.230 0.612 1.754 1.250 1.630 1.933 
 Base=7 1 0.980 1.250 0.611 1.809 1.253 1.635 1.981 
 Base=8 1 1 1.215 0.604 1.706 1.227 1.565 1.897 

 

 We define the various terms that occur on the right and left hand sides of the aggregate 
productivity growth decomposition (32) as follows: 

(38)      (aggregate industry productivity growth); 1]/[ 01 −ΠΠ≡Γ

(39)  00110
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       (the direct productivity growth contribution of continuing firms); 

(40) (continuing firm reallocation contribution); 1
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11      (the contribution of entering firms to TFPG); 

(42)      (the contribution of exiting firms to TFPG). 

 The terms defined by (38)-(42) are listed in table 5 for each choice of base; i.e., we use 
the data in tables 2-4 above (along with the corresponding prices) in order to construct an 
aggregate industry productivity growth decomposition for each of the 8 bases.   

 
Table 5.  Aggregate Productivity Growth Decompositions 

for Each Choice of Base 
Γ   CDΓ  CRΓ  NΓ  XΓ  

 Base=1 0.5356 0.4054 -0.0061 0.0337 0.1025 
 Base=2 0.5496 0.4247 -0.0062 0.0300 0.1010 
 Base=3 0.5471 0.4128 -0.0063 0.0391 0.1015 
 Base=4 0.6025 0.4704 -0.0071 0.0374 0.1017 
 Base=5 0.5174 0.3739 -0.0066 0.0440 0.1061 
 Base=6 0.5684 0.4311 -0.0070 0.0387 0.1056 
 Base=7 0.5678 0.4249 -0.0075 0.0425 0.1080 
 Base=8 0.5296 0.3887 -0.0065 0.0418 0.1056 

 54



W. Erwin Diewert and Kevin J. Fox 

 The choice of base matters. Aggregate productivity growth using observation 5 (data of 
firm 1 in period 1) as the base leads to estimating industry productivity growth as 51.74% 
whereas if observation 4 (data of the disappearing firm 4 in period 0) is used as the base, then 
industry productivity growth is estimated as much larger at 60.25%.37 In the last 4 columns in 
table 5, the direct productivity growth of continuing firms accounts for most of the industry 
productivity growth (between 37.39% and 47.04%), the contribution of the exiting firm is 
between 10% and 11%, the contribution of the entering firm is between 3.0% and 4.4%, and the 
reallocation of resources between continuing firms sums to a negligible contribution. 

 Now, define the three continuing firm terms on the right hand side of (39) as 1CDΓ , 
 and : the direct productivity growth contributions of continuing firms 1, 2 and 3 

respectively. Define the three terms on the right hand side of (40) as 
2CDΓ 3CDΓ

1CRΓ ,  and : the 
reallocation contributions of continuing firms 1, 2 and 3 respectively. These terms are listed in 
table 6. We see that the largest contribution to industry TFP growth is the direct TFP growth of 
firm 3 (the large firm); it contributes between 24.29% (the index base 5 estimate) and 32.61% 
(the index base 4 estimate). The next largest contribution comes from the medium sized firm 1. 
The other contribution terms are all less than 5%. 

2CRΓ 3CRΓ

 Some form of averaging of the star decompositions is called for. Our next method takes 
the geometric averages of the output and input aggregates in tables 2 and 3 and implements (32). 

 

Table 6.  Direct and Reallocation Contributions to Aggregate Productivity Growth 
for Each Continuing Firm and for Each Choice of Base 

1CDΓ 2CD Γ   3CDΓ  1CRΓ  2CRΓ  3CRΓ  

 Base=1 0.1210 0.0073 0.2771 -0.0372 0.0309 0.0002 
 Base=2 0.1262 0.0080 0.2905 -0.0381 0.0305 0.0014 
 Base=3 0.1263 0.0088 0.2777 -0.0396 0.0296 0.0037 
 Base=4 0.1345 0.0099 0.3261 -0.0367 0.0305 -0.0009 
 Base=5 0.1234 0.0076 0.2429 -0.0456 0.0298 0.0093 
 Base=6 0.1289 0.0082 0.2939 -0.0403 0.0312 0.0021 
 Base=7 0.1372 0.0089 0.2788 -0.0492 0.0304 0.0112 
 Base=8 0.1216 0.0074 0.2597 -0.0414 0.0305 0.0044 

 

7. The GEKS Method for Making Multilateral Comparisons 
 

 The GEKS method dates back to Gini (1931), Eltetö and Köves (1964) and Szulc (1964). 
As already indicated, this method takes the geometric mean of the star output and input 

                                                 
37 The choice of observations 2, 3, 6 and 7 as the index number base gives rise to industry TFP growth rates that are 
closest to our target rates of around 55.53% and 55.73%; recall (35) above. Note that the average of the industry 
productivity growth rates for the large firm observations (3 and 7) is 55.74%. 
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parities.38 The GEKS relative output and input aggregates are listed in table 7. Once the output 
and input aggregates have been constructed, then the GEKS productivity levels can be 
constructed by dividing each output aggregate by the corresponding input aggregate, as in table 7. 

 
Table 7.  GEKS Output and Input Aggregates and Productivity Levels 

Outputs 1 2 4y  y  3y  y  5y  6y  7y  8y  

 1 0.100 4.911 0.777 1.193 0.252 5.242 1.250 

Inputs 1 2 4x  x  3x  x  5x  6x  7x  8x  

 1 0.100 3.946 1.245 0.680 0.201 3.213 0.645 

Prod Levels 11 22 44x/y  x/y  33 x/y  x/y  55 x/y  66 x/y  77 x/y  88 x/y  

 1 0.998 1.245 0.624 1.755 1.256 1.631 1.938 
 

 Aggregate output prices that correspond to the 8 output aggregates that are listed in table 
7 can be obtained by dividing the value of output produced by each firm in each period by the 
corresponding output listed for that observation in table 7. Similarly, aggregate input prices that 
correspond to the 8 input aggregates that are listed in table 7 can be obtained by dividing the 
value of inputs used by each firm in each period by the corresponding input listed for that 
observation in table 7. Once these aggregate output and input prices have been constructed, then 
we can repeat the decomposition analysis that was implemented in the previous section. 

 The productivity growth decomposition terms defined by (38)-(42) are listed in table 8 
below. We also list the direct and reallocation contribution terms defined by the individual terms 
in (39) and (40) for each continuing firm in table 8.  

 
Table 8.  The GEKS Aggregate Productivity Growth Decomposition 

Γ  CDΓ  CRΓ  NΓ  XΓ   
0.5521 0.4162 -0.0066 0.0384 0.1040  

1CDΓ 2CDΓ 3CD  Γ  1CRΓ  2CRΓ  3CRΓ  

0.1274 0.0083 0.2806 -0.041 0.0304 0.0039 
 

 From Table 8, the GEKS aggregate productivity growth Γ is 55.21%, which is reasonably 
close to our target rates of around 55.53% to 55.73%; recall (35) above. Thus we conclude that 
the GEKS method for constructing relative output and input levels for each firm in each period is 
satisfactory, at least for our particular numerical example. 

 One problem with the (unweighted) GEKS method is that each firm observation is given 
equal weighting. For example, for small firms, their star parities could be quite different than for 
large firms. Hence it may not be wise to give these small firms equal weighting in the 
construction of the output and input aggregates. In the following section, we look at a 
multilateral method that gives large firms more weight. 

                                                 
38 The GEKS aggregates can be defined in a number of equivalent ways; see for example, Diewert (1999; 31-37). 
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8. The Own Share Method for Making Multilateral Comparisons 
 

 Recall our discussion in section 6 when we described how the star output aggregates 
could be constructed using observation k as the base. We noted that the sequence of 8 numbers, 

, , … , , could serve as comparable 
output aggregates for our 8 observations. Hence, using observation k as the base, the share of 
total output of observation k is: 
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The last equation in (43) follows from the fact that the Fisher ideal quantity index satisfies an 
identity test and hence  equals 1. Thus, using the metric of observation k to 

make the index number comparisons, the share of observation k in “world” output, 

)y,y,p,p(Q kkkk
F

*
ks , is defined 

by (43) for k = 1,2, …, 8. Each observation’s own share of “world” output is defined by (43). Put 
another way, if we look at the entries in table 2 above, the numbers listed in the Base=1 row 
determine the share of observation 1 in total output over the two periods, ; the numbers listed 

in the Base=2 row determine the share of observation 2 in total output over the two periods,  
…; and the numbers listed in the Base=8 row determine the share of observation 8 in total output 
over the two periods, s . Thus each row in table 2 determines only one share of “world” output 
and so the rows that correspond to smaller shares of world output get a smaller influence in the 
overall multilateral comparison. This means that the own share system does weight the 
individual star parities according to their economic importance as opposed to the more 
democratic GEKS method where each star parity has the same importance. 

*
1s

*
2s ;

*
8

* Unfortunately, the own shares ks  defined by (43) do not sum up to unity and so we 
renormalize these “shares” to sum up to unity as follows:39 

(44) ,     k = 1,…,8.  ]s/[sy 8 ** ∑≡ 1jkk = j

The output aggregates ky  defined by (44) are the own share output aggregates.40 The same 
procedure can be used to define own share input aggregates. The own share relative output and 
input aggregates as well as the output to input productivity ratios are listed in table 9. Once these 
aggregates have been constructed, then the own share productivity levels can be constructed by 
dividing each output aggregate by the corresponding input aggregate. The resulting 8 
productivity levels are listed in the bottom row of table 9.41 

                                                 
*
k ky *

k
39 In our empirical example, the s  summed up to 0.99996 so that the differences between the  and the s  were 
negligible. The corresponding input shares summed up to 0.99997. 
40 The own share system was proposed by Diewert (1988; 69). For axiomatic properties see Diewert (1999; 37-39). 
41 Note that the units of measurement for the output and input aggregates are quite different in Tables 7 and 9. This 
illustrates the importance of providing a productivity growth decomposition that is independent of the units. 
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Table 9.  Own Share Output and Input Aggregates and Productivity Levels 

Outputs 1y  2y  3y  4y  5y  6y  7y  8y  

 0.068 0.007 0.332 0.052 0.082 0.017 0.357 0.085 

Inputs 1x  2x  3x  4x  5x  6x  7x  8x  

 0.091 0.009 0.357 0.113 0.062 0.018 0.293 0.058 

Prod Levels 11 x/y  22 x/y  33 x/y  44 x/y  55 x/y  66 x/y  77 x/y  88 x/y  

 0.75 0.742 0.931 0.465 1.322 0.943 1.218 1.462 

 

 Aggregate output prices that correspond to the 8 output aggregates listed in table 9 can be 
obtained by dividing the value of output produced by each firm in each period by the 
corresponding output listed for that observation in table 9. Similarly, aggregate input prices that 
correspond to the 8 input aggregates that are listed in table 9 can be obtained by dividing the 
value of inputs used by each firm in each period by the corresponding input listed for that 
observation in table 9. Once these aggregate output and input prices have been constructed, then 
we can repeat the decomposition analysis that was implemented in the previous sections. 

 The productivity growth decomposition terms defined by (38)-(42) are listed in table 10. 
Here we also list the direct and reallocation contribution terms, defined by the individual terms in 
(39) and (40) for each continuing firm. From table 10, the own share aggregate productivity 
growth Γ is 55.45%, which is close to our target rate of 55.53% to 55.73%; recall (35) above.42 
Thus we conclude that the own share method is very satisfactory, at least for our example. 

 
Table 10.  The Own Share Aggregate Productivity Growth Decomposition  

Γ Γ CD  CRΓ  NΓ  XΓ   
0.5545 0.4165 -0.0067 0.0403 0.1044  

1CDΓ 2CDΓ 3CD  Γ  1CRΓ  2CRΓ  3CRΓ  

0.1290 0.0086 0.2789 -0.0423 0.0302 0.0054 

 

9. Hill’s Method for Making Multilateral Comparisons 
 

 Another method for finding output and input aggregates is based on the following idea: 
observations which are most similar in their price structures (i.e., their output prices are closest to 
being proportional across items) should be linked using a bilateral index number formula first. 
Then the observation outside of the first two observations that has the most similar relative prices 
to the first two observations should be added, etc. This basic idea has been successfully exploited 
by Robert Hill at higher levels of aggregation43 with complete price and expenditure data. 

                                                 
42 The own share decomposition is very close to the GEKS decomposition in table 8. Diewert (1988; 69) (1999; 38) 
showed that the own share aggregates and the GEKS aggregates will usually approximate each other closely. 
43 See Robert Hill (1999a) (1999b) (2001) (2004). The basic idea of spatially linking countries with the most similar 
price and quantity structures dates back to Fisher (1922; 271-272). We apply the idea here to firm observations. 
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 To apply this idea, it is necessary to choose a measure of the degree of dissimilarity for 
the (relative) output prices corresponding to any two observations. There are many measures of 
relative price dissimilarity that could be chosen.44 Our pick is the following one that measures 
the degree of dissimilarity between the output prices of observations j and k ( ): 8,,1k,j K=

(45) ,  2j
2
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F
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45 Thus 

instead of comparing the price of output 1 for observation k, , with the price of output 1 for 

observation j, , we multiply  by the Fisher price index for observation k relative to j, 

, which inflates the base prices j by a general inflation factor that makes the 
prices of k comparable to the inflated j prices. In particular, if the j prices are equal to λ times the 
k prices, so that , then the Fisher index that compares the j prices to the k prices will 

pick up this proportionality factor so that . In this case, the dissimilarity 

measure defined by (45) will be zero; i.e., we will have . It can also be verified that 
the dissimilarity measure defined by (45) satisfies the following symmetry property: 
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Table 11 lists the Fisher output price indexes  between pairs of observations.)q,q,p,p(P jkjk
F

46 
 

Table 11.  Fisher Output Price Indexes Between Each Pair of Observations 
Base k=1 1 0.980 0.855 1.152 12.007 11.000 11.100 13.064 
Base k=2 1.021 1 0.850 1.133 11.963 10.969 10.904 13.093 
Base k=3 1.170 1.176 1 1.354 13.518 12.570 12.591 14.738 
Base k=4 0.868 0.883 0.738 1 9.811 9.190 9.145 10.720 
Base k=5 0.083 0.084 0.074 0.102 1 0.927 0.949 1.081 
Base k=6 0.091 0.091 0.080 0.109 1.079 1 1.016 1.170 
Base k=7 0.090 0.092 0.079 0.109 1.054 0.985 1 1.143 
Base k=8 0.077 0.076 0.068 0.093 0.925 0.855 0.875 1 
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44 See Diewert (2009) for an axiomatic treatment of the topic. 
45 This dissimilarity measure is essentially equal to that used by Allen and Diewert (1981) except that they used the 
Törnqvist index P  to adjust for general price level change in place of the Fisher index 

 in (45). Diewert (2009) defined a weighted counterpart to (45) which he called the weighted log 
quadratic index of relative price dissimilarity.  
46 The Fisher (1922) output price index is defined as P . Row k of table 11 

is equal to , , … , P .  
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Note that Fisher output price levels for firms present in period 1 are 9.145 to 14.738 times the 
levels of prices for firms present in period 0 (see the entries in the northeast corner of Table 11). 
Table 12 lists the dissimilarity measures  defined by (45): a symmetric matrix. )p,p(D kj

 

Table 12.  Log Quadratic Output Price Dissimilarity Measures 
0 0.08220 0.00705 0.00380 0.34067 0.12932 0.26641 0.28161 

0.08220 0 0.13759 0.12365 0.71777 0.40242 0.61510 0.63505 
0.00705 0.13759 0 0.00047 0.23304 0.07164 0.17715 0.18557 
0.00380 0.12365 0.00047 0 0.24608 0.08182 0.19079 0.19811 
0.34067 0.71777 0.23304 0.24608 0 0.04837 0.00305 0.00324 
0.12932 0.40242 0.07164 0.08182 0.04837 0 0.02565 0.02722 
0.26641 0.61510 0.17715 0.19079 0.00305 0.02565 0 0 
0.28161 0.63505 0.18557 0.19811 0.00324 0.02722 0 0 

 

 Note that the dissimilarity measure between observations 7 and 8 is 0; this is due to the 
fact that the output price vectors for these two observations are proportional. 

 Inspection of table 12 shows that the lowest dissimilarity measures that link the data are: 
7-8; 7-5; 7-6; 3-4; 1-4; 1-2 and 3-5. This set of links will enable us to construct output aggregates, 

, which are listed in table 15 below. The same strategy that was used to construct Hill 
output aggregates can be used to construct input aggregates. The input counterparts to tables 11 
and 12 are tables 13 and 14. 

81 y,,y K

 

Table 13.  Fisher Input Price Indexes Between Each Pair of Observations 
Base k=1 1 0.750 0.994 1.102 16.029 14.500 16.650 16.884 
Base k=2 1.333 1 1.331 1.471 21.474 19.333 22.257 22.570 
Base k=3 1.006 0.752 1 1.117 15.842 14.497 16.254 16.867 
Base k=4 0.907 0.680 0.895 1 14.338 13.131 14.896 15.214 
Base k=5 0.062 0.047 0.063 0.070 1 0.898 1.014 1.056 
Base k=6 0.069 0.052 0.069 0.076 1.114 1 1.153 1.169 
Base k=7 0.060 0.045 0.062 0.067 0.986 0.867 1 1.028 
Base k=8 0.059 0.044 0.059 0.066 0.947 0.855 0.972 1 

 

Fisher input price levels for firms present in period 1 are 13.131 to 22.570 times the levels of 
prices for firms present in period 0 meaning that input prices grew faster than output prices. 

 Inspection of table 14 shows that the lowest dissimilarity measures that link the data are: 
3-6; 2-3; 1-2; 1-4; 6-8; 5-7 and 5-8. This set of links will enable us to construct Hill input 
aggregates, , which are listed in table 15. The eight Hill productivity levels, 

, are also listed in table 15. 
81 x,,x K

8811 x/y,,x/y K
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Table 14.  Log Quadratic Input Price Dissimilarity Measures 
0 0.00893 0.02014 0.01669 0.35300 0.02161 0.73589 0.06377 

0.00893 0 0.00225 0.04993 0.25127 0.00277 0.58761 0.02507 
0.02014 0.00225 0 0.07378 0.20284 0.00002 0.50447 0.01219 
0.01669 0.04993 0.07378 0 0.51780 0.07605 0.95664 0.14529 
0.35300 0.25127 0.20284 0.5178 0 0.20208 0.06805 0.11723 
0.02161 0.00277 0.00002 0.07605 0.20208 0 0.51192 0.01122 
0.73589 0.58761 0.50447 0.95664 0.06805 0.51192 0 0.36697 
0.06377 0.02507 0.01219 0.14529 0.11723 0.01122 0.36697 0 

Table 15.  Hill Output and Input Aggregates and Productivity Levels 

Outputs 1y 2y 3 4y 5 6 7 8  y   y  y  y  y  

 1 0.102 4.997 0.794 1.222 0.256 5.295 1.284 

Inputs 1x 2x 3 4x 5 6 7 8  x   x  x  x  x  

 1 0.100 3.958 1.252 0.681 0.200 3.263 0.644 

Prod Levels 11 x/y 22 x/y 33 44 x/y 55 66 77 88  x/y   x/y  x/y  x/y  x/y  

 1 1.021 1.262 0.634 1.795 1.277 1.623 1.992 

 

 Comparing the entries in table 15 with the corresponding GEKS entries in table 7, it can 
be seen that with the exceptions of observations 1 and 7, the Hill productivity levels tend to be 
greater than the corresponding GEKS productivity levels. 

 Aggregate output prices that correspond to the 8 output aggregates that are listed in table 
15 can be obtained by dividing the value of output produced by each firm in each period by the 
corresponding output listed for that observation in table 15. Similarly, aggregate input prices that 
correspond to the 8 input aggregates that are listed in table 15 can be obtained by dividing the 
value of inputs used by each firm in each period by the corresponding input listed for that 
observation in table 15. Once these aggregate output and input prices have been constructed, then 
we can repeat the decomposition analysis that was implemented in the previous sections. 

 The productivity growth decomposition terms defined by (38)-(41) are listed in table 16 
below. We also list the direct and reallocation contribution terms defined by the individual terms 
in (39) and (40) for each continuing firm in table 16.  

 

Table 16.  The Hill Aggregate Productivity Growth Decomposition  
Γ CDΓ CR  Γ  NΓ  XΓ   

0.5401 0.3986 -0.0063 0.044 0.1038  

1CDΓ 2CDΓ 3CD  Γ  1CRΓ  2CRΓ  3CRΓ  

0.1318 0.008 0.2588 -0.0428 0.0301 0.0064 
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 From table 16, the Hill aggregate productivity growth Γ is 54.01%, which is not as close 
to our target rates of around 55.53% to 55.73% compared to the GEKS and own share 
decompositions of productivity growth. Thus for this particular numerical example, we conclude 
that the Hill method for constructing relative output and input levels for each firm in each period 
is satisfactory but not as good at the GEKS and own share estimates. 

 

10. An Approximate Method for Constructing Output and Input Aggregates 
 

 The multilateral methods for constructing output and input aggregates that have been 
discussed in the previous 3 sections are theoretically satisfactory methods. However, they suffer 
from two major disadvantages: 

• They may not be practical for very large data sets; i.e., they are computation intensive. 

• Detailed price and quantity information may not be available for each firm; i.e., only 
information on output revenues and input costs by unit may be available. 

 Thus in the present section, we assume that we have only information on firm revenues 
and costs by period and that we also have aggregate intertemporal price indexes for both outputs 
and inputs available. In particular, we assume that we have the aggregate Fisher output and input 
price indexes at our disposal. Using the aggregate period 0 and 1 information on the industry’s 
two outputs and inputs listed in section 5 above,47 the Fisher and Törnqvist output price index 
numbers for period 1 are 12.283 and 12.239 respectively48 while the Fisher and Törnqvist input 
price index numbers for period 1 are 16.035 and 15.998 respectively. We will use the Fisher 
industry price index values for outputs and inputs for period 1, PF(p0,p1,q0,q1) and 
PF*(w0,w1,x0,x1) respectively, to deflate all of the period 1 firm revenues and costs in order to 
make them at least approximately comparable to the period 0 firm revenues and costs. Recalling 
the notation that was introduced at the beginning of section 6, for observations 1-4, we define 
firm aggregate outputs and inputs as firm revenues and costs respectively; i.e., define the output 
and input aggregates,  and  respectively, as follows: 4y 21 x,x321 ,y,y,y 43 x,x,

kk(47) k ypy ≡ kk; k = 1,2,3,4 ;  k xwx ≡

5 x,

)q,q,p,p(P/ypy 1010
F

kk

; k = 1,2,3,4 .    

 For observations 5-8 (the period 1 observations), we define firm aggregate outputs and 
inputs as Fisher index deflated firm revenues and costs respectively; i.e., define the output and 
input aggregates,  and  respectively, as follows: 8765 y,y,y,y x 876 x,x,

(48) ≡ )x,x,w,w(P/xwx 1010*
F

kk and k k ≡

                                                

 for k=5,6,7,8. 

 Obviously, the output and input aggregates defined by (47) and (48) are not going to be 
as accurate as the output and input aggregates defined in the previous 3 sections. However, it is 
still of some interest to see how close these approximate aggregates are to the previously defined 
multilateral aggregates. The approximate output and input aggregates are listed in table 17 along 
with the corresponding plant productivity levels. 

 
47 See the listing of the industry data in (33) above. 
48 The corresponding index values are 1 in period 0. 
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Table 17.  Approximate Output and Input Aggregates and Productivity Levels 

Outputs 1y  2y  3y  4y  5y  6y  7y  8y  

 20.000 2.000 85.000 18.300 22.877 4.478 94.031 26.052 

Inputs 1x  2x  3x  4x  5x  6x  7x  8x  

 20.000 1.500 79.000 27.600 13.595 3.617 66.105 13.595 

Prod Levels 11 x/y  22 x/y  33 x/y  44 x/y  55 x/y  66 x/y  77 x/y  88 x/y  

 1 1.333 1.076 0.663 1.683 1.238 1.422 1.916 
GEKS 1 0.998 1.245 0.624 1.755 1.256 1.631 1.938 

 

 In order to make the units of measurement for outputs and inputs listed in table 17 
comparable to the units listed in the corresponding GEKS table 7, it is necessary to divide the 
outputs row by 20 and the inputs row by 20. The productivity levels row in table 17 is 
comparable to the corresponding row in table 7. For easy reference, the GEKS productivity 
levels are listed as the last row in table 17. It can be seen that there are some rather substantial 
differences in the GEKS productivity levels compared to the corresponding approximate ones. 

 As usual, aggregate output prices that correspond to the 8 output aggregates listed in table 
17 can be obtained by dividing the value of output produced by each firm in each period by the 
corresponding output listed for that observation in table 17. Similarly, aggregate input prices that 
correspond to the 8 input aggregates listed in table 17 can be obtained by dividing the value of 
inputs used by each firm in each period by the corresponding input listed for that observation in 
table 17. Once these aggregate output and input prices have been constructed, then we can repeat 
the decomposition analysis that was implemented in the previous sections. 

 The productivity growth decomposition terms defined by (38)-(41) are listed in table 18 
below. We also list the direct and reallocation contribution terms defined by the individual terms 
in (39) and (40) for each continuing firm in table 18. For ease of comparison, we list the 
decompositions for the GEKS, own share and Hill methods in table 18 as well.  
 

Table 18.  The Approximate Method Aggregate Productivity Growth Decomposition  
Γ CD Γ   CRΓ  NΓ  XΓ   

 Approx Method 0.5553 0.4033 -0.0023 0.0659 0.0885  
 GEKS 0.5521 0.4162 -0.0066 0.0384 0.104  
 Own Share 0.5545 0.4165 -0.0067 0.0403 0.1044  
 Hill 0.5401 0.3986 -0.0063 0.044 0.1038  

 1CDΓ 2CD Γ  3CDΓ  1CRΓ  2CRΓ  3CRΓ  

 Approx Method 0.1264 -0.0028 0.2798 -0.0491 0.0374 0.0094 
 GEKS 0.1274 0.0083 0.2806 -0.041 0.0304 0.0039 
 Own Share 0.129 0.0086 0.2789 -0.0423 0.0302 0.0054 
 Hill 0.1318 0.008 0.2588 -0.0428 0.0301 0.0064 
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 From table 18, the approximate method aggregate productivity growth  is 55.53%, 
which is exactly equal to our target Fisher rate of 55.53%. This exact equality is not a statistical 
fluke but is a consequence of the fact that we have used the industry Fisher price indexes to 
deflate the period 1 value data. Thus our approximate method works extremely well in terms of 
replicating the industry’s aggregate productivity growth. However, the other terms on the right 
hand side of (32) are not always well predicted by the approximate method. In particular, it leads 
to a contribution of entry term  equal to 6.59% whereas the other methods lead to 
contribution terms in the 3.84 to 4.40% range. Also, the approximate method leads to a 
contribution of exit term  equal to 8.85% whereas the other methods lead to contribution 
terms in the 10.38 to 10.44% range. However, considering the simplicity of the approximate 
method, we conclude that at least for this example, this method was suitable for constructing 
output and input aggregates to be used in a productivity growth decomposition such as (32), 
though, of course, it was not as good as the GEKS and own share methods. 

Γ

NΓ

XΓ

 

11. Conclusion  
 

 This paper proposes a new formula (32) for decomposing industry productivity growth 
into terms that reflect the productivity growth of individual production units that operate in both 
the base and comparison periods, and also the reallocation of resources among continuing firms 
from lower productivity to higher productivity units, as well as entry and exit contribution terms. 
Unfortunately, this formula and the other formulae presented in the literature are derived under 
the assumption that each production unit produces a single homogeneous output and uses a 
single homogeneous input. Most of the paper (sections 4-10) is concerned with the problems 
involved in aggregating many outputs and many inputs into output and input aggregates. In order 
to accomplish this aggregation, we suggested the use of multilateral methods and we 
implemented four multilateral methods on a test data set that is described in section 5 above. For 
our test data set, we found that the own share method worked best but the GEKS method was 
very close. The Hill methods and an approximate method that used value aggregates in the base 
period and deflated value aggregates in the comparison period also worked reasonably well for 
our data set. The fact that the approximate method worked so well is very encouraging for 
empirical work in this area, since variants of it are what have been used in empirical applications 
of productivity decompositions that involve entry and exit.49  
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Chapter 4 
ON THE TANG AND WANG DECOMPOSITION OF LABOUR 

PRODUCTIVITY GROWTH INTO SECTORAL EFFECTS 
W. Erwin Diewert1 

 

1. Introduction 
 

 Jianmin Tang and Weimin Wang (2004; 426) provide an interesting decomposition for 
economy wide labour productivity into sectoral contribution effects. However, the interpretation 
of the individual terms in their decomposition is not completely clear and so in section 2, we 
rework their methodology in order to provide a more transparent and simple decomposition. In 
section 3, we pursue a somewhat different approach due to Gini (1937) which is a generalization 
of the Fisher (1922) ideal index number methodology to aggregates that are products of three 
factors rather than two. Overall growth in labour productivity is due to three factors: (i) growth 
in the labour productivity of individual sectors; (ii) changes in real output prices of the sectors 
and (iii) changes in the allocation of labour across sectors.  

 

2. The Tang and Wang Methodology Reworked 
 

 Let there be N sectors or industries in the economy. Suppose that for period 1,0t =  and 

for , the output (or real value added) of sector n is  with corresponding price 

and labour input . We assume that the labour inputs can be added across sectors and that the 
economy wide labour input in period t is Lt defined as 

N,,1n K= t
nY t

nP  
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nL

(1) ;      ∑ =≡ N
1n

t
n

t LL 1,0t = . 

Labour productivity for industry n in period t, , is defined as industry n output divided by 
industry n labour input; i.e., 

t
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W. Erwin Diewert 

 It is not entirely clear how aggregate labour productivity should be defined since the 
outputs produced by the various industries are measured in heterogeneous, noncomparable units. 
We need to weight these heterogeneous outputs by their prices, sum the resulting period t values 
and then divide by a general output price index, say  for period t, in order to make the 
economy wide nominal value of aggregate output comparable in real terms across periods. Thus 
with an appropriate choice for the aggregate output price index , the period t economy wide 
labour productivity, , is defined as follows:

tP

tP
tX 2 

(3) ;     ttt
n

N
1n

t
n

t LP/YPX ∑ =≡ 1,0t = . 

 We can simplify the expression for aggregate labour productivity in period 0, , by a 
judicious choice of units of measurement for each industry output. We will choose to measure 
each industry’s output in terms of the number of units of the industry’s output that can be 
purchased by one dollar in period 0. The effect of these choices for the units of measurement is 
to set the price of each industry’s output equal to unity in period 0; i.e., we have:

0X

3 

(4) ;       1P0
n ≡ N,,1n K= . 

We will also normalize the economy wide price index to equal unity in period 0; i.e., we have:4 

(5) . 1P0 ≡

Using definition (3) for t = 0 along with the normalizations (4) and (5), it can be seen that the 
period 0 economy wide labour productivity  is equal to the following expression: 0X

(6)  ∑ == N
1n

00
n

0 L/YX

            using definitions (2) 00
n

N
1n

0
n L/LX∑ ==

       ∑ == N
1n

0
n

0
n,L Xs ,

where the share of labour used by industry n in period t, , is defined in the obvious way as: t
Lns

(7) ;       tt
n

t
n,L L/Ls ≡ N,,1n K= ; . 1,0t =

Thus aggregate labour productivity for the economy in period 0 is a (labour) share weighted 
average of the sectoral labour productivities, which is a sensible result.  

 Using definition (3) for  and the definitions (7) for 1t = 1t =  leads to the following 
expression for aggregate labour productivity in period 1:5 

                                                 

1
n

1

t
N,,

t
1 PP K

t
N,,

t
1 YY K 1,0t

2 This follows the methodological approach taken by Tang and Wang (2004; 425). 
3 In reality, each industry will be producing many products and so P  will be say the Fisher (1922) price index for 
all of the industry n products going from period 0 to 1.  
4 Typically, P  will be the Fisher price index going from period 0 to 1 where the period 0 and 1 price and quantity 
vectors are the period t industry price and quantity vectors, [ ] and [ ] respectively for = . 
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(8)  111
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where the period t industry n real output price, , is defined as the industry t output price,  

divided by the aggregate output price index for t, ; i.e., we have the following definitions:

t
np

tP

t
nP ,

6 

(9) ;       tt
n

t
n P/Pp ≡ N,,1n K= ; . 1,0t =

Thus economy wide labour productivity in period 1, , is not equal to the (labour) share 

weighted average of the sectoral labour productivities, . Instead,  is equal to 

, so that the labour productivity of, say, sector n which has experienced a real 

output price increase (so that  is greater than one) gets a weight that is greater than its labour 

share weighted contribution, ; in particular, sector n gets the weight . 

1X

∑ 1
n

1
n,L

N
1n Xs=

1X

1
nnX

1
n

1
n,L

N
1n

1
n Xsp∑ =

1
np

1
n,Ls 1

nX 1
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 Up to this point, our analysis follows that of Tang and Wang (2004; 425-426) except that 
Tang and Wang did not bother with the normalizations (4) and (5). However, in what follows, 
we hopefully provide some additional value added to their analysis. 

 First, we define the value added or output share of industry n in period 0, , as: 0
n,Ys

(10) ;     0
i

N
1i

0
i

0
n

0
n

0
n,Y YP/YPs ∑ =≡ N,,1n K=  

               using the normalizations (4). ∑ == N
1i

0
i

0
n Y/Y

Note that the product of the sector n labour share in period 0, , with the sector n labour 

productivity in period 0, , equals the following expression: 

0
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Using (11), we can establish the following equalities: 
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5 Equation (8) corresponds to equation (2) in Tang and Wang (2004; 426). 
6 These definitions follow those of Tang and Wang (2004; 425). 
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0
n,Ys            =      using (10). 

omy wide 
labour productivity. Using expressions (6) and (8), we have: 

             

  using (12) 

hus o nomy wide labour productivity growth,  i ee the term 

plus) the rate of growth in the labour productivity of industry n; 

zed by 

which is (one plus) the rate of growth in the real output 
price of industry n. 

Thus in ibution of i

 decomp

An Alternative Decomposition due to Gini 

Rewrite (13), making use of (4), (5) and (9) as follows: 

4) 

 Now we are ready to develop an expression for the rate of growth of econ

(13) 0
n

N
1n

0
n,L

1
n

N
1n

1
n,L

1
n

01 Xs/XspX/X ∑∑ ===  

 ∑∑ === N
1n

0
n

0
n,L

0
n

0
n,L

0
n

1
n

N
1n

0
Ln

1
n,L

1
n Xs/Xs]X/X[]s/s[p  

              0
n,Y

0
n

1
n

N
1n

0
n,L

1
n,L

1
n s]X/X[]s/s[p∑ ==

              0
n,Ys]   using (4) and (5). 0

n
1
n

0
n,L

1
n,L

N
1n

0
n

1
n X/X[]s/s[]p/p[∑ ==

T verall eco 1 s an output share (s0X/X ,
0

three
n,Ys  in (13) above) weighted average of three growth factors associated with industry n. The 

 growth factors are: 

1.  0
n

1
n X/X , (one 

2.  n, , (one plus) the rate of growth in the share of labour being utili0
L

1
n,L s/s

industry n, and  

3.  P[p/p 1
n

0
n

1
n = ]P/P/[]P/ 010

n  

 looking at the contr ndustry n to overall (one plus) labour productivity growth, 
we start with a straightforward share weighted contribution factor, ]X/X[s nnn,Y , which is the 

period 0 output or value added share of industry n in period 0, 0
n,Ys dustry n (one 

plus) rate of labour productivity growth, 0
n

1
n X/X . This straightforward contribution factor will 

be augmented if real output price growth is e (i.e., if nn p/p  is greater than one) and if the 

share of labour used by industry n is growing (i.e., if 0
n,

1s  is greater than one). The 
decomposition of overall labour productivity growth given by the last line of (13) seems to be 
more intuitively reasonable and simpler than the Tang-Wang osition (2004; 426). 
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Suppose we want to decompose , the overall change in aggregate productivity, into the 
product of three effects: 

01 X/X

1. One effect that holds constant the sectoral labour shares  and the sectoral 

productivities  and just gives us the effects of the changes in the real prices  

t
n,Ls

1
nX 1

np ;

2. Another effect that holds constant the real prices  and the sectoral productivities 

and gives us the effects of the changes in the sectoral labour shares , and 

1
np t

nX  
t

n,Ls

3. A final effect that holds constant the individual labour shares  and real prices  and 

gives us the effects of the changes in the sectoral productivities  

t
n,Ls

t
nX .

1
np

 This is a well known problem that has been studied extensively by Balk (2002/3) and 
Balk and Hoogenboom-Spijker (2003) and by many others. In particular, the generalization of 
the Fisher (1922) ideal index to an aggregate that is the product of 3 different factors made by 
Gini (1937; 72) seems to be appropriate for the present situation.   

 A relatively simple way to derive Gini’s formula is as follows.  is equal to the 

ratio . Let us write this ratio as a product of three similar 
ratios, where in each of these three ratios, one of the factors in the numerator is set equal to either 

 or  or  and the same factor in the denominator is set equal to either  or r 

. The remaining factors in the numerator and denominator are constant. There are only 6 
ways this can be done and the resulting decompositions are as follows: 
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where P(1) is defined as the price index which is the first term in brackets on the right hand side 
of (15), S(1) is defined as the share index which is the second term in brackets on the right hand 
side of (15) and X(1) is the productivity index which is the third term in brackets on the right 
hand side of (15) and so on for the definitions in (16)-(20). All of the decompositions of the ratio 

 are equally valid so it seems sensible to define an overall index of price change, say P, 
as a symmetric average of the individual price indexes P(1)-P(6) which appeared in (15)-(20). It 
is also natural to follow the example of Fisher (1922) and Gini (1937; 72) and take geometric 
means so that the indexes will satisfy the time reversal test and also preserve the exact 
decomposition of  into the product of three explanatory factors. Hence letting   and 

 be the N dimensional vectors of the real prices in period t, , the labour shares in period t, 

, and the sectoral productivities in period t, , respectively, we have the following 
expression for the Gini price change contribution factor to overall labour productivity growth: 
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 In a similar manner, we can derive the following expression for the Gini labour share 
change contribution factor to overall labour productivity growth: 
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 Finally, we can derive the following expression for the Gini pure productivity change 
contribution factor to overall labour productivity growth (which holds constant the effects of 
changing real output prices and changing sector labour shares): 
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Balk (2002/3; 210) suggests axioms that index number formulae of the type defined by (21)-(23) 
should satisfy.7 It can be verified that the above Gini indexes satisfy all of Balk’s suggested tests. 

 Another interesting aspect of the Gini formulae is that if the labour shares are constant 
across the two periods, so that , then the labour share contribution factor 

 defined by (22) is unity, the real price change contribution factor 

 defined by (21) reduces to the ordinary Fisher price index, , and the 

pure productivity change contribution factor  defined by (23) reduces to 
the ordinary Fisher quantity index , where  and  are defined as follows: 
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Similarly, if the real prices are constant across the two periods, then the real price change 
contribution factor  is unity, the labour share contribution factor 

 collapses to the Fisher index  and the pure 

productivity change contribution factor  reduces to the Fisher quantity 

index (except that the labour shares s0 and s1 play the role of prices in 
this Fisher type formula).   

)X,s,p,X,s,p(P 111000

)1

p(X
2/1010 ]XsX

X,s,p,X,s,p(S 11000

01110 s/XsXs[

2/110001101 ]XsXs/XsXs[

)X,s,p 111,X,s, 000

 Each of the contribution factors defined by (21)-(23) has an interpretation as an index of 
change of prices, labour shares and sectoral labour productivities, holding constant the other two 
factors. However the interpretation of (21) and (22) is not completely straightforward (as it is in 
the case of normal index number theory) since shares by definition cannot all grow from one 
period to the next and so the interpretation of (22) as a weighted average of the individual share 
growth rates, , while valid does not seem to be very intuitive. Similarly, the interpretation 

of (21) as a weighted average of the growth rates of the sectoral real output prices, , also 

seems to lack intuitive appeal since the average of the real prices  for each period t will 
necessarily be close to one, and hence, it will not be possible for all of the relative prices, 

, to exceed unity under normal conditions. Fortunately, it is possible to reinterpret each of 
the contribution factors defined by (21) and (22) as indicators of structural change as we will 
now show. 
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 In order to derive these alternative interpretations of (21) and (22), it is first necessary to 
develop an identity that was used by Bortkiewicz (1923; 374-375) in an index number context. 
Suppose that we have two N dimensional vectors, ]x,,x[x N1 K≡  and , and an ]y,,y[y N1 K≡

                                                 
7 Balk (2002/3; 211) also notes with approval the Gini formulae defined by (21)-(23) and gives additional historical 
references to the literature. 
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N dimensional vector of positive share weights ]s,,s[s N1 K≡ .8 We use these shares in order to 

define the share weighted averages of x and y,  and  respectively, and the share weighted 
covariance between x and y, : 

*x *y

)s;y,x(Cov ≡

n

n
0
nz ny ≡

1sN
1n

1
n ==

1z/ * =

)s;y,x(Cov

n
N

1n nys∑ =≡

*yx)s;y,x( +

n
0
n

N
1n n Xsp∑ =

N
1nnn /Xp ∑ =

N
1n

0
n

* s) ∑ ==

nnXp ≡*z

nx

s/s(s 0
n

N
1n

1
n

0
n=

z/z(sN
1n n

0
n=

jX

*
n x)yy)( +−

1)1yn +−

(26) ; ; and . n
N

1n n
* xsx ∑ =≡ *y )yy)(xx(s *

n
*

n
N

1n n −−∑ =

It is straightforward to use the above definitions in order to derive the following identity: 
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 Now consider a generic share index of the type defined by S(1) to S(6) in (15)-(20). We 
have the following decomposition of such an index, which we label as S:9 
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defining ; , , and  for . Note that 

the  share weighted means of the  and  are both equal to one; i.e., we have: 
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 Each  is equal to the product of the generic real output price in sector n, , which 

will typically be close to one, times the generic productivity level of sector n, . Thus  is 

the  weighted average of the sector n real price weighted productivity levels, ∑ . 

And,  is the real price weighted generic productivity level of sector n 

relative to a  weighted average of these same price weighted productivity levels. Applying 
identity (27) to the last line in (28), we obtain the following decomposition for the generic S: 
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9 The generic sector n real output price p  will be equal to p  or  and the generic sector n labour productivity 

level  will be equal to  or .  
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    . 1)s;y,x(Cov 0 +=

Thus the generic labour share change contribution factor to overall labour productivity growth S 
defined by the first equation in (28) will be greater than one if and only if the  is 

positive. Thus if the  share weighted correlation between the  (one plus the rate of 
change of the sectoral labour shares) and the sectoral real price weighted productivity levels 

relative to their  share weighted average levels  is positive, then S 

will be greater than one. Put another way, if the labour shares going from period 0 to 1 change in 
such a way that higher shares go to higher productivity sectors, then the contribution factor S to 
overall labour productivity growth will be positive. Thus the Gini labour share contribution 
factor  defined by (22) will be greater than one if all 6 of the covariances 

 of the type defined in (31) are positive for the specific indexes defined by S(1) to 
S(6). Thus the Gini labour share contribution factor can be interpreted as a measure of structural 
shifts of labour across industries of varying productivity levels.  
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 Now consider a generic real output price index of the type defined by P(1) to P(6) in 
(15)-(20). We have the following decomposition of such an index, which we label as P:10 
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the generic  weighted average of these sector n real price weighted productivity levels, 
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level of sector n relative to an  weighted average of these same price weighted productivity 
levels. Now apply the identity (27) to the last line in (32) and we obtain the following 
decomposition for the generic P: 
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The interpretation of (35) is not as straightforward as was the interpretation of (31). The price 
contribution factor P defined by (32) will be greater than one if the sum of the covariance term 

, equal to , and the mean real price change , equal to 

, is greater than one. The interpretation of the  term is straightforward. P is 
equal to this straightforward effect (which will generally be close to one) plus the covariance 
term, . Recalling that  is equal to (one plus) the rate of growth of 

the sector n real output price, , and that  is the productivity level of sector n relative to 
an average productivity level, it can be seen that this covariance will be positive if the sectors 
which have high rates of growth of real output prices are associated with sectors that have high 
relative productivity levels.   
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4. Conclusion 
 

 The Gini (1937) decomposition of aggregate labour productivity into sectoral 
contribution factors and associated structural shifts seems promising. In terms of simplicity, our 
decomposition given by (13) also seems attractive. There seem to be multiple reasonable 
decompositions. It appears that there is room for additional research for developing the axiomatic 
approach to the topic, an approach initiated by Balk (2002/3). An economic approach may also 
be useful for indicating what a “best” decomposition might be. 
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Chapter 5 
EXACT INDUSTRY CONTRIBUTIONS 
TO LABOR PRODUCTIVITY CHANGE 

Marshall Reinsdorf and Robert Yuskavage1 

 

1. Introduction 
 

 Industry contributions to aggregate productivity growth have been a topic of great interest 
in recent years. One reason for this is a desire for insight into the sources of the remarkable 
speedup of productivity growth in the late 1990s. The U.S. Bureau of Labor Statistics (BLS) 
estimates that output per hour in the nonfarm business sector grew at an average rate of around 3 
percent per year from 1995 to 2003, compared with 1.5 percent per year between 1987 and 1995. 
Interest in investigating industry sources of productivity change has been further heightened by 
the availability of new and improved data on industry gross output, intermediate inputs and value 
added, resulting from the integration of the GDP-by-industry accounts and the annual I-O 
accounts in data sets released in June 2004. Evidence on industry contributions to productivity 
change has been used to resolve controversies concerning the economic gains from information 
technology (IT), the causes of the post-1995 speedup in productivity growth, possible 
measurement errors in prices or output, and other important questions.2 

 As Nordhaus (2002, p. 213) observes, the use of chain-weighted output measures makes 
disentangling the contributions of individual components to aggregate productivity growth a 
complex problem. To account for substitution effects, non-linear chain-weighted index number 
formulas such as the Fisher index or the Törnqvist index must be used to measure aggregate real 
output growth. Although in nominal terms, aggregate output is the sum of every industry’s value 
added, with the chain-weighted index number formulas, aggregate real output fails to equal the 
sum over all industries of each industry’s real value added. The lack of an additive formula for 
industry contributions to real output growth implies that formulas for industry contributions to 

 
1 The authors are both with the U.S. Bureau of Economic Analysis (BEA). Marshall Reinsdorf can be reached at 
Marshall.Reinsdorf@bea.gov. Robert Yuskavage can be reached at Robert.Yuskavage@bea.gov. The views 
expressed in this paper are those of the authors and should not be attributed to the BEA. We are grateful to Mike 
Harper, Ana Aizcorbe and Jack Triplett for helpful comments. 
2 Some recent studies of industry contributions to productivity change are Bosworth and Triplett (2004), Klein et al. 
(2003), Basu and Fernald (2002), Gullickson and Harper (2002), Nordhaus (2002), Stiroh (2002), Jorgenson (2001), 
Mc Kinsey Global Institute (2001), ten Raa and Wolff (2001), Jorgenson and Stiroh (2000a, 2000b), Oliner and 
Sichel (2000), and Corrado and Slifman (1999). The present paper is part of a collaborative project on this topic 
between the U.S. Bureau of Economic Analysis (BEA) and the Office of Productivity and Technology of the U.S. 
Bureau of Labor Statistics (BLS). 
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aggregate productivity growth also generally add up to incorrect totals, because aggregate 
productivity is measured as the difference between the log-change in aggregate real output and 
the log-change in aggregate inputs.  

 The unavailability of exact formulas for industry contributions to aggregate productivity 
growth has led to reliance on approximate decomposition formulas. In the appendix we derive 
the change in real GDP implied by a commonly used Törnqvist approach to industry 
contributions to productivity change. The resulting expression in equation (A-4) is different 
enough from ordinary approximations for the change in real GDP to raise questions about the 
accuracy of those approximations: questions for which we nevertheless produce a reassuring 
answer in this paper.  

 In this paper we derive an exactly additive decomposition of aggregate labor productivity 
growth into industry sources using results from the literature on index number formulas. 
Included in our decomposition are contributions to aggregate productivity growth due to changes 
at the industry level in real gross output per hour and in the relative use of intermediate inputs. 
The sum of the first two of these effects equals the contribution to aggregate productivity of 
changes in an industry’s real value added per hour. A third effect comes from changes in the 
allocation of labor between industries with different productivity levels. In the productivity 
literature, this effect has been variously referred to as a “shift effect,” a “Denison effect,” or a 
“labor reallocation effect.” Bosworth and Triplett (2004) point out that ignoring the labor 
allocation effect may lead to misleading inferences concerning the proportion of aggregate 
productivity change attributable to a particular group of industries, such as ones that produce 
information technology (IT) products. Previous authors have treated the labor reallocation term 
as a kind of residual that cannot be included in the additive decomposition, but we show how it 
can be included.  

 In addition to its methodological contributions, this paper makes an empirical 
contribution to the literature on the industry sources of the post-1995 rebound in productivity 
growth. Among its empirical findings are a modest direct contribution of the IT-producing 
industries to the productivity speedup, large contributions for Wholesale trade and Retail trade, 
and a negative contribution for the Electric, gas and sanitary services industry, reflecting the 
increased use of intermediate inputs.  

 

 2. Exactly Additive Contributions of Commodities to Change in Fisher Indexes 
 

 The two widely used chain-weighted index number formulas are the Fisher index and the 
Törnqvist index.3 Here we take the Fisher measure of aggregate productivity growth as the 
object of investigation. Although the Törnqvist index is easily decomposed into commodity 
contributions to the log-change in the aggregate, for the problem of finding industry 
contributions to change, the Fisher index is actually more tractable. Another advantage of our 
Fisher approach is that the results can be used to obtain decompositions of productivity growth 
that are precisely consistent with official measures of real output, which the BEA constructs 

                                                 
3 Diewert and Nakamura (2003) survey some of the reasons for this. 
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from Fisher indexes. Furthermore, the Fisher contributions formula has an economic justification 
that other formulas lack. Finally, we note that the Fisher index has an appealing justification as a 
measure of aggregate welfare change for a society as a whole. In particular, Pollak (1981) shows 
that the aggregate Laspeyres price index is an upper bound for the Scitovsky-Laspeyres social 
cost of living index, which measures the change in the aggregate income that would be required 
for a social planner to keep every household in a society on its original indifference curve.4 
Diewert (2001, pp. 172-173) observes that the Paasche index is a lower bound for the 
analogously defined Scitovsky-Paasche social cost of living index and that the Fisher index can 
therefore be justified as an average of lower and upper bounds for social cost of living indexes 
based on a pair of relevant Scitovsky contours.5  

 To solve the problem of identifying industry sources of productivity change, we use the 
formula for additive contributions to the change in a Fisher quantity index that underlies the 
tables of contributions to change reported in the U.S. National Income and Product Accounts 
(NIPAs). This formula was discovered by van IJzeren (1952) as part of an argument that the 
Fisher index had a unique property that could justify its use.6 It was then forgotten, until its 
independent rediscovery by Dikhanov (1997).  

 Van IJzeren considered the problem of finding an average basket for a price index that 
would be unaffected by an equiproportional change in all quantities and an average price vector 
for a quantity index that would be unaffected by an equiproportional change in all prices. In 
doing this, he effectively posited the desirability of the decomposition formula now used by BEA 
and Statistics Canada, and then showed this property implies the Fisher formula for the index.7   

 Index number formulas that use simple averages of prices or baskets are known as 
Edgeworth (or Edgeworth-Marshall) indexes. The Edgeworth quantity index, EQ , uses an 
average of initial and final prices to value quantity changes: 

(1)  
2/)(

2/)(
),,,(E

1ttt

1tt1t
1tt1tt

Q

+

++
++

+′
+′

≡
ppq

ppq
qqpp . 

Similarly, the Edgeworth price index uses as its basket an average of the baskets from the initial 
and final periods: 

                                                 
4 This theory concerns commodities that are consumed directly, but, under certain assumptions, it can be extended to 
the measurement of output that includes investment goods used to produce commodities for consumption in future 
time periods.  In particular, we can treat investments that raise future consumption possibilities as part of 
consumption for welfare measurement purposes; see Basu and Fernald (2002) and Weitzman (1976).    
5  To justify a Törnqvist index as a measure of aggregate welfare change requires stronger assumptions.  Assuming 
that households have preferences that are homothetic — but not necessarily identical — and they have total 
expenditures that are constant shares of aggregate total expenditures, the aggregate log Törnqvist index is a weighted 
average of individual log Törnqvist indexes, which are themselves superlative measures of individual consumers’ 
welfare change. Exactly additive industry contributions to a Törnqvist measure of aggregate productivity growth are 
available from the authors upon request. For more on the properties of Fisher indexes, see also Diewert (1992). 
6 See Reinsdorf, Diewert and Ehemann (2002), and Balk (2004). 
7  See van IJzeren (1987) for more background.  The use of this formula in BEA’s National Income and Product 
Accounts (NIPAs) is discussed in Moulton and Seskin (1999).  A related multiplicative decomposition of the change 
in the Fisher index is presented in Kohli (2010). 
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 A high rate of inflation (or the multiplication of all final period prices by any scalar other 
than 1) will arbitrarily change the weights in the Edgeworth quantity index, and similarly a high 
rate of real growth will arbitrarily change the weights in the Edgeworth price index. To correct 
the Edgeworth indexes so that they always give equal weight to relative prices and quantities in 
both periods, period t prices must be rescaled by a price index IP before averaging them with 
prices from period t+1, and period t quantities must be rescaled by a quantity index IQ before 
they can be averaged with quantities from period t+1. This gives the pair of simultaneous 
equations: 
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 Van IJzeren shows that the solution to these equations sets IQ equal the Fisher quantity 
index, FQ, and IP equal the Fisher price index, FP, where a Fisher index is defined as the 
geometric mean of a Paasche index and a Laspeyres index.  

 In addition to van IJzeren’s axiomatic justification for the decomposition formula for 
Fisher indexes given by the right side of equation (3) or equation (4), it has an economic 
justification. Reinsdorf, Diewert and Ehemann (2002) show that this formula is a second order 
approximation to a decomposition formula that measures the contribution of each item i to the 
change in a flexible production function of the form , where the coefficients 

satisfy  The van IJzeren decomposition can, therefore, be expected to provide a good 
measure of the economic contributions of the various inputs to the change in output.  

2/1
i j jiij ]qqa[∑ ∑

jiij aa =

 In the NIPAs, commodity contributions to the change in Ft
Q, the Fisher index for real 

GDP, are calculated by expressing Ft
Q in the form given by equation (3). In this index, the 

quantities from period t and the quantities from period t+1 are both valued at a constant set of 
prices. These constant prices equal inflation-corrected averages of the prices from the periods 
being compared. Hence, the constant price for the arbitrary commodity c, denoted by , equals 

, where Ft
P denotes the Fisher price index calculated from final expenditures 

on commodities,  and , and the corresponding price indexes. To adjust the expenditure 

on commodity c, denoted by , from current-year dollars to the constant price , it is 
multiplied by an average of Ft

P and the price relative for commodity c, ; hence, 
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 Similarly, to adjust the final expenditure  to equal the value it would have had at 

price , it is multiplied by an average of the ratio of FP to commodity c’s price relative and 1:   
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 The Fisher quantity index for GDP then tracks the change in GDP measured using the 
constant prices   *

ctp :
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 The contribution to the change in Q
tF  of the arbitrary commodity  is, then, given by: γ
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3. Exactly Additive Contributions of Industries to Change in Fisher Indexes 

 

 The production approach estimate of GDP is calculated as the sum over all industries of 
current-year dollar value added . If  is the gross output of industry i and  is its use of 
intermediate inputs, then 

tv

i

ity
=

itm
)my(vv iti ititt −= ∑∑ . Given consistent data, the production 

approach estimate of current-year dollar GDP equals the expenditure approach estimate of GDP, 
defined as ∑  where  is the final demand for commodity c. BEA calculates the Fisher 
index for the total value added of all industries — the production approach estimate of real GDP 
— in a way that makes it theoretically equal to the expenditure approach estimate of real GDP.

c cte cte

8 

 The same estimate of real GDP can be obtained if the adjustment factors on the right side 
of equations (5) and (6) are used to convert current-year dollar values of gross output and 
intermediate inputs into constant dollar values. To convert to constant dollars for decomposing 
real GDP change between period t and period t+1, measures of gross output and intermediate 
inputs based on prices from period t are multiplied by the same factor as  in equation (5), and 
measures in prices from period t+1 are multiplied by the same factor as  in equation (6). If 

cte

t,ce +1

                                                 
8 See Moyer, Reinsdorf and Yuskavage (2003) and also Yuskavage (1996). These authors used a consistent set of 
data from the GDP by Industry Accounts, so their estimate of real GDP was the same using either the production 
approach or the expenditure approach. However, aggregate real output for all industries from the GDP by Industry 
accounts usually differs from real GDP from the NIPAs because of inconsistencies between deflators in the two sets 
of accounts.  Also, before June 2004, the sum of value added from the GDP-by-Industry Accounts equaled the 
income side estimate of the GDP, not the expenditure approach estimate. For related productivity measurement 
issues, see Eldridge (1999).  
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LYP 
it  represents the Laspeyres price index for the gross output of industry i and PYP 

it   represents the 
Paasche price index, the constant-price measure of this industry’s gross output of industry i in 
year t, denoted by , is: itY
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and, using this same set of prices to value its output in year t+1 gives a constant-price measure 
of:  
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 The equations for constant-price intermediate inputs, denoted by  and , are 
analogous to those for constant-price gross output. 
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Industry i’s additive contribution to the change in real GDP, , can then be calculated as:   itC

(11)  
t

it1t,i
it V

VV
=

1Q
t −

C
−+

                                                

, 

where . FCi it =∑
 

4. Exactly Additive Industry Contributions to Change in Labor Productivity 

4.1 Contributions to the Change in Aggregate Real Value Added per Hour 

 Some simple measures of industry contributions to productivity change are 
decompositions of the change in the production approach estimate of real GDP per hour. In a 
Laspeyres framework, these decompositions provide industry contributions that sum exactly to 
the change in aggregate productivity because the sum of Laspeyres real value added over all 
industries equals Laspeyres real GDP. However, the existing methods for calculating industry 
contributions to real GDP per hour provide only approximate decompositions for Fisher or 
Törnqvist measures of real GDP and real value added. 

 Balk (2003, p. 28, equation 51) provides an appealing formula for industry contributions 
to real GDP per hour based on the Bennet decomposition.9 Using Fisher indexes for real value 

 
9  Diewert (2000; 2005) shows that the quantity components of the Bennet decomposition of nominal output change, 
defined as iiii pqqp Δ+Δ , have an economic interpretation as an approximation to the contributions to change in 
production function that implies the Fisher index formula.    
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added in this formula, which preserves the symmetry properties of the Bennet decomposition, 
creates a discrepancy between the total over all industries of real value added and the Fisher 
measure of real GDP. As a result, the industry contributions fail to sum to the total change in 
GDP per hour.  

 Adopting the Fisher index for measurement of real output, and letting  denote 
aggregate hours or full-time equivalents (FTEs), the objective of the Bennet decomposition is to 
calculate industry contributions to aggregate productivity change, measured in dollars of year t 
per hour, as 

tH

tt1tt
Q
t H/vH/vF −+

1

1t1t,i H/H ++

. Using the constant-price measures of value added in the 
Bennet decomposition corrects its non-additivity because the industry contributions based on 

and the  add up to the Fisher measure of real GDP per hour.

itV  

t,iV +

t

10 Let h
–

i denote the average of 
 and  and let it H/H ihΔ  equal tit1t1t,i H/HH/H −++ , where  is 

industry i’s share of aggregate labor input in year t. Then industry i has an additive Bennet 
contribution  to arithmetic change in aggregate labor productivity equal to: 
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 The term on the first line of equation (12) represents the direct effect from productivity 
growth in industry i. The term on the second line of equation (12) represents a labor allocation 
effect, or shift effect. An increase in the share of aggregate labor allocated to an industry with 
above-average productivity will raise productivity by an amount that is measured by the 
expression on the second line of equation (12).  

 

 4.2 Contributions to Log-Change in Output  
 The use in equation (12) of differences in real valued added per hour to measure 
productivity change has the advantage of simplicity, but it also has some disadvantages. First, 
this measure can be distorted by substitution induced by changes in the relative price of 
intermediate inputs; for example, it will tend to rise if the price of intermediate inputs falls even 
in the absence of any genuine productivity gain.11 Second, often researchers are interested in 
comparing multi-year periods of high productivity growth with multi-year periods of low 
productivity growth but, unlike logarithmic measures of productivity change, the  cannot be 
averaged over years.  

*
itC

                                                 
10 This method also offers the advantage of a unified approach to statistical agencies that publish contributions to 
change in Fisher indexes as well as contributions to productivity change, such as Statistics Canada. 
11 Capital deepening can cause a similar rise in any kind of measure of labor productivity, but in this case measures 
of labor productivity that include gains from capital deepening are still of interest.     
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 To avoid such problems, researchers generally use the log-change in gross output per 
hour as the measure of an industry’s labor productivity.12 Since BEA measures real output 
growth by a Fisher quantity index, let the log-change in real GDP be the log of the Fisher index 

Q
tF , which may be calculated using the price indexes for commodities and the final expenditures 

on commodities,  and . The aggregate labor productivity change between year t and 
year t+1 is then:  

cte 1t,ce +

(13)  t
Q
tt HlogdFlogALP −=  

where  is the log-change in hours of labor input.)H/Hlog(Hlogd t1tt +≡ 13  

 Identification of the industry sources of aggregate labor productivity change as measured 
by equation (13) requires formulas for contributions to the log-change in real GDP and in 
aggregate hours. Equation (12) describes a contribution to a difference; not to a log-change. Yet, 
as Balk (2003, pp. 41-2) points out, logarithmic means can be used to convert difference 
measures to log-change measures. If 1t,iit ss +≠ , the logarithmic mean  is defined 
as: 

)s,s(m 1t,iit +

(14)  )s/slog(/)ss()s,s(m it1t,iit1t,i1t,iit +++ −≡ . 

 The main index formula that uses logarithmic means is the Sato-Vartia index (see Sato, 
1976 and Vartia, 1976).14 The log Sato-Vartia quantity index is defined as a weighted average of 
log-changes in quantities, where the weights are normalized to sum to 1 and are proportional to 
logarithmic means of the expenditure shares  and .  its 1t,is +

 To decompose the log-change in GDP into industry contributions, let Y
itw  denote the 

weight for the gross output of industry i and let M
itw  denote the weight for its intermediate 

inputs. In this case, the Sato-Vartia weights are normalized so that the sum of the gross output 
weights less the sum of the intermediate input weights M

itw  equals 1. The Sato-Vartia weight 
Y
itw  for the log change in industry i’s gross output is:  

(15)  
∑ ++++

++

−
=

j 1t1t,jtjt1t1t,jtjt

1t1t,ititY
it )]V/M,V/M(m)V/Y,V/Y(m[

)V/Y,V/Y(m
w . 

Similarly, the Sato-Vartia weight M
itw  for the log change in industry i’s intermediate inputs is: 

                                                 
12  Hulten (1978) shows that use of the log-change in industry gross output to calculate industry contributions to total 
factor productivity growth results in estimates with an economic interpretation as measures of technological change.  
13 A Fisher index of various types of labor input would provide valuable additional information on the effects of 
changes in the composition of industry labor forces.  Unfortunately, data to compute such input indexes are lacking.  
14 Balk (1995) discusses the axiomatic properties of the Sato-Vartia index, including the basket test, and finds that 
its axiomatic properties are on a par with the Fisher index.  Its economic interpretation is discussed in Lau (1979). 
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(16)  
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Proposition 1 shows that the weights defined in (15) and (16) furnish exactly additive 
contributions by industry to the log change in real GDP. 
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4.3 Exact Industry Contributions to Aggregate Productivity 
 Following the approach of Stiroh (2002, p. 1572, equation (6)), the weights that permit a 
decomposition of the log-change in real output can be used to show how industry productivity 
changes contribute to aggregate productivity change. Let Y

itLP  denote labor productivity in 
industry i, defined as the log-change in gross output per hour, or . In addition, 

define the value-added shares 

)H/Ylog(d itit
V
itw  as M

it
Y
it ww − . Then a partial decomposition of the log-

change in aggregate labor productivity is: 

(18)  
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 The first term in equation (18) shows that an industry’s direct contribution to aggregate 
labor productivity is its productivity in producing gross output times its average share of value 
added M

it
Y
it ww − . The second term adjusts the industry’s direct contribution to aggregate 

productivity for the effect of the change in the intermediate inputs required to produce a given 
amount of gross output. Combined, these terms provide the contribution of an industry’s log-
change in real value added per employee hour to the log-change in aggregate productivity. 

 Equation (18) is an incomplete decomposition of aggregate productivity growth because 
in the last term d log Ht is not expressed as a sum of industry contributions. This term represents 
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an effect from changes in the allocation of hours between industries with different levels of 
average output per hour. For example, suppose that a high-productivity industry begins to 
contract out some average-productivity activity it had performed in-house to a low-productivity 
industry, with a concomitant movement of employees. Aggregate productivity is, of course, 
unchanged, but productivity (as measured by real value added per hour) rises in both of the 
affected industries. The negative allocation effect offsets the positive contributions of the rising 
productivity within the two industries to hold aggregate productivity constant.   

 We can add an expression that exactly accounts for the contributions of the labor 
allocation effect to equation (18) using an approach similar to Nordhaus’ (2002, pp. 214-5) 
“Denison effect.” Under this approach, the difference between an industry’s value added share in 
the economy and its labor input share in the economy is used to measure the contribution to 
aggregate output of changes in the relative size of its labor force. For our exact decomposition of 
the labor reallocation effect, we use labor shares H

itw  that resemble Sato-Vartia weights: 

(19)  
∑ ++

++=
j 1t1t,jtjt

1t1t,ititH
it )H/H,H/H(m

)H/H,H/H(m
w . 

 Equation (19) makes an exact decomposition of the labor reallocation effect possible 
because the weights H

itw  add up to 1 and the weighted average  equals 

, which is the only term in equation (19) not decomposed by industry. The relative 
amount of labor that is reallocated into industry i equals 

)Hlogd(w iti
H
it∑

tHlogd
tHlogd

itHlogd − . We assume that 
reallocated labor always has an opportunity cost equal to the economy’s average level of 
productivity; that is, the labor that is released by an industry has the average level of real value 
added per hour in the industries where it is redeployed, and the extra labor that is absorbed by an 
industry would have had the average level of real valued added per hour in its alternative use.15 
Then the marginal effect on aggregate real output of labor reallocation into industry i is 

H
it

*V
it ww − , where *V

itw  is the log-change in aggregate real output from a 1 log point change in 

hours in industry i and H
itw

dit

 is the log-change in aggregate real output per hour when the amount 
of labor representing a 1 log point change in industry i is added to an industry with the average 
productivity level. Thus, the contribution to the log-change in real output due to reallocation is 

)Hlogd)( tlogHw H
iw( t
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it −− , which essentially equals )HtlogdHlogd)( it

H
iww( t

V
it −− .  

 Substituting  for  in equation (18) and then subtracting 

, which equals 0, gives:  

)Hlogd(w iti
H
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tHlogd

logd)(ww( H
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V
it −∑

                                                 
15 Note that when the aggregate under investigation excludes important industries, the average level of productivity 
in the aggregate may differ significantly from the average level of productivity in the economy as a whole.  The 
decomposition of the labor reallocation effect must reflect the average level of productivity in the aggregate under 
investigation, because the labor reallocation effect for any aggregate reflects only reallocation within that aggregate.  
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In the last term in (20), an industry’s contribution to the labor reallocation effect depends on its 
relative efficiency at using labor, measured by the difference between its share of GDP and its 
share of labor input, and the growth of its labor input share. An inefficient industry—one with a 
value added share V

itw  below its labor share H
itw  —has a positive labor reallocation effect if it 

releases labor for use in other industries, and a relatively efficient industry has a positive 
reallocation effect if it absorbs labor released by other industries.  

 

 4.4 Comparison with a Decomposition that Uses Real Value Added per Hour  

 The exact decomposition in equation (20) closely approximates a decomposition that, like 
the Bennet decomposition in equation (12), uses real value added per hour, albeit in log-change 

form. In the decomposition of the log-change in real value added per hour, the weights h
–

i in 
equation (12) are replaced by Sato-Vartia weights based not on industry hours but on industry 
constant-price value added. Let , 

and let the direct measure of the change in real value added per hour in industry i be 
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added productivity is:   
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 In the first line of equation )02( ′  the weights on industry productivity gains are similar to 

the h
–

i weights in equation (12), but in the shift effect term on that line, the measure of changes in 
industry relative size, , differs from the measure given by  in equation (12) 
because it uses industry output; not labor input. An input-based measure of relative size would be 
more consistent with the intuition that the shift effect comes from changes in allocation of labor 
from low-productivity to high-productivity industries. Such a measure appears in the second line 
of equation , but with this version of the shift effect, the weights on the industry 

productivity changes, 

)Vt/Vlog(d it

*V
i

ihΔ

)02( ′

tw , differ from the ih  weights in equation (12) because they are based 

on industry output. Nevertheless, the pattern of direct contributions implied by the V
it

*V
it LPw  in 

equation  can be expected to resemble the pattern implied by the first term in equation (12).   )′02(

 The measure of the contribution of industry i’s value added productivity to aggregate 
productivity given by the second line of equation )02( ′  closely approximates the measure of the 
contribution of industry i’s gross output productivity adjusted for its use of intermediate inputs 
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that appears in equation (20). The value added contribution measure in  equals the gross 
output contribution measure in (20) times a slope coefficient that approximately equals 1 plus an 
intercept that approximately equals 0. The slope 

)02( ′

tλ  equals the ratio of the normalization factors 
for the Sato-Vartia weights under the two approaches:  
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 4.5 Consistency with Decompositions that Use Domar Weights  
 Readers familiar with the literature on industry contributions to productivity change may 
wonder whether the decomposition given by equation (20) is consistent with well-known 
decompositions that use Domar weights. Domar weights are ratios, such as Y

itw , of industry 
gross output to aggregate value added. Domar weights are required to decompose multifactor 
productivity growth (see Gullikson and Harper, 1999, p. 51.) The use of V

itw  as a weight on 
gross output productivity in the first term of equation (20) may appear inconsistent with the need 
to use Domar weights. Equation (20) is, however, easily reconciled with the Domar weighting 
scheme. For this reconciliation, the third term in equation (20) can be disregarded because a 
reallocation effect is not part of the original Domar (1961)  framework.16 The Domar 
contribution of an industry to productivity change can be described as the sum of an output 
change contribution and an input change contribution. The output change contribution 

)Ylogd(w it
Y
it  is the sum of the )itYlogd(w M

it  part of the second term in (20) and the 

)Ylogd(w it
V
it  part of Y

it
V
it LPw  in the first term. The only inputs explicitly considered in this 

paper are  and , which is consistent with a production model in which  is identified 

with the cost of labor inputs in period t. The sum of 
itM itH itV

)Hlogd(w it
V
it  implicitly included in the 

first term of equation (20) and )Mlogd( it
M
iw t  from the second term effectively equals the 

Domar weight times the measure of combined labor and material inputs.  

 

 5. Comparison with Törnqvist Contributions to Productivity Change  
 

 In contrast to the exact approach to industry contributions to productivity change, an 
approximate approach based on industry-level Törnqvist indexes has been used for important 
studies of the sources of pr contributions to aggregate 

                                                

oductivity change. The Törnqvist 

 
16 A Domar weighted decomposition of translog aggregate multi-factor productivity growth that includes 
reallocation effects was developed by Jorgenson, Gollop and Fraumeni (1987, p. 66) and used in modified form by 
Jorgenson, Ho and Stiroh (2002, p. 9.)   
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productivity change solve neither the problem of decomposing a Törnqvist measure of aggregate 
productivity change nor the problem of decomposing an aggregate Fisher measure. They fail to 
solve the Törnqvist decomposition problem because aggregation of Törnqvist measures of 
industry value added does not yield the measure of real GDP calculated from a Törnqvist index 
of final uses of commodities.  

 Let iv  denote a simple average of the current-year dollar shares of value added in 
 tperiods t and +1 in industry i, let im  denote the average ratio of current-year dollar intermediate 

inputs to value added in industry i, let QM
itF  denote the Fisher quantity index for intermediate 

inputs to industry i, let QY
itF  denote the Fisher quantity index for gross output in industry i, and 

let Y~
itLP  denote labor productivity in industry i measured as the difference between QY

itFlog  and 
the log-change in hours. (We use Fisher quantity indexes rather than Törnqvist indexes at the 
industry level because the available industry level indexes are Fisher indexes.) The Törnqvist 
decomposition formula from Stiroh (2002) is: 
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 The Törnqvist index weights in equation (22) differ from the Sato-Vartia index weights 

 industry shares of 

in equation (18) because they use simple averages rather then normalized logarithmic means and 
because they are based on current-year dollar measures of value added and intermediate inputs. 
An analysis of these differences suggests that their effect will often be small.  

 To explore the effect of the functional form difference, assume that the
aggregate value added (i.e. of GDP) are the same in current-year dollars as in constant dollars. 
Let itit1t,iit v/vv −=γ + , which is the two-period coefficient of variation of the industry i’s 

value added share. Finally, note that a Taylor series for )1log( itγ+  minus a Taylor series for 

)1log( itγ−  equals L+γ+γ+γ 53 222 . Then,  ititit 753
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approximation simply adjusts the Törnqvist weights by amounts proportional to deviations in the 
squared coefficients of variation:  

(24)  )](
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1[vw 2
t

2
ititit γ−γ−≈ . 1

 Equation (24) reveals that the Sato-Vartia index formula differs from the Törnqvist index 
nt to each item weight that is inversely proportional to 

the excess volatility of its expenditure share. Consequently, industries with volatile shares tend to 

ange in equation (20) and the use of industry-level Fisher indexes in equation 

formula only by incorporating an adjustme

receive slightly lower weights in the contributions formula based on the Sato-Vartia index than 
they do in equation (22). However, equation (24) also implies that any differences in weights 
caused by the use of logarithmic means instead of the simple averages of the Törnqvist index are 
likely to be small.  

 Another difference between the exactly additive contributions to productivity change in 
equation (20) and the Törnqvist contributions in equation (22) is the use of constant-price 
measures of real ch
(22). However, itYlogd , the log-change in the constant-price index for gross output in equation 

(20), can be expected to differ only slightly from QY
itFlogd  in equation (22), and similarly 
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itF .17 The constant-price measure of gross output change, itYlogd , differs 
from the Fisher measure only by giving the Laspeyres quantity index a weight proportional to the 
overall Fisher price index for GDP, P

tF , instead of the industry-specific index, PY
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The difference in weights between the terms of equation (25) generally has a very small effect.  

 The resemblance of the terms in equation (22) to their counterparts in equation (20) 
means that the Törnqvist contributions can be expected to approximate the exactly additive 

 

                                                

contributions closely. Furthermore, it implies that Törnqvist weights can be substituted for the
Sato-Vartia weights in the labor reallocation term of equation (20) to obtain approximate 
contributions to the labor reallocation effect. On the other hand, the formula for the log change in 
total real GDP implicit in equation (22), which is derived in appendix A as equation (A-4), 
differs considerably from the direct Fisher measure of this change. This suggests that the total of 

 
17 Dumagan (2002) discusses this expression for contributions to change in the Fisher index; see his equation (9). 
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the contributions calculated using the Törnqvist approach could differ from the aggregate change 
in productivity by a non-trivial amount. We investigate the question of how well (A-4) 
approximates the log-change in the Fisher quantity index empirically in the next section. 

 

6. Empirical Results 

 6.1 Differences between Exact Contributions and Törnqvist Contributions  

erences between exactly additive industry contributions to 
e years from 
03, industry 

mina

 in the health services, 

As.  

                                                

 To investigate the diff
productivity change and Törnqvist contributions, we use 2003 vintage data for th
1987 to 2001 from BEA’s GDP-by-Industry accounts. In these accounts in 20
no l value added was estimated from income data, so that the sum over all industries of value 
added equals the income-side estimate of GDP. This sum is, therefore, less than the expenditure-
side estimate of GDP from the 2003 vintage NIPA data by an amount equal to the statistical 
discrepancy. For years from 1987 to 1995, the statistical discrepancy averaged 0.36 percent of 
GDP, but from 1996 to 2001 it averaged about –0.41 percent of GDP. Other things being equal, 
therefore, output measures based on income side data can be expected to imply larger gains 
between these periods than output measures based on expenditure data.  

 We include in our analysis only the industries in the nonfarm private business sector.18 
Some of these industries include nonprofit institutions, many of which are measured in a way 
that assumes no productivity change; these institutions are important
educational services, and social services industries, and in membership organizations. We 
exclude holding and investment companies because of measurement problems and the owner-
occupied housing portion of the real estate industry because it has no labor input.19 These 
exclusions leave 58 industries in the data set, which account for about 92 percent of the value 
added of the nonfarm private business sector.  

 To construct the constant-price measures required for the exact decomposition of industry 
sources of productivity growth (the itV , itY , M  and the V , Y , M ) we use it 1t,i + 1t,i + 1t,i +
unpublished data on the Laspeyres and Paasche components of the Fisher indexes in the GDP-
by-Industry accounts. In addition, to measure labor inputs we use published data on full-time 
equivalent employees (FTE’s) by detailed industry from the NIP

 
18  Although the theoretical discussion treated all of GDP as the aggregate of interest, studies of industry sources of 
productivity change generally exclude some industries whose productivity is not well measured.  
19 Owner-occupied housing is removed by subtracting its nominal and deflated gross output and intermediate inputs 
based on data from NIPA tables 8.12 and 8.13. In data released after the 2003 Comprehensive Revision of the 
NIPAs (after the research for this paper was done), owner-occupied housing was longer part of the real estate sector. 
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Table 1.  Exact and Törnqvist Contributions to Value Added Productivity of FTEs: 

Average Growth Rates in Percentage Points 

Industry 

Exactly 
Additive 

Value Added 
Productivity
1987-1995 

Törnqvist 
Value Added
Productivity
1987-1995 

Exactly 
Additive 

Value Added 
Productivity 
1995-2001 

Törnqvist 
Value Added
Productivity 
1995-2001 

Agricultural, forestry and fishing services -0.0124 -0.0124 -0.0009 -0.0009 
Metal mining 0.0052 0.0052 0.0119 0.0120 
Coal mining 0.0252 0.0252 0.0149 0.0150 
Oil and gas extraction 0.0475 0.0484 -0.0518 -0.0528 
Nonmetallic minerals, except fuels 0.0000 0.0000 0.0068 0.0068 
Construction 0.0067 0.0067 -0.0554 -0.0553 
Lumber and wood products -0.0208 -0.0208 -0.0089 -0.0089 
Furniture and fixtures 0.0029 0.0029 0.0034 0.0034 
Stone, clay, and glass products 0.0164 0.0164 -0.0013 -0.0013 
Primary metal industries 0.0212 0.0212 0.0197 0.0198 
Fabricated metal products 0.0226 0.0226 0.0021 0.0022 
Industrial machinery and equipment 0.1550 0.1545 0.2283 0.2255 
Electronic and other electric equipment 0.2914 0.2878 0.3732 0.3639 
Motor vehicles and equipment 0.0154 0.0154 0.0187 0.0190 
Other transportation equipment -0.0098 -0.0097 0.0330 0.0331 
Instruments and related products 0.0016 0.0018 -0.0176 -0.0172 
Miscellaneous manufacturing industries 0.0065 0.0065 0.0151 0.0151 
Food and kindred products 0.0493 0.0494 -0.0708 -0.0701 
Tobacco products -0.0048 -0.0049 -0.0369 -0.0369 
Textile mill products 0.0153 0.0153 0.0063 0.0063 
Apparel and other textile products 0.0145 0.0145 0.0178 0.0178 
Paper and allied products -0.0010 -0.0010 0.0094 0.0095 
Printing and publishing -0.0375 -0.0375 -0.0163 -0.0163 
Chemicals and allied products 0.0558 0.0558 0.0357 0.0357 
Petroleum and coal products -0.0039 -0.0035 0.0022 0.0015 
Rubber and miscellaneous plastics products 0.0321 0.0321 0.0279 0.0279 
Leather and leather products 0.0041 0.0041 -0.0004 -0.0004 
Railroad transportation 0.0265 0.0265 0.0127 0.0127 
Local and interurban passenger trans -0.0070 -0.0070 0.0032 0.0032 
Trucking and warehousing 0.0439 0.0438 -0.0018 -0.0019 
Water transportation 0.0083 0.0083 0.0032 0.0032 
Transportation by air 0.0106 0.0105 0.0074 0.0073 
Pipelines, except natural gas -0.0045 -0.0047 0.0041 0.0041 
Transportation services -0.0017 -0.0018 0.0109 0.0109 
Telephone and telegraph 0.1362 0.1362 0.1372 0.1367 
Radio and television 0.0429 0.0430 -0.0133 -0.0134 
Electric, gas, and sanitary services 0.1053 0.1054 -0.0009 -0.0012 
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Table 1.  Continued 

Industry 

Exactly 
Additive 

Value Added 
Productivity
1987-1995 

Törnqvist 
Value Added
Productivity,

1987-1995 

Exactly 
Additive 

Value Added 
Productivity, 

1995-2001 

Törnqvist 
Value Added 
Productivity, 

1995-2001 
Wholesale trade 0.2419 0.2416 0.5484 0.5482 
Retail trade 0.1022 0.1022 0.5180 0.5178 
Depository institutions 0.0953 0.0952 0.1424 0.1425 
Nondepository institutions 0.0105 0.0101 0.0796 0.0797 
Security and commodity brokers 0.0636 0.0617 0.2333 0.2375 
Insurance carriers 0.0217 0.0217 0.0218 0.0220 
Insurance agents, brokers, and services -0.0430 -0.0429 -0.0021 -0.0021 
Real estate w/o owner occ 0.1227 0.1225 0.1156 0.1155 
Hotels and other lodging places 0.0070 0.0070 -0.0149 -0.0149 
Personal services -0.0016 -0.0016 -0.0010 0.0010 
Business services 0.0153 0.0153 0.0323 0.0330 
Auto repair, services, and parking -0.0107 -0.0107 0.0097 0.0097 
Miscellaneous repair services -0.0025 -0.0025 -0.0166 -0.0165 
Motion pictures -0.0092 -0.0092 0.0031 0.0031 
Amusement and recreation services -0.0029 -0.0029 -0.0123 -0.0123 
Health services -0.1526 -0.1526 -0.0125 -0.0125 
Legal services -0.0085 -0.0085 0.0035 0.0032 
Educational services -0.0028 -0.0028 -0.0141 -0.0141 
Social services -0.0019 -0.0019 -0.0159 -0.0159 
Membership organizations 0.0018 0.0018 -0.0445 -0.0445 
Other services -0.0052 -0.0052 0.0865 0.0865 
TOTAL  1.500 1.494 2.391 2.391 
Addendum:      
Total excluding industrial machinery and 
electronic equipment industries  1.054 1.052 1.790 1.794 
Total excluding productivity change in 1987-
88 from average for the pre-1995 period 1.215 N/A N/A N/A 

Note: Excludes government, farms, owner-occupied housing, investment and holding company offices, and private 
households. FTE–Full time equivalent employment. 

 

 Table 1 shows the contributions of industries’ log-changes in real value added per 
employee hour to the log-change in aggregate real value added per employee hour net of the 
labor reallocation effect, which is excluded. The exactly additive contributions in table 1 are 
calculated as the sum of the first two terms in equation (20), and the Törnqvist contributions are 
calculated as the sum of the corresponding terms in equation (22). Averages for two periods are 
shown, one from 1987 to 1995, and another for the period from 1995 to 2001. A speedup in 
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productivity growth seems to start in 1995,20 so a comparison of these two periods provides 
important evidence on industry contributions to the productivity speedup.  

 The exactly additive contributions to productivity change in table 1 generally differ from 
their Törnqvist counterparts by less than 0.001, but a few important industries have more 
appreciable discrepancies. Most notably, the “industrial machinery and equipment” industry, 
which contains computers, and the “electronic and other electric equipment” industry, which 
contains semiconductors, both have slightly higher contributions to productivity growth based on 
the exact method than they do based on the Törnqvist method. The combined contribution of 
these two industries in the pre-1995 period is 0.446 percentage points using the exact method and 
0.442 using the Törnqvist method; in the post-1995 period their exact contribution is 0.602 and 
their Törnqvist contribution is 0.589. Their exact contribution to the productivity speedup is 
therefore 0.156, compared with a Törnqvist contribution of 0.147.  

 The tendency of the Törnqvist method to imply smaller estimates is evident in the 
aggregate, as well. For the pre-1995 period, the total over all industries of value added 
contributions is 1.500 percentage points using the exact method and 1.494 using the Törnqvist 
method. Since the goal is to decompose the direct measure of aggregate productivity change, the 
differences between the total of the Törnqvist contributions and the exact total may be 
interpreted as indicative of downward bias in the Törnqvist contribution formula. The two 
approaches give the same total for the post-1995 period, so the speedup in aggregate real value 
added per FTE net of the reallocation effect is lower using the exact method than using the 
Törnqvist method: 0.891 compared with 0.897. Aggregate output grew sharply between 1987 
and 1988, and a negative statistical discrepancy in 1988 made the growth of the income-based 
measure particularly strong. As a result, the productivity speedup appears larger when the 
starting point is 1988 rather than when it is 1987; in particular, the value in the bottom row of 
table 1 implies a speedup of 1.176 percent per year between the period from 1988 to 1995 and 
the period from 1995 to 2001. 

 

 6.2 Estimates of Industry Contributions to the Productivity Speedup  
 Table 2 shows contributions of important groups of industries — including those that 
have negative contributions — to the productivity speedup based on comparisons of the period 
from 1988 to 1995 in table 1 to the period from 1995 to 2001. One of the advantages of the exact 
industry contributions is that they can be combined into analytically interesting groups of 
industries, such as IT or ICT industries, with no loss of precision. Furthermore, combining the 
exact contributions of the individual industries in a group yields a result virtually identical to the 
one that could be calculated by aggregating these industries in the I-O tables and then calculating 
the exact contribution of the aggregate.21  

                                                 
20 Output per hour for nonfarm business from BLS grows at an average rate of about 1.5 percent per year from 1987 
to 1995, and at 2.4 percent per year from 1995 to 2001. BLS data used to construct multifactor productivity growth 
in nonfarm business up to 2001 implies that 0.3 percentage points of the speedup in output per hour growth come 
from faster multifactor productivity growth, and 0.6 percentage points come from growth of ordinary capital and 
human capital as measured in the “labor composition” adjustment.  See http://www.bls.gov/lpc/home.htm#data.  
21 The two results may not be precisely identical because the factor needed to scale the Sato-Vartia weights to add 
up to 1, which is itself quite near 1, may change when industries are aggregated in the I-O tables.  
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 In the aggregate, the contribution to the productivity speedup of changes in gross output 
per hour (0.40 percent per year) is smaller than the indirect effect of declining intermediate input 
utilization (0.49 percent per year). The labor reallocation effect is negative in both periods, but it 
contributes to the productivity speedup by rising from –0.46 percent per year before 1995 to –
0.33 percent per year after 1995.  

 The largest contribution to the productivity speedup in table 2, of 0.74 percentage points, 
comes from the combined wholesale and retail trade industries. Productivity gains from 
improvements in business processes (e.g. a “Wal-Mart effect”) facilitated by increased IT use, as 
well as the substitution of capital for labor, are probably both important reasons for the surge in 
productivity in the distribution industries. In addition, Bosworth and Triplett (2004) observe that 
productivity in these industries may benefit in another way from rising quality levels of IT 
goods; in particular, if the amount of real resources required to sell a box to a retail customer is 
constant, but we count the box as containing twice as much “computing power” as before, 
measured productivity in retailing will rise. A preliminary analysis suggests, however, that this 
effect — which is sometimes viewed as a spurious increase in productivity — is small.  

 Another industry with a large contribution to the productivity speedup in table 2 is 
securities and commodity brokers. This industry makes intensive use of IT capital goods, so 
falling prices for these goods may have enabled it to substitute more capital for labor and 
intermediate inputs in the later period and to realize gains in multifactor productivity.  

 The health services industry made an important contribution to the overall speedup 
because its value added productivity went from a negative growth rate to around 0 in the post-
1995 period. Most of this improvement resulted from a large improvement in the growth rate of 
gross output per hour, which became positive after 1995. Although the pickup in productivity in 
this industry may be real, its relatively poor performance in the pre-1995 period could partly be 
due to measurement error, perhaps as a result of quality improvements not captured by its output 
price index. (In addition, health services contains many nonprofit institutions whose real output 
is partly measured as a deflated cost of inputs including compensation of employees, resulting in 
a questionable measure of productivity change.) The productivity speedup may, therefore, partly 
reflect improvements in measurement techniques in the late 1990s. 

 The industries that contain computers and semiconductors (industrial machinery and 
electrical equipment) make relatively large contributions to productivity growth in both periods. 
This qualitative result is consistent with what previous researchers have found, but table 2 shows 
a slightly smaller pickup in this contribution than others have found; indeed, less than one-sixth 
of the productivity speedup (or 0.156 percentage points) is directly attributable to these 
industries.22 Within these industries, most of the productivity speedup comes from declining 
relative use of intermediate inputs; not rising gross output per hour. The relative decline in the 
real intermediate inputs after 1995 partly reflects a relatively large pickup in the rate of decline 
of the price deflator for these industries’ gross output.  

                                                 
22 Note that contributions to the level or to the speedup of aggregate productivity must be interpreted carefully 
because some negative contributions are present.  In table 2, as a group the industries with positive contributions can 
“explain” about 180 percent of the total speedup. 
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Table 2.  Contributions to Aggregate Growth in Real Output per FTE for Nonfarm Private 
Business: Selected Groups of Industries 

Group of Industries 

Gross 
Output 
Labor 

Productivity

LESS: 
Intermediate 

Input Intensity
Effect 

EQUALS: 
Value Added 

Labor 
Productivity 

PLUS: 
Labor 

Reallocation 
Effect 

EQUALS: 
Contribution
to Agg. Labor
Productivity 

Nonfarm Private Business       
Average, 1995-2001 2.290 -0.101 2.391 -0.326 2.065 
LESS: Average, 1988-1995 1.891 0.391 1.500 -0.460 1.040 
EQUALS: Speedup 0.399 -0.492 0.891 0.134 1.025 
       
Industries with Positive Contributions to Speedup in Aggregate Productivity Growth  

All 34 Industries with Positive Total Contributions     
Average contribution, 1995-2001 2.225 -0.418 2.643 -0.029 2.614 
LESS: Average Contribution, 1988-1995 1.525 0.522 1.003 -0.225 0.778 
EQUALS: Contribution to Speedup 0.700 -0.940 1.640 0.196 1.836 
       
Wholesale and Retail Trade      
Average contribution, 1995-2001 0.650 -0.417 1.066 -0.008 1.059 
LESS: Average Contribution, 1988-1995 0.384 0.040 0.344 -0.022 0.322 
EQUALS: Contribution to Speedup 0.266 -0.456 0.722 0.014 0.736 
      
Security and Commodity Brokers     
Average contribution, 1995-2001 0.132 -0.102 0.233 0.047 0.280 
LESS: Average Contribution, 1988-1995 0.080 0.016 0.064 0.008 0.071 
EQUALS: Contribution to Speedup 0.052 -0.118 0.170 0.039 0.209 
      
Health Services       
Average contribution, 1995-2001 0.050 0.062 -0.012 0.000 -0.012 
LESS: Average Contribution, 1988-1995 -0.044 0.108 -0.153 -0.034 -0.187 
EQUALS: Contribution to Speedup 0.094 -0.046 0.140 0.034 0.175 
      
Electronic and other electric equipment      
Average contribution, 1995-2001 0.276 -0.097 0.373 -0.011 0.362 
LESS: Average Contribution, 1988-1995 0.250 -0.041 0.291 -0.012 0.280 
EQUALS: Contribution to Speedup 0.026 -0.056 0.082 0.000 0.082 
     
Telephone and Telegraph     
Average contribution, 1995-2001 0.204 0.067 0.137 0.039 0.176 
LESS: Average Contribution, 1988-1995 0.155 0.019 0.136 -0.035 0.101 
EQUALS: Contribution to Speedup 0.049 0.048 0.001 0.074 0.075 
      
Industrial Machinery      
Average contribution, 1995-2001 0.139 -0.090 0.228 -0.001 0.227 
LESS: Average Contribution, 1988-1995 0.159 0.004 0.155 -0.002 0.153 
EQUALS: Contribution to Speedup -0.021 -0.094 0.073 0.001 0.074 
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Table 2.  Continued 

Group of Industries 

Gross 
Output 
Labor 

Productivity

LESS: 
Intermediate 

Input Intensity
Effect 

EQUALS: 
Value Added 

Labor 
Productivity 

PLUS: 
Labor 

Reallocation 
Effect 

EQUALS: 
Contribution
to Agg. Labor
Productivity 

All Services except health services       
Average contribution, 1995-2001 0.322 0.304 0.018 -0.201 -0.183 
LESS: Average Contribution, 1988-1995 0.148 0.169 -0.071 -0.155 -0.226 
EQUALS: Contribution to Speedup 0.174 0.135 0.089 -0.046 0.043 
      
B usiness Services      
Average contribution, 1995-2001 0.205 0.173 0.032 -0.069 -0.036 
LESS: Average Contribution, 1988-1995 0.095 0.079 0.015 -0.057 -0.042 
EQUALS: Contribution to Speedup 0.111 0.094 0.017 -0.012 0.005 
        
Industries with Negative Contributions to the Speedup in Aggregate Productivity Growth  

All 24 Industries with Negative Total Contributions     
Average contribution, 1995-2001 0.065 0.317 -0.252 -0.297 -0.549 
LESS: Average Contribution, 1988-1995 0.366 -0.131 0.498 -0.236 0.262 
EQUALS: Contribution to Speedup -0.301 0.448 -0.749 -0.062 -0.811 
       
Electric, Gas, and Sanitary Services       
Average contribution, 1995-2001 0.060 0.061 -0.001 -0.068 -0.069 
LESS: Average Contribution, 1988-1995 0.094 -0.011 0.105 -0.047 0.058 
EQUALS: Contribution to Speedup -0.033 0.073 -0.106 -0.021 -0.128 
        
Food and Kindred Products       
Average contribution, 1995-2001 0.016 0.087 -0.071 -0.003 -0.073 
LESS: Average Contribution, 1988-1995 0.026 -0.023 0.049 -0.002 0.048 
EQUALS: Contribution to Speedup -0.010 0.110 -0.120 -0.001 -0.121 
      
Nondurable Manufacturing      
Average contribution, 1995-2001 0.137 0.162 -0.025 0.002 -0.023 
LESS: Average Contribution, 1988-1995 0.137 0.013 0.111 -0.017 0.094 
EQUALS: Contribution to Speedup 0.000 0.149 -0.136 0.019 -0.117 
      
Membership organizations      
Average contribution, 1995-2001 -0.031 0.014 -0.045 -0.071 -0.116 
LESS: Average Contribution, 1988-1995 0.000 -0.002 0.002 -0.029 -0.028 
EQUALS: Contribution to Speedup -0.030 0.016 -0.046 -0.042 -0.088 
        
Construction       
Average contribution, 1995-2001 -0.097 -0.042 -0.055 -0.018 -0.073 
LESS: Average Contribution, 1988-1995 -0.049 -0.056 0.007 0.004 0.011 
EQUALS: Contribution to Speedup -0.048 0.014 -0.062 -0.022 -0.084 
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 Two industries in the service sector round out our group of positive contributors to the 
productivity speedup. These are telephone and telegraph, and business services. In the high-
productivity telephone industry, rapid growth of hours boosted its contribution from the labor 
reallocation effect from –0.035 in the pre-1995 period to 0.039 in the post-1995 period, and 
value added per hour also accelerated. In business services, gross output per FTE grew much 
faster in the post-1995 period, but a rise in use of intermediate inputs appeared to account for 
most of this gain, leaving only a small contribution to aggregate value added per FTE. Also, a 
pickup in employment in the low-productivity business services industry reduced its labor 
reallocation contribution from –0.057 to –0.069. This may reflect an increased tendency for high-
productivity industries to contract out activities that have low value added per hour worked. 
Since industries engaged in such contracting out would show a gain in their value added 
productivity without making any real improvement in production technology, some of the 
negative labor reallocation contribution of business services could arguably be attributable to 
other industries that showed large productivity gains. 

 Three of the four detailed industries in table 2 with noteworthy negative contributions to 
the productivity speedup include negative components from the labor reallocation effect. 
Decelerating growth of employment in the capital-intensive electric, gas and sanitary services 
industry depressed its labor reallocation contribution from –0.047 to –0.068.  

 Finally, table 2 shows that increased utilization of intermediate inputs is an important 
cause of a productivity slowdown in two industries: food and kindred products, and electric, gas 
and sanitary services.23 Business services such as payroll processing may be increasing their use 
of computer power more rapidly than their growth of real output. Estimates of the growth of the 
intermediate inputs in the food product manufacturing industry may be affected by difficulties in 
estimating the portion of the output of vertically integrated producers of food products 
attributable to the farm industry. The growing consumption of organic foods, which are more 
expensive to farm, may also have contributed to the relatively rapid growth of intermediate 
inputs. Finally, the electric services may have substituted to cleaner, more expensive fuels, such 
as lower sulfur coal or natural gas, to comply with environmental standards. Such substitution 
would likely register as growing use of intermediate inputs. Also, since gas-burning electric 
plants are less capital intensive than most other kinds of powered plants, it may also result in the 
substitution of intermediate inputs for capital services.  

 

 7. Conclusion  
 

 This paper has derived exactly additive formulas for the decomposition of industry 
sources of a Fisher measure of aggregate labor productivity growth. The Törnqvist formulas for 
industry contributions to labor productivity change developed by Basu and Fernald (1995 and 
1997) and by Stiroh (2002) theoretically approximate the exact contributions. In empirical tests, 
the Törnqvist formulas exhibit a slight downward bias in measuring aggregate productivity 
growth, and in measuring the contributions of the IT producing industries to aggregate 

                                                 
23 Basu (1995) was among those who urged a closer look at the role of intermediate inputs more than a decade ago. 
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productivity growth. Nevertheless, on the whole, the agreement between the Törnqvist formulas 
and the exact formulas is remarkably close. The results therefore show that the Törnqvist 
approximations provide acceptable measures of industry contributions to aggregate labor 
productivity change. 

 This paper also provides new empirical evidence on industry contributions to labor 
productivity growth. The IT producing industries directly account for a quarter to two-fifths of 
aggregate productivity growth, but their direct contribution to the post-1995 productivity 
speedup in productivity growth is only around one-sixth of the total speedup. In contrast, the 
wholesale and retail trade industries account for more than half of the speedup.  

 

Appendix: Derivation of Törnqvist Measure of Aggregate Growth 

 

 Let d denote the change in real GDP implied by the Törnqvist formulas for 

industry contributions to productivity change. To solve for , let  denote current-dollar 
gross output in industry i, let  denote current-dollar intermediate inputs, and let  denote 
current-dollar GDP, or the sum over all industries of current-dollar value added. Then, 
substituting  for , the change in aggregate output implied by equation (22) is  
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Using the notation of Stiroh’s (2002) equation (5), define Mits  as the ratio of average deflated 
intermediate inputs to average deflated gross outputs: 
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 Also, following Basu and Fernald (1997), define the log change in the arbitrary industry 
i’s real value added as:   
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Then the log change in aggregate output implied by the Törnqvist decomposition is:  
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(A-4)  )V̂logd(vV̂logd iti itt ∑= . 

 The functional form in equation (A-4) is quite different from the formula for the Fisher 
quantity index for GDP. This makes an analytical analysis of how well  approximates 

 difficult, leaving the question to be addressed with empirical evidence. 
tV̂logd
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Chapter 6 
LABOR PRODUCTIVITY: AVERAGE VS. MARGINAL 

Ulrich Kohli1 

 

1. Introduction 
 Most headline productivity measures refer to the average product of labor, with 
productivity growth being typically explained by capital deepening and technological progress. 
One might argue, however, that from an economic perspective a more relevant measure of the 
productivity of labor is its marginal product. This is certainly true if one is interested in the 
progression of real wages. It turns out, however, that as long as the income share of labor 
remains essentially constant through time, the two productivity measures give almost identical 
results. In the case of the United States, the share of labor has been fairly steady over the past 
thirty years.2 Moreover, the paths of both measures of labor productivity for the United States 
have been very similar over the 1971-2001 period.  

 The stability of the labor share also explains why the Cobb-Douglas production function 
– which restricts the Hicksian elasticity of complementarity between inputs to be unity and thus 
forces the input shares to be constant – appears to fit U.S. data reasonably well. Any increase in 
the relative endowment of capital or any technological change, independently of whether it is 
labor or capital augmenting, necessarily leaves factor shares unchanged with this specification, 
and thus is measured to impact on the average and marginal products of labor to exactly the same 
extent. A more thorough look at the evidence, however, reveals that the historical empirical 
constancy of U.S. factor shares is not a law of nature; it is the outcome of opposing forces. 

 Using a functional form more flexible than the Cobb-Douglas, we find on the one hand 
that over the past three decades the Hicksian elasticity of complementarity between labor and 
capital has been significantly greater than one. Thus capital deepening, other things equal, has 
lead to an increase in the share of labor and thus raised its marginal product by relatively more 
than its average product. On the other hand, we find that technological change has had an 
offsetting effect over 1971-2001. It has basically been labor augmenting, and given the large 
elasticity of complementarity, has tended to reduce the share of labor and thus to raise its average 
product relative to its marginal product. This paper seeks to analytically disentangle these effects 
and proposes a measurement methodology which is then applied to produce a multiplicative 
decomposition of the average and marginal U.S. labor productivity over the past three decades. 

 

ons. 

1 When this paper was written, the author was the chief economist, Swiss National Bank. He is now with the 
University of Geneva and can be reached at Ulrich.Kohli@unige.ch. The author is grateful to W. Erwin Diewert, 
Alice Nakamura, and Marshall Reinsdorf for their comments on an earlier draft, but has sole responsibility for any 
errors or omissi
2 Between 1971 and 2001, the GDP share of labor in the United States fluctuated over the range of .70 to .74, with 
an apparent mild downward time trend. See the appendix for a description of the data. 
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 While labor productivity is often the focus of attention, many economists are more 
interested in total factor productivity. Though less intuitive, total factor productivity, as indicated 
by its name, is more general. It encompasses all factors of production rather than just one of 
them. It turns out that total factor productivity is an essential component of the average 
productivity of labor. A third contribution of this paper is to document this important 
relationship. We present estimates for the United States for the 1971-2001 period that are derived 
from two different approaches: an econometric approach and one based on index numbers. 

 A fourth contribution of the paper is to move beyond the rather restrictive two-input, one-
output production-function setting. We expand the model by adopting the GDP function 
framework that allows for many inputs and outputs, including imports and exports. This not only 
makes it possible to get a better estimate of the elasticity of complementarity between domestic 
primary inputs, but it also shows that there are additional forces at work including changes in the 
terms of trade and in the real exchange rate. Complete multiplicative decompositions of both 
measures of labor productivity and of total factor productivity are provided for this case as well 
for the United States for the 1971-2001 time period. 

 

2. The Two-Input, One-Output Case 
 Assume that the aggregate technology can be represented by the following two-input, 
one-output production function: 

(1)  , ),,( ,, tvvyy tKtLt =

where  measures the quantity of output,  denotes the input of labor services, and  is 
the input of capital services, with all three quantities being measured at time t. Note that the 
production function itself is allowed to shift over time to account for technological change. We 
assume that the production function is linearly homogeneous, increasing, and concave with 
respect to the two input quantities. 
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where  and  represent the rental prices of labor and capital, and  is the price of 
output. The partial derivative  on the left-hand side of (2) is the marginal product of labor.  

t,Lw t,Kw tp
)(⋅Ly

 The average product of labor ( ), on the other hand, is simply defined as: t,Lg

(4) 
t,L

t
t,L v

y
g ≡ . 

Using production function (1), we can also write the average product of labor as follows: 
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 An index of average labor productivity ( ) can be expressed as one plus the rate of 
increase in the average product of labor between period t-1 and period t, which is: 
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Similarly, we can define an index of marginal labor productivity ( ) as: 1−t,tM
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Note that it follows from the linear homogeneity of the production function that both )(⋅Lg  and 
 are homogeneous of degree zero in  and . The same is therefore true for the two 

measures of labor productivity, which thus depend only on changes in relative factor 
endowments and on the passage of time. 

)(⋅Ly t,Lv t,Kv

 Next, we define  as the share of labor in total revenues (i.e., GDP): t,Ls
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It follows from (1), (2), (4) and (5) that: 
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Using (9) in (6) and (7), we can rewrite the index of marginal labor productivity growth as 

(10) , 111 −−− ⋅= t,tt,tt,t ASM

where  is the 1−t,tS labor share index: 

(11) 
)1,,(

),,(

1,1,

,,
1, −
≡

−−
− tvvs

tvvs
S

tKtLL

tKtLL
tt . 

This index is greater or smaller than one, depending on whether the share of labor has increased 
or fallen between period t-1 and period t. 

 

3. The Role of the Hicksian Elasticity of Complementarity 
 According to (10), the growth of the marginal productivity of labor will be higher (lower) 
than the growth of the average productivity if technological progress and changes in relative 
factor endowments lead to an increase (decrease) in labor’s share over time. Using (9), we find: 
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where  and where )/()()( ,,
2

tKtLLK vvyy ∂∂⋅∂≡⋅ LKψ  is the Hicksian elasticity of 
complementarity between labor and capital defined as:3 
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Thus, capital deepening will lead to an increase (decrease) in the share of labor if and only if the 
elasticity of complementarity is greater (smaller) than one. 

 Next, to assess the impact of the passage of time, we take the partial derivative of  
with respect to t, which yields: 
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where , , and where tyyT ∂⋅∂≡⋅ /)()( )/()()( ,
2 tvyy tLLT ∂∂⋅∂≡⋅ LTψ  is defined as follows: 
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The ratio )(/)( ⋅⋅ LLT yy
)

 is the elasticity of the real wage rate with respect to time. The ratio 
(/)( ⋅⋅ Tyy

tμ
, on the other hand, is the inverse of the instantaneous rate of technological change 

( ). Thus, LTψ  will be greater than one if and only if technological change tends to favor labor 
relative to capital, in the sense that the wage rate increases by relatively more than the return to 
capital.4 In that case the share of labor will increase with the passage of time. 

                                                           
3 In the two input case, is necessarily positive; that is, the two inputs are necessarily Hicksian complements for 
each other. Moreover, in the two input case, the Hicksian elasticity of complementarity is then equal to the inverse 
of the Allen-Uzawa elasticity of substitution (see footnote 12). 

LKψ

4 In that case, technological change is said to be pro-labor biased. See Kohli (1994) and section 6 below. 

 
106



Ulrich Kohli  

4. Disembodied Factor Augmenting Technological Change 

 To better track the impact of technological change on the share of labor, let us assume for 
a moment that technological change is disembodied, factor augmenting, and takes place 
exponentially. We can then rewrite the production function (1) as follows: 

(16) , )~,~(),(),,( ,,,,,, tKtL
t

tK
t
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where Lμ  and Kμ  are the rates of factor-augmenting technological change for labor and capital 
( 0,0 ≥≥ KL μμ ), and  and  are the quantities of labor and capital measured in terms of 

efficiency units ( v , ). The marginal product of labor 
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where . The average product of labor, on the other hand, is equal to: tLL vff ,
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and the labor share can now be expressed as: 
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Differentiating expression (19) with respect to time, we get: 
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where we have taken into account the restrictions 0=+ t,KLKt,LLL v~fv~f  and 
)(~~

,, ⋅=+ fvfvf tKKtLL  that arise from the linear homogeneity of the production function. 

 Thus, the labor share will increase with the passage of time if LK μμ >  and LK 1>ψ , or, 
alternatively, if LK μμ <  and 1<LKψ . If technological change is Harrod-neutral, for instance 
( 0>Lμ  an 0=d Kμ  in that case) and if labor and capital are relatively good complements, then 
the share of labor will tend to fall over time. The increase in the available amount of labor 
measured in terms of efficiency units will tend to have a sufficiently large positive impact on the 
marginal product of capital for the share of capital to increase and the share of labor to fall. 
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5. The Cobb-Douglas Functional Form 

 Suppose the production function (1) has the Cobb-Douglas form: 

(21) t
tLtKtKtL evvetvvy KK μββα −= 1

,,,, 0),,( , 

where 10 << Kβ  and μ  is the rate of Hicks-neutral technological change. One would normally 
expect this rate to be positive. This indeed turns out to be the case as indicated by the estimates 
of (21) reported in table 1, column 1.5 

 Note that the production function (21) could just as well have been written as: 

(22) KKK
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or as 

(23) KLK t
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where KK βμμ /≡  and )1/( KL βμμ −≡ . What this means is that it is not possible, in the 
Cobb-Douglas case, to discriminate between the Hicks-neutral, the Solow-neutral, and the 
Harrod-neutral cases of technological change.  

 In any case, it is well known that in the Cobb-Douglas case, the marginal product of labor 
is proportional to its average product: 
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It follows from (9) and (24) that Kβ−1 can be interpreted as the share of labor in total income, 
which is thus invariant by construction in the Cobb-Douglas case: 

(25) KtLs β−= 1, . 

 To sum up, in the Cobb-Douglas case, the two measures of labor productivity defined in 
(6) and (7) must give exactly the same result because  is equal to unity in (10). 1−t,tS

 

6. The Translog Functional Form 
 The Cobb-Douglas function forces the Hicksian elasticity of complementarity to be unity. 
A more general representation of the technology is given by the translog functional form.6 
Maintaining for the time being the assumption of disembodied, factor-augmenting technological 
change, we can represent the translog production function as follows: 

                                                           
5 See the appendix for a description of the data. We jointly estimated equations (21) (in logarithmic form) and (25). 
The estimation method is Zellner’s method for seemingly unrelated equations as implemented in TSP, version 4.3A. 
The value of the logarithm of the likelihood function (LL) is also reported. 
6 See Christensen, Jorgenson and Lau (1973), and Diewert (1974). 
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The labor share is obtained by logarithmic differentiation: 

(28) tvvs LKKKtLtKKKKtL )()ln(ln)1( ,,, μμφφβ −−−−−= . 

 The Hicksian elasticity of complementarity can be obtained as: 
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LKψ is greater than one if and only if KKφ  is negative.7 In that case the share of labor increases 
with capital intensity. This matches our result of section 2.  

 However, it is also apparent from (28) that the form of technological change plays a role. 
If KL μμ >  and 0>KKφ , or, alternatively, if LK μμ >  and 0<KKφ , technological change is 
pro-labor biased in that the share of labor will increase as the result of the passage of time. In that 
case, the marginal product of labor will tend to increase more rapidly than the average product.  

 Parameter estimates for equation (27) are reported in table 1, column 2.8 These results 
suggest that KL μμ >  and 0<KKφ  in the case of the United States. Thus, technological change 
is labor augmenting, but anti-labor biased. 

 Function (27) is flexible with respect to the quantities of labor and capital, but not with 
respect to time.9 A TP-flexible translog production function formulation is given by: 

(30) 
.

2
1)ln(ln

)ln(ln
2
1ln)1(lnln

2
,,

2
,,,,0

tttvv

vvvvy

TTTtLtKKT

tLtKKKtLKtKKt

φβφ

φββα

++−

+−+−++=
 

                                                           
7 Note that concavity of the production function requires to be positive; that is, the following constraint must 

hold: . 
LKψ

)1( ,, tLtLKK ss −<φ
8 Equation (27) was estimated jointly with (28) by nonlinear iterative Zellner as implemented into TSP, version 
4.3A; see Berndt, Hall, Hall, and Hausman (1974). The standard errors are computed from the quadratic form of the 
analytic first-order derivatives. The estimate of  is reported in table 1 as well. LKψ
9 Here we are using the terminology of Diewert and Wales (1992). They define as TP flexible functional form a 
function that not only is flexible (i.e. gives a second-order approximation) with respect to input quantities, but that is 
also flexible with respect to technological progress (i.e. it is quadratic with respect to time). 
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Table 1.  Parameter Estimates 
 Equation: 
 (21) (27) (30) (76) 
 

Cobb-Douglas 
production 

function 

Translog 
production 

function 

TP-flexible 
translog 

production 
function 

Translog real 
value added 

function 
α0 8.966a 8.970a 8.971a 8.970a 
αQ    -0.125 
αE    -0.019a 
βK 0.277a 0.284a 0.285a 0.285a 
γQQ    0.0109 
γQE    -0.0940a 
γEE    0.0997a 
φKK  -0.1360a -0.1532a -0.2806a 
δQK    0.0679a 
δEK    -0.0354 
δQT    -0.0043a 
δET    0.0018a 
φKT   0.0017a 0.0016a 
βT   0.0111a 0.0108a 
φTT   0.00008 0.00010a 
μ 0.0098a    
μK  0.0018   
μL  0.0134a   
     
LL 213.63 224.09 226.70 469.78 
     

ψKL 1.00 1.67 1.75 2.39 
Note: A superscript a indicates a coefficient that is significantly different 
from zero with a 95 percent level of confidence using a two tailed test. 

 

 Comparing (27) with (30), one sees that the latter contains one extra parameter. The share 
of labor is now given by: 

(31) tvvs KTtLtKKKKtL φφβ −−−−= )ln(ln)1( ,,, . 

It is immediately obvious that technological change is anti-labor biased in the sense that it leads 
to a reduction in the share of labor if and only if 0>KTφ . This turns out to be the case as shown 
by the parameter estimates of (30) reported in table 1, column 3.10 

                                                           
10 These figures were obtained by estimating (30) and (31) jointly, the estimation method again being iterative 
Zellner. 
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7. On the Form of Technological Change: a Digression 

 When it comes to technological progress and the analysis of its impact on labor and 
capital, one finds many different competing concepts in the literature. The overall picture can 
therefore become quite confusing. Thus, does technological progress favor labor or capital? Is 
technological progress labor saving, labor using, labor augmenting, labor rewarding, or labor 
penalizing? Is it pro- (or anti-) labor biased, or even ultra pro- (or anti-) labor biased? To some 
extent, these concepts apply to different situations and they are not mutually exclusive. In the 
production-function context, where the input quantities are taken as exogenous and their 
marginal products as endogenous, technological change will tend to impact on these marginal 
products. Technological progress can be said to favor – or reward – labor and/or capital, in so far 
as it increases the marginal products of labor and/or capital, respectively. Technological progress 
may favor one more than the other when it favors both. It may also penalize one factor by 
reducing its marginal product, although, other things equal, a technological improvement must 
necessarily have a favorable impact on at least one factor. 

 In the production function context, one can also think of technological change as being 
factor augmenting; i.e., it can increase the endowment of one or both factors in terms of 
efficiency units even if the observed quantities have not changed. If technological change is 
labor augmenting in this sense (i.e. 0>Lμ ), it will, other things equal, tend to depress the 
marginal product of an efficiency unit of labor and enhance the marginal product of capital.11 
Whether the actual marginal product of labor increases or not will ultimately depend on the 
Hicksian elasticity of complementarity between the two factors. If labor and capital are strong 
complements, labor might well be penalized and suffer a drop in its wage. Unless labor and 
capital are indeed rather weak Hicksian complements, the share of labor will tend to decrease. In 
that sense, technological change can be said to be inherently anti-labor biased. If the share of 
labor not only falls, but the wage rate declines too, one could think about this as an ultra anti-
labor bias.  

 Appendix table A1 gives an overview of the cases that might occur with just two inputs, 
and assuming that technological change is disembodied and factor augmenting. For simplicity, 
we only consider the polar cases of Harrod-, Hicks- and Solow-neutrality, but intermediate 
situations can obviously arise as well.12 Based on the estimates of the translog function (27) 
discussed in section 5 and reported in table 1, column 2, technological change is nearly Harrod-
neutral. It is thus labor augmenting. The elasticity of complementarity is greater than one, but 
less than the inverse of the capital share. The case described in the second column of table A1 is 
therefore the one that is relevant for the United States over the 1971-2001 period. Although 
technological change is labor (and capital) rewarding, viewed in a 2-input production function 
framework it is nevertheless anti-labor (and pro-capital) biased. 

                                                           
11 The return of labor per unit of efficiency can be defined as . tL

tLtL eww μ−≡ ,,
~

12 The ’s (j=L,K) are the semi-elasticities of factor rewards with respect to time; see Diewert and Wales (1987). 

The ’s ( ) measure the bias; see Kohli (1994) for details. The hats indicate relative changes. The 
changes in factor rental prices are derived under the assumption that the price of output remains constant. 

jTε

jκ μεκ −≡ jTj
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 The terms labor (or capital) using and saving are what are relevant when the technology 
is described by a cost function instead of a production function.13 In the aggregate, this would be 
appropriate in a Keynesian setting, where output and factor rental prices can be viewed as 
predetermined and where the model yields the demand for labor and capital services. For a given 
level of output, technological progress will lead to a reduction in the demand for one or both 
inputs. In that sense, technological progress can be labor and/or capital saving, just like it could 
be labor or capital using (but not both). In this context, factor rental prices are assumed to be 
given, but the share of labor can change either way depending on how strongly technological 
change impacts on labor relative to capital.  

 If the labor share increases, one might say that technological progress is pro-labor biased, 
although this outcome is possible whether technological progress is labor using or labor saving. 
If the labor share falls, technological change would necessarily have to be labor saving, but at the 
same time, it can be either capital using or capital saving. In this context, we can also think of 
technological change as modifying the effective rental price of one or both inputs. That is, 
technological progress could lead to the lowering of the rental price of labor per unit of 
efficiency. Other things equal, this will favor the demand for labor at the expense of capital in 
terms of efficiency units, but whether or not the measured demand for labor increases or not 
depends on the size of the Allen-Uzawa elasticity of substitution between labor and capital. If 
that elasticity is close to zero, the actual demand for labor might well fall. It is easy to see that 
the share of labor could in general go in either direction.  

 Appendix table A2 summarizes the possible outcomes in the cost function setting.14 
Given the empirical results to which we alluded earlier, we can conclude that in the U.S. case, 
technological change is labor- (and capital-) saving, and anti-labor biased. 

 In the two input case, there is a simple correspondence between the cost function setting 
and the production function setting, since the elasticity of substitution is then equal to the inverse 
of the elasticity of complementarity. This is no longer the case if the number of inputs exceeds 
two, since the transformation of one type of elasticity into the other requires the inversion of a 
bordered Hessian matrix.15 It is no longer true, then, that an elasticity of complementarity 
between a pair of inputs greater than one necessarily implies that the corresponding elasticity of 
substitution is less than unity. In fact, the two elasticities need not even have the same sign. This 
makes any characterization of technological progress without reference to the analytical 
framework at best ambiguous, and at worst useless. 

 

8. Accounting for Labor Productivity 
 We now turn to the task of accounting for the changes over time in the average and the 
marginal products of labor. Using (6) as a starting point, we can define the following index that 

                                                           
13 See Jorgenson and Fraumeni (1981), for instance. 
14 The function ’s (j=L,K) is the unit cost function, and  is the Allen-Uzawa elasticity of substitution. The 

’s (j=L,K) now designate the semi-elasticities of input demands with respect to time. In deriving these results, 
we have assumed that output remains constant. 

)(⋅c LKσ

jTε

15 See Kohli (1991). 
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isolates the impact of changes in factor endowments over consecutive periods of time on the 
average productivity of labor: 

(32) 
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When defining  we have held the technology constant at its initial (period t-1) state. 

 thus has the Laspeyres form, so to speak. Alternatively, we could adopt the technology 

of period t as a reference. We would then get the following Paasche-like index: 
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 Since there is no reason a priori to prefer either measure (32) or (33), we follow Diewert 
and Morrison’s (1986) example and take the geometric mean of the two indexes. We thus get: 
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Note that if capital deepening takes place, both  and  will be greater than one, in 

which case  must exceed one as well. 
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 Similarly, we can define the following index that isolates the impact of technological 
change. That is, we compute the index of average labor productivity allowing for the passage of 
time, but holding factor endowments fixed, first at their level of period t-1, and then at the level 
of period t: 
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Taking the geometric mean of these two indexes, we get: 
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 It can easily be seen that  given in (34) and  given in (37) together yield a 
complete decomposition of the index of average labor productivity: 

1−t,t,VA 1−t,t,TA
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 We can proceed along exactly the same lines with the marginal productivity index. We 
thus get the two following partial indexes: 
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Together these two partial indexes provide a complete decomposition of : 1−t,tM

(41) . 111 −−− ⋅= t,t,Tt,t,Vt,t MMM

 An alternative way of tackling the decomposition of  would be on the basis of (9). 
Indeed, since ,  could also be expressed as: 
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measures the contribution of changes in factor endowments on the share of labor. Similarly, it 
can be seen that: 

(44) , 111 −−− ⋅= t,t,Tt,t,Tt,t,T ASM

where 
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1−t,t,TS  measures the contribution of technological progress to changes in the share of labor; it 
will be greater than one if technological change is pro-labor biased, and less than one otherwise. 

 Note that (38) and (41) only hold as long as and  are indeed given by (6) and 
(7). If one uses actual data and if the average product of labor is measured as output per unit of 
labor and its marginal product is measured by its real wage rate, then one cannot expect 
expressions such as (38) and (41) to hold exactly, since production function (1) itself is only an 
approximation of reality, and the same is true for first order condition (2).  

1−t,tA 1−t,tM

 Let and  be the observed values of the average and marginal 
productivities of labor, respectively: 

1−t,tAA 1−t,tMM
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The full decomposition of both indexes is then given by: 
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where and  are error (or unexplained) components defined by: 1−t,t,UA 1−t,t,UM
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9. Labor Productivity vs. Total Factor Productivity 
 While labor productivity remains the concept of choice when it comes to the public 
debate, most economists prefer to think in terms of total factor productivity. The measure of total 
factor productivity treats all inputs symmetrically. In the production function context, it can be 
defined as the increase in output that is not explained by increases in input quantities. Put 
differently, it is the increase in output made possible by technological change, holding all inputs 
constant. One state-of-the art definition of total factor productivity, , is drawn from the 
work of Diewert and Morrison (1986):
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In view of the definition of , clearly  as given by (52) is in fact identical to  
as defined by (37). That is, total factor productivity in this model is equal to the contribution of 
technological change when explaining the average productivity of labor. The average 
productivity of labor will exceed total factor productivity to the extent that capital deepening 
occurs ( ). 

)(⋅Lg 1−t,t,TY 1−t,t,TA

11 >−t,t,VA

 

10. Measurement 
 Consider first the case of the Cobb-Douglas production function. It is straightforward to 
show that: 
                                                           
16 It too can be thought of as the geometric average of Laspeyres-like and Paasche-like measures. 
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It is interesting to note that, since , it does not matter for (54) to hold 
whether technological change is Hicks-neutral, Harrod-neutral, or Solow-neutral, or more 
general form.

KKLK eee μβμβμ == − )1(

17  

 Recall that we report in table 1, first column, the parameter estimates of the Cobb-
Douglas production function (21). In table 2 we show annual estimates of the decomposition of 
the average and marginal productivity of labor. The factor endowments and the technological 
change components are the same in both tables, but the observed values of average and marginal 
productivity differ, so that the corresponding error terms differ as well. According to table 2, 
labor productivity has increased by close to 1.3% per annum over the sample period. 
Technological progress accounted for the bulk of the increase, with a contribution of about one 
percentage point. Capital deepening added about a quarter of a percentage point on average. 
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For the marginal productivity indexes, we can apply (42) and (44) after having introduced (31) 
into (43) and (45) to get: 
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 Consider next the translog functional form. Introducing (30) into (34) and (37), we find 
that: 

(55) 
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17 See (21)–(23) above. 
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Table 2.  Decompositions of the 2-Input Cobb-Douglas Production Function 
 Average productivity of labor Marginal productivity of labor 
 AAt,t-1 AV,t,t-1 AT,t,t-1 AU,t,t-1 MMt,t-1 MV,t,t-1 MT,t,t-1 MU,t,t-1 
Year (1) (2) (3) (4) (5) (6) (7) (8) 
1971 1.0325 1.0082 1.0099 1.0140 1.0210 1.0082 1.0099 1.0028 
1972 1.0182 0.9999 1.0099 1.0083 1.0126 0.9999 1.0099 1.0028 
1973 1.0186 0.9996 1.0099 1.0091 1.0112 0.9996 1.0099 1.0018 
1974 0.9901 1.0071 1.0099 0.9736 1.0108 1.0071 1.0099 0.9939 
1975 1.0281 1.0149 1.0099 1.0031 1.0200 1.0149 1.0099 0.9952 
1976 1.0214 0.9976 1.0099 1.0138 1.0193 0.9976 1.0099 1.0117 
1977 1.0121 0.9989 1.0099 1.0033 1.0042 0.9989 1.0099 0.9955 
1978 1.0076 0.9965 1.0099 1.0013 1.0029 0.9965 1.0099 0.9966 
1979 1.0020 1.0013 1.0099 0.9910 1.0088 1.0013 1.0099 0.9977 
1980 1.0018 1.0087 1.0099 0.9835 1.0203 1.0087 1.0099 1.0016 
1981 1.0199 1.0058 1.0099 1.0041 1.0126 1.0058 1.0099 0.9969 
1982 1.0064 1.0127 1.0099 0.9841 1.0185 1.0127 1.0099 0.9959 
1983 1.0251 1.0010 1.0099 1.0141 1.0120 1.0010 1.0099 1.0011 
1984 1.0174 0.9933 1.0099 1.0143 0.9936 0.9933 1.0099 0.9906 
1985 1.0107 1.0007 1.0099 1.0001 1.0165 1.0007 1.0099 1.0058 
1986 1.0238 1.0051 1.0099 1.0087 1.0405 1.0051 1.0099 1.0251 
1987 1.0025 0.9987 1.0099 0.9940 0.9962 0.9987 1.0099 0.9878 
1988 1.0125 0.9991 1.0099 1.0036 1.0011 0.9991 1.0099 0.9923 
1989 1.0055 0.9987 1.0099 0.9970 1.0070 0.9987 1.0099 0.9985 
1990 1.0119 1.0047 1.0099 0.9973 1.0182 1.0047 1.0099 1.0035 
1991 1.0156 1.0103 1.0099 0.9954 1.0219 1.0103 1.0099 1.0016 
1992 1.0230 1.0027 1.0099 1.0103 1.0278 1.0027 1.0099 1.0150 
1993 1.0009 0.9985 1.0099 0.9927 0.9963 0.9985 1.0099 0.9881 
1994 1.0050 0.9962 1.0099 0.9990 1.0001 0.9962 1.0099 0.9941 
1995 1.0014 0.9992 1.0099 0.9924 0.9908 0.9992 1.0099 0.9819 
1996 1.0199 1.0028 1.0099 1.0072 1.0095 1.0028 1.0099 0.9969 
1997 1.0112 0.9984 1.0099 1.0029 1.0041 0.9984 1.0099 0.9958 
1998 1.0177 1.0014 1.0099 1.0064 1.0261 1.0014 1.0099 1.0147 
1999 1.0144 1.0011 1.0099 1.0034 1.0175 1.0011 1.0099 1.0065 
2000 1.0236 1.0047 1.0099 1.0089 1.0323 1.0047 1.0099 1.0174 
2001 1.0154 1.0104 1.0099 0.9951 1.0246 1.0104 1.0099 1.0042 
 
1971- 
2001 1.0134 1.0025 1.0099 1.0010 1.0128 1.0025 1.0099 1.0004 

 

 Recall that parameter estimates of the TP-flexible translog production function are 
reported in table 1, column 3. A decomposition of the average and marginal productivity indexes 
based on the translog functional form is provided in columns 1-4 and 5-8 of table 3. Remember 
that  in table 3 can also be interpreted as a model-based measure of total factor 
productivity. The decomposition of the average productivity index is similar to the one obtained 
with the Cobb-Douglas, with total factor productivity accounting for about four fifths of the 
increase in average labor productivity. The decomposition of the marginal productivity index, on 
the other hand, shows a somewhat different picture: technological progress accounts for less than 
two thirds of real wage increases with capital deepening now playing a larger role. The reason 
has to do with the estimate of the elasticity of complementarity, which is significantly larger than 
one. We find that by restricting this elasticity to be unity, the Cobb-Douglas functional form 
leads to an underestimation of the impact of capital deepening on the marginal product of labor. 
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11. The Average Productivity of Labor: An Index Number Approach 

 To make the decomposition (55)–(58) operational one needs econometric estimates of the 
parameters of the translog production function. This is indeed how we were able to construct the 
figures reported in columns 1-4 and 5-8 of table 3. It turns out, however, that, as long as the true 
production function is translog, the decomposition of the average productivity of labor can also 
be obtained on the basis of knowledge of the data alone; that is, without needing to know the 
individual parameters of the production function. 

 
Table 3.  Decompositions for a 2-Input Translog Production Function 

 Average productivity of labor Marginal productivity of labor 

Average productivity of 
labor: index number 

approach 
 AAt,t-1 AV,t,t-1 AT,t,t-1 AU,t,t-1 MMt,t-1 MV,t,t-1 MT,t,t-1 MU,t,t-1 AAt,t-1 AV,t,t-1 AT,t,t-1 
Year (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 
1971 1.0325 1.0081 1.0088 1.0152 1.0210 1.0144 1.0065 1.0000 1.0325 1.0081 1.0243 
1972 1.0182 0.9999 1.0089 1.0093 1.0126 0.9999 1.0066 1.0061 1.0182 0.9999 1.0183 
1973 1.0186 0.9996 1.0090 1.0100 1.0112 0.9993 1.0066 1.0053 1.0186 0.9996 1.0191 
1974 0.9901 1.0070 1.0091 0.9744 1.0108 1.0125 1.0067 0.9917 0.9901 1.0070 0.9833 
1975 1.0281 1.0145 1.0092 1.0041 1.0200 1.0260 1.0069 0.9874 1.0281 1.0145 1.0135 
1976 1.0214 0.9977 1.0094 1.0142 1.0193 0.9959 1.0070 1.0163 1.0214 0.9977 1.0238 
1977 1.0121 0.9989 1.0094 1.0037 1.0042 0.9981 1.0071 0.9991 1.0121 0.9989 1.0132 
1978 1.0076 0.9966 1.0095 1.0016 1.0029 0.9939 1.0071 1.0019 1.0076 0.9966 1.0112 
1979 1.0020 1.0013 1.0096 0.9913 1.0088 1.0023 1.0072 0.9993 1.0020 1.0013 1.0007 
1980 1.0018 1.0087 1.0097 0.9837 1.0203 1.0154 1.0073 0.9975 1.0018 1.0087 0.9934 
1981 1.0199 1.0057 1.0098 1.0043 1.0126 1.0102 1.0074 0.9950 1.0199 1.0057 1.0142 
1982 1.0064 1.0123 1.0099 0.9843 1.0185 1.0221 1.0076 0.9890 1.0064 1.0123 0.9943 
1983 1.0251 1.0010 1.0100 1.0139 1.0120 1.0017 1.0077 1.0026 1.0251 1.0010 1.0241 
1984 1.0174 0.9934 1.0101 1.0139 0.9936 0.9884 1.0077 0.9976 1.0174 0.9934 1.0243 
1985 1.0107 1.0007 1.0102 0.9998 1.0165 1.0013 1.0078 1.0073 1.0107 1.0007 1.0099 
1986 1.0238 1.0051 1.0103 1.0083 1.0405 1.0090 1.0079 1.0232 1.0238 1.0051 1.0186 
1987 1.0025 0.9987 1.0104 0.9935 0.9962 0.9977 1.0080 0.9906 1.0025 0.9987 1.0038 
1988 1.0125 0.9991 1.0104 1.0030 1.0011 0.9984 1.0080 0.9948 1.0125 0.9991 1.0135 
1989 1.0055 0.9987 1.0105 0.9964 1.0070 0.9977 1.0081 1.0012 1.0055 0.9987 1.0069 
1990 1.0119 1.0047 1.0106 0.9966 1.0182 1.0084 1.0082 1.0015 1.0119 1.0047 1.0071 
1991 1.0156 1.0104 1.0107 0.9946 1.0219 1.0184 1.0083 0.9952 1.0156 1.0104 1.0053 
1992 1.0230 1.0027 1.0108 1.0094 1.0278 1.0048 1.0084 1.0143 1.0230 1.0027 1.0203 
1993 1.0009 0.9985 1.0109 0.9917 0.9963 0.9973 1.0085 0.9906 1.0009 0.9984 1.0024 
1994 1.0050 0.9962 1.0110 0.9979 1.0001 0.9933 1.0086 0.9983 1.0050 0.9962 1.0088 
1995 1.0014 0.9992 1.0110 0.9912 0.9908 0.9986 1.0086 0.9837 1.0014 0.9992 1.0021 
1996 1.0199 1.0028 1.0111 1.0059 1.0095 1.0050 1.0087 0.9958 1.0199 1.0028 1.0170 
1997 1.0112 0.9984 1.0112 1.0016 1.0041 0.9972 1.0088 0.9982 1.0112 0.9984 1.0129 
1998 1.0177 1.0014 1.0113 1.0049 1.0261 1.0025 1.0089 1.0146 1.0177 1.0014 1.0162 
1999 1.0144 1.0012 1.0114 1.0019 1.0175 1.0020 1.0089 1.0065 1.0144 1.0012 1.0132 
2000 1.0236 1.0049 1.0115 1.0071 1.0323 1.0086 1.0090 1.0143 1.0236 1.0049 1.0187 
2001 1.0154 1.0107 1.0116 0.9931 1.0246 1.0188 1.0092 0.9965 1.0153 1.0107 1.0048 
            
1971- 
2001 1.0134 1.0025 1.0102 1.0006 1.0128 1.0044 1.0078 1.0005 1.0134 1.0025 1.0109 
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 Following Diewert and Morrison (1986), one can show that, as long as the true 
production function is given by (30),  defined by (37) – or, equivalently,  defined 
by (52) – can be computed as: 

1−t,t,TA 1−t,t,TY

(59) 
1

1
1

−

−
− =

t,t

t,t
t,t,T V

Y
A , 

where is the index of real GDP: 1−t,tY

(60) 
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1
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− ≡
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t
t,t y

y
Y , 

and  is a Törnqvist index of input quantities: 1−t,tV
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where  ( ) is the income share of capital. Hence the following gives a complete 
decomposition of real GDP growth: 

t,Ks t,Ls−= 1

(62) 1111 −−−− ⋅⋅= t,t,Tt,t,Kt,t,Lt,t AYYY ,  

where 
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1−t,t,LY  and  can be interpreted as the contributions of labor and capital to real GDP 
growth.  

1−t,t,KY

 Next, let  be the labor input index: 1−t,tL

(65) 
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It follows from (46) that: 
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Making use of (62) – (64), we get: 

(67) , 111 −−− ⋅= t,t,Tt,t,Vt,t AAAA

where 
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(68) 
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We show in columns 9-11 of table 3 the decomposition of the average productivity of labor 
based on (67). This decomposition does not require knowledge of the parameters of the translog 
function.18 This is obviously very convenient. On the other hand, as indicated by (59), the total 
factor productivity term ( ) is obtained as a Solow residual. Hence, unlike what is done in 
(48), it is not possible to split it up into a secular component and an error term.

1−t,t,TA
19 Note that the 

estimates shown in columns 9-11 of table 3 are very similar to those shown in columns 1-4 of the 
table, except obviously for the total factor productivity term that now incorporates the 
unexplained component. 

 

12. Domestic Real Value Added 

 A production function framework is limiting since it requires the number of outputs to be 
one.20 Moreover, the production function approach makes it impossible to take into account 
imports and exports. In what follows, we therefore opt for the description of the aggregate 
technology by a real value added (or real income) function, such as the one proposed by Kohli 
(2004a) that is based on the GDP function approach to modeling the production sector of an open 
economy.21 We assume that the technology has two outputs, domestic (nontraded) goods (D) and 
exports (X) and three inputs: labor (L), capital (K), and imports (M). Treating imports as a 
variable input is equivalent to treating imports as a negative output.  

 We denote the output quantities (including imports) by  and their prices by , 
. Furthermore, we denote the inverse of the terms of trade by  (

iy ip
},,{ MXDi∈ q XM ppq ≡ ) and 

the relative price of tradables vs. nontradables by e ( DX ppe ≡ ). Note that for given terms of 
trade, a change in e can be interpreted as a change in the real exchange rate, an increase in e 
being equivalent to a real depreciation of the home currency. Let tπ be nominal GDP: 

(69) ttt,Mt,Mt,Xt,Xt,Dt,Dt ypypypyp =−+≡π  . 

 Domestic real value added ( ) – or real gross domestic income (GDI) – is defined as 
nominal GDP deflated by the price of domestic output: 

tz

(70) t,Mttt,Xtt,D
t,D

t
t yqeyey

p
z −+=

π
≡  . 

                                                           
18 This index number approach essentially boils down to using the observed share of labor (8) instead of the fitted 
one as given by (31). See Kohli (1990) for a further discussion of the differences between the two approaches. 
19 An index number approach is not feasible for the marginal productivity index because, even if the true production 
function is translog, the first-order condition is not; as shown by (31), it is linear in logarithms, rather than quadratic. 
20 Alternatively, one must assume that outputs are globally separable from domestic inputs. 
21 See Kohli (1978) and Woodland (1982). 
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Let  be the production possibilities set at time t. We assume that  is a convex cone. The 
aggregate technology can be described by a real valued added function defined as follows: 

tT tT

(71) . ( ) ⎭
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MXD

 In this context, the average real value added of labor ( ) can be expressed as: t,Lh

(72) 
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whereas as the marginal real value added of labor ( ) is given by: t,Lz
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The average and marginal productivity indexes are now as follows: 
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 The translog representation of the real value added function is as follows: 

(76) 
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Logarithmic differentiation yields the following system of equations:22 
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22 See Kohli (2004a). 
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(80) tvveq
t
z

TTtLtKKTtETtQTTt φφδδβμ +−+++=≡
∂

⋅∂ )ln(lnlnln)(ln
,, , 

where Ms  is the GDP share of imports ( π≡ MMM yps ),  is the trade balance relative to 
GDP (

Bs
π)( MMXXBs ≡ ypyp − ),  is, as before, the GDP share of labor, and μ  is again the 

instantaneous rate of technological change.  
Ls

 Parameter estimates, obtained from the joint estimation of equations (76)–(80), are 
reported in the last column of table 1.23 It is noteworthy that the labor share now depends on four 
items. Besides relative factor endowments and the passage of time, the terms of trade and the real 
exchange rate may influence the share of labor as well now. A deterioration in the terms of trade 
(an increase in q) will tend to lower the share of labor as indicated by the positive estimate of 

QKδ . Similarly, a real appreciation of the home currency (a fall in e) will tend to reduce  in 

view of the negative estimate of 
Ls

EKδ . In both these cases, the marginal product of labor would, 
ceteris paribus, increase less rapidly than its average product. 

 

13. Average Productivity in the Open Economy 
 Proceeding along the same lines as in section 8, we can define the following index to 
capture the contribution of changes in the terms of trade to the average productivity of labor: 
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Similarly, we can identify the contribution of changes in the real exchange rate as: 
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the contribution of changes in domestic factor endowments: 
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and, finally, the contribution of technological progress: 
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 Assuming that the real value added function is given by (76) and that its parameters are 
known, it is straightforward to compute the values of (81)–(84). Moreover, it can easily be 

                                                           
23 The estimation method again is the non-linear iterative algorithm for estimating Zellner’s seemingly unrelated 
equations as implemented in TSP.  
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shown that these four effects together give a complete decomposition of the average productivity 
of labor as defined by (74): 

(85) 11111 −−−−− ⋅⋅⋅= t,t,Tt,t,Vt,t,Et,t,Qt,t AAAAA . 

 Moreover, if we seek to explain the observed increase in average labor productivity, we 
get: 

(86) 111111 −−−−−− ⋅⋅⋅⋅= t,t,Ut,t,Tt,t,Vt,t,Et,t,Qt,t AAAAAAA , 

where  is now defined as: 1−t,tAA
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and  is the unexplained component of : 1−t,t,UA 1−t,tAA
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 If the true real value added function is translog it is possible to compute (81)–(84) based 
on the data alone, without knowledge of the parameters of (76). Indeed, one can show that:24 
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so that: 

(93) 11111 −−−−− ⋅⋅⋅= t,t,Tt,t,Vt,t,Et,t,Qt,t AAAAAA . 

 A decomposition of the average productivity of labor according to (86) and (93) is 
reported in columns 1-6 and 7-11 of table 4, respectively.  

 

14. Accounting for Changes in the Share of Labor 
 In the next section, we will focus on the decomposition of the marginal productivity 
index, but first we will briefly turn our attention to the behavior of the labor share. Indeed, we 
                                                           
24 See Kohli (2004a). 
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will follow here essentially the same route as in the production function context; that is, we will 
exploit the link between the marginal and average productivity measures via a labor share index. 

 There is one key difference compared to the treatment in section 8, however. A 
decomposition such as (41), which is exact independently of the underlying functional form, 
only holds if the number of elements on the right-hand side is two. However, if the underlying 
functional form is translog, the decomposition is exact even if the number of components is 
larger; see (85), for instance. But even if the underlying function is translog, as here, the first-
order conditions are not. As shown by (77)–(80), the share equations are linear in logarithms. 
Hence the best we can hope for is a linear approximation of the decomposition of the marginal 
productivity and labor share indices. With this in mind, we will proceed as in sections 8 and 9.25 

 In the context of the real value-added function, the labor share index can be defined as: 
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where  is given by the right-hand side of (79). This index can easily be 
calculated once the parameters of the real value-added function are known. The same holds true 
for the following four indices that identify the contributions of the terms of trade, the real 
exchange rate, the relative factor endowments and the passage of time: 
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 An approximation to  is given by the following:1−t,tS 26 

(99) 11111 −−−−− ⋅⋅⋅≅ t,t,Tt,t,Vt,t,Et,t,Qt,t SSSSS  . 

We next define the observed labor share index: 
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25 See Sfreddo (2001) for a further discussion and for three alternative decompositions of the first-order conditions. 
26 See Sfreddo (2001); we have verified that the residual is almost zero. 
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A complete decomposition of the change in the labor share is hence given by: 

(101) 111111 −−−−−− ⋅⋅⋅⋅≅ t,t,Ut,t,Tt,t,Vt,t,Et,t,Qt,t SSSSSSS , 

where  is the unexplained component which can be represented as: 1−t,t,US
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Table 4.  Decompositions for a 2-Input, 3-Output Translog  

Real Domestic Value Added Function 

 Average productivity of labor 
Average productivity of labor: index 

number approach 
 AAt,t-1 AQ,t,t-1 AE,t,t-1 AV,t,t-1 AT,t,t-1 AU,t,t-1 AAt,t-1 AQ,t,t-1 AE,t,t-1 AV,t,t-1 AT,t,t-1 
Year (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 
1971 1.0310 0.9986 1.0000 1.0081 1.0098 1.0143 1.0310 0.9986 1.0000 1.0079 1.0229 
1972 1.0161 0.9979 1.0001 0.9999 1.0097 1.0084 1.0161 0.9979 1.0001 0.9999 1.0162 
1973 1.0164 0.9980 0.9997 0.9996 1.0097 1.0093 1.0164 0.9980 0.9998 0.9996 1.0168 
1974 0.9792 0.9892 0.9998 1.0071 1.0096 0.9737 0.9792 0.9890 0.9999 1.0070 0.9724 
1975 1.0298 1.0016 1.0000 1.0144 1.0097 1.0038 1.0298 1.0016 1.0000 1.0144 1.0151 
1976 1.0214 1.0001 1.0000 0.9978 1.0098 1.0136 1.0214 1.0001 0.9999 0.9977 1.0238 
1977 1.0083 0.9962 1.0001 0.9989 1.0098 1.0034 1.0083 0.9961 1.0002 0.9989 1.0094 
1978 1.0068 0.9991 1.0001 0.9966 1.0097 1.0014 1.0068 0.9991 1.0001 0.9965 1.0104 
1979 0.9976 0.9959 0.9999 1.0013 1.0097 0.9908 0.9976 0.9959 0.9997 1.0013 0.9963 
1980 0.9894 0.9882 1.0000 1.0089 1.0095 0.9831 0.9894 0.9876 1.0000 1.0085 0.9810 
1981 1.0219 1.0018 1.0002 1.0059 1.0094 1.0044 1.0219 1.0019 1.0001 1.0056 1.0163 
1982 1.0105 1.0038 1.0008 1.0124 1.0096 0.9841 1.0105 1.0038 1.0003 1.0121 0.9984 
1983 1.0295 1.0042 1.0004 1.0009 1.0099 1.0139 1.0295 1.0040 1.0003 1.0009 1.0286 
1984 1.0198 1.0018 1.0003 0.9935 1.0101 1.0141 1.0197 1.0018 1.0005 0.9933 1.0267 
1985 1.0128 1.0006 1.0007 1.0007 1.0101 1.0007 1.0128 1.0006 1.0015 1.0008 1.0121 
1986 1.0233 0.9985 1.0006 1.0050 1.0101 1.0089 1.0233 0.9984 1.0011 1.0051 1.0181 
1987 0.9995 0.9968 1.0001 0.9987 1.0101 0.9938 0.9995 0.9967 1.0002 0.9987 1.0007 
1988 1.0124 1.0004 0.9997 0.9991 1.0102 1.0031 1.0124 1.0004 0.9995 0.9991 1.0134 
1989 1.0052 0.9993 1.0003 0.9987 1.0103 0.9967 1.0052 0.9993 1.0003 0.9987 1.0065 
1990 1.0102 0.9978 1.0006 1.0048 1.0103 0.9968 1.0102 0.9979 1.0004 1.0047 1.0054 
1991 1.0178 1.0021 1.0004 1.0104 1.0104 0.9945 1.0178 1.0020 1.0002 1.0103 1.0074 
1992 1.0227 0.9995 1.0006 1.0027 1.0105 1.0093 1.0227 0.9995 1.0001 1.0027 1.0200 
1993 1.0020 1.0010 1.0005 0.9985 1.0106 0.9916 1.0020 1.0010 1.0002 0.9985 1.0036 
1994 1.0053 1.0003 1.0002 0.9962 1.0107 0.9981 1.0053 1.0002 1.0001 0.9962 1.0091 
1995 1.0009 0.9996 1.0000 0.9992 1.0107 0.9915 1.0009 0.9996 1.0000 0.9992 1.0017 
1996 1.0210 1.0007 1.0006 1.0028 1.0108 1.0059 1.0210 1.0007 1.0004 1.0029 1.0180 
1997 1.0142 1.0026 1.0006 0.9984 1.0109 1.0016 1.0142 1.0026 1.0004 0.9983 1.0159 
1998 1.0223 1.0042 1.0005 1.0014 1.0111 1.0050 1.0223 1.0041 1.0004 1.0014 1.0208 
1999 1.0137 0.9988 1.0004 1.0012 1.0112 1.0021 1.0137 0.9988 1.0005 1.0012 1.0126 
2000 1.0196 0.9960 1.0002 1.0049 1.0112 1.0072 1.0196 0.9957 1.0003 1.0049 1.0147 
2001 1.0195 1.0029 1.0006 1.0106 1.0113 0.9941 1.0195 1.0032 1.0010 1.0105 1.0090 
 
1971- 
2001 1.0128 0.9993 1.0003 1.0025 1.0102 1.0006 1.0128 0.9992 1.0002 1.0025 1.0104 
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Table 5.  Decompositions for a 2-Input, 3-Output Translog 
Real Domestic Value Added Function 

 Share of labor Marginal productivity of labor 
 SSt,t-1 SQ,t,t-1 SE,t,t-1 SV,t,t-1 ST,t,t-1 SU,t,t-1 MMt,t-1 MQ,t,t-1 ME,t,t-1 MV,t,t-1 MT,t,t-1 MU,t,t-1
Year (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 
1971 0.9889 0.9976 0.9991 1.0115 0.9978 0.9831 1.0196 0.9962 0.9992 1.0196 1.0075 0.9971 
1972 0.9945 0.9965 0.9994 0.9999 0.9978 1.0008 1.0105 0.9945 0.9995 0.9998 1.0075 1.0092 
1973 0.9927 0.9970 1.0036 0.9994 0.9978 0.9949 1.0090 0.9951 1.0033 0.9990 1.0075 1.0042 
1974 1.0209 0.9864 1.0056 1.0099 0.9978 1.0213 0.9996 0.9758 1.0055 1.0171 1.0074 0.9945 
1975 0.9921 1.0018 1.0006 1.0207 0.9978 0.9719 1.0217 1.0034 1.0006 1.0354 1.0074 0.9756 
1976 0.9979 1.0001 0.9988 0.9967 0.9978 1.0044 1.0193 1.0003 0.9988 0.9945 1.0076 1.0181 
1977 0.9922 0.9958 0.9987 0.9984 0.9978 1.0014 1.0005 0.9920 0.9988 0.9974 1.0075 1.0049 
1978 0.9953 0.9991 0.9995 0.9951 0.9978 1.0039 1.0021 0.9982 0.9995 0.9917 1.0075 1.0053 
1979 1.0067 0.9959 1.0015 1.0018 0.9978 1.0098 1.0043 0.9919 1.0014 1.0031 1.0074 1.0006 
1980 1.0184 0.9885 0.9998 1.0123 0.9977 1.0202 1.0076 0.9768 0.9999 1.0213 1.0072 1.0030 
1981 0.9928 1.0017 0.9992 1.0082 0.9978 0.9861 1.0146 1.0036 0.9994 1.0141 1.0071 0.9904 
1982 1.0121 1.0036 0.9975 1.0177 0.9978 0.9956 1.0226 1.0074 0.9982 1.0303 1.0074 0.9798 
1983 0.9872 1.0040 0.9986 1.0014 0.9978 0.9855 1.0164 1.0082 0.9990 1.0023 1.0077 0.9992 
1984 0.9766 1.0017 0.9988 0.9907 0.9978 0.9875 0.9959 1.0035 0.9991 0.9843 1.0078 1.0013 
1985 1.0057 1.0006 0.9973 1.0010 0.9978 1.0091 1.0186 1.0012 0.9980 1.0018 1.0079 1.0098 
1986 1.0163 0.9985 0.9982 1.0071 0.9978 1.0147 1.0400 0.9970 0.9988 1.0122 1.0079 1.0238 
1987 0.9937 0.9971 0.9997 0.9982 0.9978 1.0010 0.9931 0.9939 0.9998 0.9969 1.0079 0.9947 
1988 0.9888 1.0003 1.0009 0.9987 0.9978 0.9911 1.0011 1.0007 1.0006 0.9977 1.0079 0.9942 
1989 1.0014 0.9994 0.9990 0.9981 0.9977 1.0072 1.0066 0.9987 0.9994 0.9968 1.0080 1.0038 
1990 1.0062 0.9982 0.9984 1.0066 0.9977 1.0053 1.0165 0.9960 0.9990 1.0115 1.0080 1.0021 
1991 1.0062 1.0017 0.9990 1.0145 0.9978 0.9932 1.0241 1.0038 0.9994 1.0251 1.0081 0.9878 
1992 1.0046 0.9996 0.9987 1.0038 0.9978 1.0048 1.0274 0.9991 0.9992 1.0065 1.0082 1.0141 
1993 0.9953 1.0008 0.9989 0.9978 0.9978 1.0000 0.9974 1.0019 0.9994 0.9963 1.0083 0.9916 
1994 0.9951 1.0002 0.9996 0.9947 0.9978 1.0029 1.0004 1.0005 0.9997 0.9908 1.0084 1.0011 
1995 0.9894 0.9996 1.0001 0.9989 0.9977 0.9930 0.9903 0.9992 1.0000 0.9981 1.0084 0.9846 
1996 0.9898 1.0005 0.9985 1.0039 0.9977 0.9892 1.0105 1.0012 0.9990 1.0068 1.0085 0.9950 
1997 0.9930 1.0020 0.9984 0.9978 0.9977 0.9971 1.0070 1.0046 0.9990 0.9961 1.0086 0.9987 
1998 1.0083 1.0031 0.9985 1.0019 0.9977 1.0070 1.0308 1.0073 0.9990 1.0033 1.0088 1.0120 
1999 1.0031 0.9991 0.9988 1.0016 0.9977 1.0058 1.0169 0.9980 0.9993 1.0027 1.0089 1.0079 
2000 1.0085 0.9971 0.9995 1.0067 0.9977 1.0075 1.0282 0.9932 0.9997 1.0117 1.0089 1.0147 
2001 1.0091 1.0021 0.9987 1.0147 0.9977 0.9960 1.0288 1.0050 0.9992 1.0254 1.0090 0.9901 
 
1971- 
2001 0.9994 0.9990 0.9994 1.0035 0.9978 0.9997 1.0122 0.9983 0.9997 1.0060 1.0079 1.0002 

 

15. Accounting for Changes in Real Wages 
 We are now in a position to account for the marginal productivity index and the changes 
in real wages. Recall that the marginal productivity index is defined by (75). We can also 
identify the following partial effects: 
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Since  under profit maximization (as long as the timing of the arguments is 
the same in all three functions), it immediately follows that: 

)()()( ⋅⋅⋅=⋅ LLL shz

(107)  111 −−− ⋅= t,tt,tt,t SAM

(108)  111 −−− ⋅= t,t,Qt,t,Qt,t,Q SAM

(109)  111 −−− ⋅= t,t,Et,t,Et,t,E SAM

(110)  111 −−− ⋅= t,t,Vt,t,Vt,t,V SAM

(111)  . 111 −−− ⋅= t,t,Tt,t,Tt,t,T SAM

Furthermore, it follows from (85) and (99) that: 

(112) 11111 −−−−− ⋅⋅⋅≅ t,t,Tt,t,Vt,t,Et,t,Qt,t MMMMM . 

 We finally consider the observed marginal productivity of labor index. It is now as 
follows: 

(113) 
11

1
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− ≡
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MM  . 

A complete decomposition of the progression in real wages is therefore given by: 

(114) 111111 −−−−−− ⋅⋅⋅⋅≅ t,t,Ut,t,Tt,t,Vt,t,Et,t,Qt,t MMMMMMM , 

where  is as usual the unexplained component which can be represented as 1−t,t,UM

(115) 
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M . 

 We show in columns 7-12 of table 5 the decomposition of the marginal productivity of 
labor based on (114). Real wages increased by just over 1.2% per year over the sample period. 
This increase is dominated by technological progress, though capital deepening played a role too. 
In fact, comparing these results with those in columns 1-6 of table 4, we again find that capital 
deepening has a relatively larger impact on marginal productivity than on average productivity. 
Terms-of-trade changes have reduced real wages by approximately 0.1% per annum on average. 
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Changes in the real exchange rate have had a negligible effect on average, although the impact 
has been noticed in some years such as 1974 when it added about 0.6% to real wages.  

 

16. About Unit Labor Costs 
 Many economic analysts attach much importance to the development of unit labor costs. 
An increase in unit labor costs – that is, an increase in nominal wages that is not matched by an 
increase in average productivity – is often viewed as being a threat to price stability. This 
concern as to the inflationary consequences of an increase in unit labor costs can be understood if 
one considers that, in most industries and for the economy as a whole, labor costs are the largest 
component of total costs. This might explain why increases in unit labor costs are sometimes 
thought of as being the prime source of inflation, even though a theory of inflation that leaves no 
place for money may sound suspect. In any case, it may be useful to investigate what role unit 
labor costs play in the analysis in this paper. 

 Unit labor costs ( tL,ω ) can be defined as follows: 
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In view of our earlier definitions, unit labor costs can also be expressed as: 
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In terms of change factors we get: 

(118) , 111 −−− ⋅=Ω t,t,Dt,t,Lt,t,L PSS

where  is the unit labor cost index and  is (one plus) the domestic inflation rate: 1−Ω t,t,L 1−t,t,DP
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 Looking at (118), the link between increases in unit labor costs and inflation is evident. In 
fact, if the share of labor is constant ( 11 =−t,tSS  in that case), the correlation is perfect. An 
increase in unit labor costs, be it as the result of an increase in nominal wages or a reduction in 
average productivity, would necessarily go hand in hand with an increase in the price of output. 
Correlation is not causation, however. Nominal wages need not be exogenous, no more than 
average productivity. It is reasonable to assume both are endogenous for the economy as a 
whole, and this is how they have been treated in the model developed in this paper. Similarly, as 
stressed throughout the paper, the share of labor is endogenous too. Rather than viewing changes 
in unit labor costs as an exogenous factor impacting on prices, it might be more useful to explain 
the changes in unit labor costs as a function of the factors that we have identified earlier on. 
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 In the context of our model, it is clear from (118) that changes in unit labor costs reflect 
changes in (i) the share of labor and (ii) the price of output. As to the second item, it could be 
argued that unit labor costs mirror changes in the general price level, rather than cause them. 
Regarding the impact of changes in the labor share, we refer the reader to section 13 as 
summarized in columns 1-6 of table 5. Thus, in the U.S. case, a worsening in the terms of trade 
and/or a real appreciation of the currency, other things equal, reduce unit labor costs. The same is 
true for technological change, whereas capital deepening acts to increase unit labor costs. Some 
of these results may sound counter-intuitive. Thus, an increase in the stock of capital, which, for 
a given labor endowment, must unambiguously increase output and average labor productivity, 
might yet increase unit labor costs if the marginal product of labor (i.e. real wages) increases by 
relatively more. If the Hicksian elasticity of complementarity is greater than one, this will be so. 

 

17. Conclusions 

 In this paper we try to sort out some ideas linked to productivity and to identify the main 
components of labor productivity. A distinction is drawn between the marginal and the average 
productivity of labor. This leads to a focus on the GDP share of labor. This in turn helps to 
illuminate the main forces at work: technological progress, capital deepening, terms-of-trade 
changes, and changes in the real exchange rate. These last two factors, though statistically 
significant, were found to play minor roles. This may be because the United States is a relatively 
closed economy. It is very possible that changes in the terms of trade and in the real exchange 
rate play a more important role for labor productivity in more open economies. 

 Our analysis leads to an emphasis on the role played by the Hicksian elasticity of 
complementarity. This elasticity is significantly greater than unity. This explains to a large extent 
why the share of labor has been fairly steady over time, and thus why the marginal and average 
measures of labor productivity have moved in unison. Capital deepening tends to increase the 
marginal product of labor, and given the large elasticity of complementarity this tends to increase 
the share of labor. Technological progress, on the other hand, by being mainly labor augmenting 
can be thought of as anti-labor biased (although not ultra anti-labor biased). This tends to reduce 
the share of labor, largely offsetting the impact of capital deepening. The slight deterioration in 
the terms of trade and the small real appreciation of the U.S. dollar that took place over the 
sample period have further contributed to containing the increase in the labor share.  

 This paper documents the relationship between total factor and labor productivity. Even 
if total factor productivity is the main driving force in the increase in output and average 
productivity, expression (93) shows that there are other forces at work as well. The growth in 
U.S. labor productivity since the mid-1990s is often considered as a tribute and testimony to the 
performance of American workers. However, the headline figures typically relate to the nonfarm 
business sector only. The farming sector, the government sector and the household sector – close 
to half the economy – are left out of the calculation. Also, productivity growth can be the 
outcome of a conjunction of favorable events. Thus, capital deepening will unavoidably increase 
the average and the marginal productivity of labor. And technological progress will necessarily 
increase average productivity too, but it may impact either way on real wages, although in the 
U.S. case, the effect is positive. An improvement in the terms of trade and a depreciation of the 
home currency also lead to increases in average labor productivity, and, in the U.S. case, the 
impact on real wages is magnified through the increase in the GDP share of labor. 
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Appendix 
A1. Description of the Data 
 All data are annual for the period 1970 to 2001. We require the prices and quantities of all inputs and 
outputs. The data for GDP and its components, in nominal and in real terms, are taken from the Bureau of Economic 
Analysis website. Prices are then obtained by deflation. Data on the capital stock, labor compensation, and national 
income are also retrieved from the BEA website. The quantity of capital services is assumed to be proportional to the 
stock. Capital income is defined as national income minus labor compensation. The quantity of labor services is 
computed by multiplying the total number of employees on nonfarm payrolls by an index of the average number of 
weekly hours worked in the nonfarm business sector. Both these series are taken from the Bureau of Labor Statistics 
website. The user costs of labor and capital are then obtained by dividing labor and capital income by the 
corresponding quantity series. For the purpose of sections 9 and 10, output is expressed as an implicit Törnqvist 
index of real GDP; see Kohli (2004b) for details. In sections 11 to 15, the price of nontraded goods is computed as a 
Törnqvist price index of the deflators of consumption, investment and government purchases. 
A2. Neutral, Disembodied and Factor-Augmenting Technological Change 
 The first of the two tables that follow (A1) gives an overview, in a production function setting, of the cases 
that might occur with just two inputs, and assuming that technological change is disembodied and factor 
augmenting. For simplicity, we only consider the polar cases of Harrod-, Hicks- and Solow-neutrality, but 
intermediate situations can obviously arise as well. 
 The second of the following tables (A2) summarizes the possible outcomes in a cost function setting. 
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Chapter 7 
MEASURING PRODUCTIVITY CHANGE WITHOUT 

NEOCLASSICAL ASSUMPTIONS: 
A CONCEPTUAL ANALYSIS 

Bert M. Balk1 

 

1. Introduction 
 

 The measurement of productivity change (or difference) is usually based on models that 
make use of strong assumptions such as competitive behaviour and constant returns to scale. 
This survey discusses the basics of productivity measurement and shows that one can dispense 
with most if not all the usual, neoclassical assumptions. By virtue of its structural features, the 
measurement model is applicable to individual establishments and aggregates such as industries, 
sectors, or economies. 

 The methodological backing of productivity measurement and growth accounting usually 
goes like this. The (aggregate) production unit considered has an input side and an output side, 
and there is a production function that links output quantities to input quantities. This production 
function includes a time variable, and the partial derivative of the production function with 
respect to the time variable is called technological change (or, in some traditions, multi- or total 
factor productivity change). Further, it is assumed that the production unit acts in a competitive 
environment; that is, input and output prices are assumed as given. Next, it is assumed that the 
production unit acts in a profit maximizing manner (or, it is said to be ‘in equilibrium’), and that 
the production function exhibits constant returns to scale. Under these assumptions it then 
appears that output quantity growth (defined as the output-share-weighted mean of the individual 
output quantity growth rates) is equal to input quantity growth (defined as the input-share-
weighted mean of the individual input quantity growth rates) plus the rate of technological 
change (or, multi- or total factor productivity growth).  

 For the empirical implementation one then turns to National Accounts, census and/or 
survey data, in the form of nominal values and deflators (price indices). Of course, one cannot 
avoid dirty hands by making various imputations where direct observations failed or were 
impossible (as in the case of labour input of self-employed workers). In the case of capital inputs 
the prices, necessary for the computation of input shares, cannot be observed, but must be 
computed as unit user costs. The single degree of freedom that is here available, namely the rate 

 
Citation: Bert M. Balk (2010), “Measuring Productivity Change without Neoclassical Assumptions: A Conceptual 
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of return, is used to ensure that the restriction implied by the assumption of constant returns to 
scale, namely that profit equals zero, is satisfied. This procedure is usually rationalized by the 
assumption of perfect foresight, which in this case means that the ex post calculated capital input 
prices can be assumed as ex ante given to the production unit, so that they can be considered as 
exogenous data for the unit’s profit maximization problem. 

 This account is, of course, somewhat stylized, since there occur many, smaller or larger, 
variations on this theme in the literature. Recurring, however, are a number of so-called neo-
classical assumptions: 1) a technology that exhibits constant returns to scale, 2) competitive input 
and output markets, 3) optimizing behaviour, and 4) perfect foresight. A fine example from 
academia is provided by Jorgenson, Ho and Stiroh (2005, pp. 23, 37), while the Sources and 
Methods publication of Statistics New Zealand (2006) shows that the neo-classical model has 
also deeply invaded official statistical agencies.2 An interesting position is taken by the EU 
KLEMS Growth and Productivity Accounts project. Though in their main text Timmer et al. 
(2007) adhere to the Jorgenson, Ho and Stiroh framework, there is a curious footnote saying: 

“Under strict neo-classical assumptions, MFP [multifactor productivity] growth measures 
disembodied technological change. In practice [my emphasis], MFP is derived as a 
residual and includes a host of effects such as improvements in allocative and technical 
efficiency, changes in returns to scale and mark-ups as well as technological change 
proper. All these effects can be broadly summarized as “improvements in efficiency”, as 
they improve the productivity with which inputs are used in the production process. In 
addition, being a residual measure MFP growth also includes measurement errors and the 
effects from unmeasured output and inputs.” 

There are more examples of authors who exhibit similar concerns, without, however, feeling the 
need to adapt their conceptual framework.  

 I believe that for an official statistical agency, whose main task it is to provide statistics 
to many different users for many different purposes, it is discomforting to have such strong, and 
often empirically refuted, assumptions built into the methodological foundations of productivity 
and growth accounting statistics. This especially applies to the behavioral assumptions numbered 
2, 3 and 4. There is ample evidence that, on average, markets are not precisely competitive; that 
producers’ decisions frequently turn out to be less than optimal; and that managers almost 
invariably lack the magical feature of perfect foresight. Moreover, the environment in which 
production units operate is not so stable as the assumption of a fixed production function seems 
to claim. 

 But I also believe that it is possible, and even advisable, to avoid making such 
assumptions. In a sense I propose to start where the usual story ends, namely at the empirical 
side.3 For any production unit, the total factor productivity index is then defined as an output 

                                                 
2 The neo-classical model figured already prominently in the 1979 report of the U.S. National Research Council’s 
Panel to Review Productivity Statistics (Rees 1979). An overview of national and international practice is provided 
by the regularly updated OECD Compendium of Productivity Indicators, available at 
www.oecd.org/statistics/productivity. 
3  There is another, minor, difference between my approach and the usual story. The usual story runs in the 
framework of continuous time in which periods are of infinitesimal short duration. When it then comes to 
implementation several approximations must be assumed. My approach does not need this kind of assumptions 
either, because this approach is entirely based on accounting periods of finite duration, such as years. 
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quantity index divided by an input quantity index. There are various options here, depending on 
what one sees as input and output, but the basic feature is that, given price and quantity (or value) 
data, this is simply a matter of index construction. There appear to be no behavioral assumptions 
involved, and this even applies -- as will be demonstrated -- to the construction of capital input 
prices. Surely, a number of imputations must be made (as in the case of the self-employed 
workers) and there is a fairly large number of more or less defendable assumptions involved (for 
instance on the depreciation rates of capital assets), but this belongs to the daily bread and butter 
of economic statisticians.  

 In my view, structural as well as behavioral assumptions enter the picture as soon as it 
comes to the explanation of productivity change. Then there are, depending on the initial level of 
aggregation, two main directions: 1) to explain productivity change at an aggregate level by 
productivity change and other factors operating at lower levels of aggregation; 2) to decompose 
productivity change into factors such as technological change, technical efficiency change, scale 
effects, input- and output-mix effects, and chance. In this case, to proceed with the analysis one 
cannot sidestep a technology model with certain specifications. 

 The contents of this paper unfold as follows. Section 2 outlines the architecture of the 
basic, KLEMS-Y, input-output model, with its total and partial measures of productivity change. 
This section also links productivity measurement and growth accounting. Section 3 proceeds 
with the KL-VA and K-CF models. Then it is time to discuss the measurement of capital input 
cost in sections 4 and 5. This gives rise to four additional input-output models, which are 
discussed in section 6. Section 7 is devoted to the rate of return: endogenous or exogenous, ex 
post or ex ante. Section 8 introduces the capital utilization rate. Section 9 considers a number of 
implementation issues, after which we take a look in section 10 at the Netherlands’ system of 
productivity statistics. The conclusion can be brief. 

 

2. The Basic Input-Output Model 
 

 Let us consider a single production unit. This could be an establishment or plant, a firm, 
an industry, a sector, or even an entire economy. I will simply speak of a ‘unit’. For the purpose 
of productivity measurement, such a unit is considered as a (consolidated) input-output system. 
What does this mean?  

For the output side as well as for the input side there is some list of commodities 
(according to some classification scheme). A commodity is thereby defined as a set of closely 
related items which, for the purpose of analysis, can be considered as “equivalent,” either in the 
static sense of their quantities being additive or in the dynamic sense of displaying equal relative 
price or quantity changes. Ideally, then, for any accounting period considered (ex post), say a 
year, each commodity comes with a value (in monetary terms) and a price and/or a quantity. If 
value and price are available, then the quantity is obtained by dividing the value by the price. If 
value and quantity are available, then the price is obtained by dividing the value by the quantity. 
If both price and quantity are available, then value is defined as price times quantity. In any case, 
for every commodity it must be so that value equals price times quantity, the magnitudes of 
which of course must pertain to the same accounting period. Technically speaking, the price 
concept used here is the unit value. At the output side, the prices must be those received by the 
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unit, whereas on the input side, the prices must be those paid. Consolidation (also referred to as 
taking a net-sector approach) means that the unit does not deliver to itself. Put otherwise, all the 
intra-unit deliveries are netted out. 

 The situation as pictured in the preceding paragraph is typical for a unit operating on the 
(output) market.4 The question of how to deal with non-market units will be considered where 
appropriate. 

 The inputs are customarily classified according to the KLEMS format. The letter K 
denotes the class of owned, reproducible capital assets. The commodities here are the asset-types, 
sub-classified by age category. Cohorts of assets are assumed to be available at the beginning of 
the accounting period and, in deteriorated form (due to ageing, wear and tear), still available at 
the end of the period. Investment during the period adds entities to these cohorts, while 
disinvestment, breakdown, and retirement remove entities. Examples include buildings and other 
structures, machinery, transport and ICT equipment, and tools. As will be discussed later in 
detail, theory implies that the quantities sought are just the quantities of all these cohorts of 
assets (together representing the productive capital stock), whereas the relevant prices are their 
unit user costs (per type-age combination), constructed from imputed interest rates, depreciation 
profiles, (anticipated) revaluations, and tax rates. The sum of quantities times prices then 
provides the capital input cost of a production unit.5 

 The letter L denotes the class of labour inputs; that is, all the types of work that are 
important to distinguish, cross-classified for instance according to educational attainment, gender, 
and experience (which is usually proxied by age categories). Quantities are measured as hours 
worked (or paid), and prices are the corresponding wage rates per hour. Where applicable, 
imputations must be made for the work executed by self-employed persons. The sum of 
quantities times prices provides the labour input cost (or the labour bill, as it is sometimes 
called).6 

 The classes K and L concern so-called primary inputs. The letters E, M, and S denote 
three, disjunct classes of so-called intermediate inputs. First, E is the class of energy 
commodities consumed by a production unit: oil, gas, electricity, and water. Second, M is the 
class of all the (physical) materials consumed in the production process, which could be sub-
classified into raw materials, semi-fabricates, and auxiliary products. Third, S is the class of all 
the business services which are consumed for maintaining the production process. Though it is 
not at all a trivial task to define precisely all the intermediate inputs and to classify them, it can 
safely be assumed that at the end of each accounting period there is a quantity and a price 
associated with each of those inputs. 

 Then, for each accounting period, production cost is defined as the sum of primary and 
intermediate input cost. Though this is usually not done, there are good reasons to exclude R&D 

                                                 
4 Note that the role of inventories is disregarded. 
5 The productive capital stock may be underutilized, which implies that not all the capital costs are incurred in actual 
production. See Schreyer (2001, section 5.6) for a general discussion of this issue. For a treatment in the neo-
classical framework the reader is referred to Berndt and Fuss (1986), Hulten (1986) and Morrison Paul (1999). We 
return to this issue later on. 
6 The utilization rate of the labour input factors is assumed to be 1. Over- or underutilization from the point of view 
of jobs or persons is reflected in the wage rates. 

 136



Bert M. Balk  

expenditure from production cost, the reason being that such expenditure is not related to the 
current but to future output. Put otherwise, by performing R&D, production units try to shift the 
technology frontier. When it then comes to explaining productivity change, the non-exclusion of 
R&D expenditure might easily lead to a sort of double-counting error.7 

 On the output side, the letter Y denotes the class of commodities, goods and/or services, 
which are produced by the unit. Though in some industries, such as services industries or 
industries producing mainly unique goods, definitional problems are formidable, it can safely be 
assumed that for each accounting period there are data on quantities produced. For units 
operating on the market there are also prices. The sum of quantities times prices then provides 
the production revenue, and, apart from taxes on production, revenue minus cost yields profit. 

 Profit is an important financial performance measure. A somewhat less obvious, but 
equally useful, measure is ‘profitability,’ defined as revenue divided by cost. Profitability gives, 
in monetary terms, the quantity of output per unit of input, and is thus a measure of return to 
aggregate input (called in some older literature ‘return to the dollar’). 

 Monitoring the unit’s performance over time is here understood to mean monitoring the 
development of its profit or its profitability. Both measures are, by nature, dependent on price 
and quantity changes, at both sides of the unit. If there is (price) inflation and the unit’s profit has 
increased then that mere fact does not necessarily mean that the unit has been performing better. 
Also, though general inflation does not influence the development of profitability, differential 
inflation does. If output prices have increased more than input prices then any increase of 
profitability does not necessarily imply that the unit has been performing better. Thus, for 
measuring the economic performance of the unit, one wants to get rid of the effect of price 
changes.  

 Profit and profitability are different, but equivalent, concepts. The first is a difference 
measure; the second is a ratio measure. Change of a variable through time, which will be our 
main focus, can also be measured by a difference or a ratio. Apart from technical details -- such 
as, that a ratio does not make sense if the variable in the denominator changes sign or becomes 
equal to zero -- these two ways of measuring change are equivalent. Thus there appear to be a 
number of ways of mapping the same reality in numbers, and differing numbers do not 
necessarily imply differing realities. 

 Profit change stripped of its price component will be called real profit change, and 
profitability change stripped of its price component will be called real profitability change.8 
Another name for real profit (-ability) change is (total factor) productivity change. Thus, 
productivity change can be measured as a ratio (namely as real profitability change) or as a 
difference (namely as real profit change). At the economy level, productivity change can be 
related to some measure of overall welfare change. A down-to-earth approach would use the 
National Accounts to establish a link between labour productivity change and real-income-per-
capita change. A more sophisticated approach, using economic models and assumptions, was 
provided by Basu and Fernald (2002). 

                                                 
7 See Diewert and Huang (2008) for more on this issue. A big problem seems to be the separation of the R&D part 
of labour input. 
8 Note that real change means nominal change deflated by some price index, not necessarily being a (headline) CPI. 
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 For a non-market unit the story must be told somewhat differently. For such a unit, there 
are no output prices; hence, there is no revenue. Though there is cost, like for market units, there 
is no profit or profitability. National accountants usually resolve the problem here by defining the 
revenue of a non-market unit to be equal to its cost, thereby setting profit equal to 0 or 
profitability equal to 1.9 But this leaves the problem that there is no natural way of splitting 
revenue change through time into real and monetary components. This can only be done 
satisfactorily when there is some output quantity index that is independent from the input 
quantity index.10 

 It is useful to remind the reader that the notions of profit and profitability, though 
conceptually rather clear, are difficult to operationalize. One of the reasons is that cost includes 
the cost of owned capital assets, the measurement of which exhibits a substantial number of 
degrees of freedom, as we will see in the remainder of this paper. Also, labour cost includes the 
cost of self-employed persons, for which wage rates and hours of work usually must be imputed. 
It will be clear that all these, and many other, uncertainties spill over to operational definitions of 
the profit and profitability concepts. 

 

2.1 Notation 
 Let us now introduce some notation to define the various concepts we are going to use. 
As stated, on the output side we have M items, each with their price (received)  and quantity 

, where , and t denotes an accounting period (say, a year). Similarly, on the input 

side we have N items, each with their price (paid) w  and quantity , where . To 
avoid notational clutter, simple vector notation will be used throughout. All the prices and 
quantities are assumed to be positive, unless stated otherwise. The ex post accounting point-of-
view will be used; that is, quantities and monetary values of the so-called flow variables (output 
and labour, energy, materials, services inputs) are realized values, complete knowledge of which 
becomes available not before the accounting period has expired. Similarly, the cost of capital 
input is calculated ex post. This is consistent with statistical practice. 

t
mp

t
my Mm ,,1K=
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 The unit’s revenue, that is, the value of its (gross) output, during the accounting period t 
is defined as 

(1) , m
m

m ypypR ∑
=

≡⋅≡
1

M

whereas its production cost is defined as 

(2) . 

The unit’s profit (disregarding tax on production) is then given by its revenue minus its cost; that 
is, 

 
9 This approach goes back to Hicks (1940). 
10 See the insightful paper by Douglas (2006). Though written from a New Zealand perspective, its theme is generic. 
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(3) . ttttttt xwypCR ⋅−⋅=−≡Π

The unit’s profitability (also disregarding taxes on production) is defined as its revenue divided 
by its cost; that is, 

(4)  tttttt xwypCR ⋅⋅= // .

Notice that profitability expressed as a percentage, , equals the ratio of profit to cost, 
. In some circles this is called the margin of the unit. Given positive prices and quantities, 

it will always be the case that  and . Thus, profitability  is always positive, 
but profit Π  can be positive, negative, or zero. 

1/ −tt CR
tt C/Π

0>tR 0>tC tt CR /
ttt CR −=

 As stated, we are concerned with intertemporal comparisons. Moreover, in this paper, 
only bilateral comparisons will be considered, say comparing a certain period t to another, 
adjacent or non-adjacent period, t . Without loss of generality it may be assumed that period t′ ′  
precedes period t. To further simplify notation, the two periods will be labeled by  (which 
will be called the comparison period) and 

1=t
0=′t  (which will be called the base period). 

 

2.2 Productivity Index 
 The development over time of profitability is, rather naturally, measured by the ratio 

. How to decompose this into a price and a quantity component? By noticing 
that 

001 //) CR1 /( CR
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we see that the question reduces to the question of how to decompose the revenue ratio 
 and the cost ratio  into two parts. The natural answer is to grab from the 

economic statistician’s toolkit a pair of price and quantity indices that satisfy the Product Test: 
)0 )/( 01 CC

(6) ),,,(),,,( 00110011
00

11
ypypQypypP

yp
yp

=
⋅

⋅ . 

The Fisher price and quantity indices are a good choice, since these indices satisfy not only the 
basic axioms of price and quantity measurement (see appendix A), but also a number of other 
relatively important requirements (such as the Time Reversal Test). Thus we are using here the 
‘instrumental’ or ‘axiomatic’ approach for selecting measures for aggregate price and quantity 
change, an approach that goes back to Fisher (1922); see Balk (1995) for a survey and Balk 
(2008) for an up-to-date treatment. When the time distance between the periods 1 and 0 is not too 
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large, then any index that is a second-order differential approximation to the Fisher index may 
instead be used.11 

 Throughout this paper, when it comes to solving problems such as (6) we will assume 
that Fisher indices are used. Thus, in particular, 

(7) 
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where the second line serves to define our shorthand notation. In the same way, we decompose 

(8) 
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Of course, the dimensionality of the Fisher indices in expressions (7) and (8) is different. 

 The number of items distinguished on the output side (M) and the input side (N) of a 
production unit can be very high. To accommodate this, (detailed) classifications are used, by 
which all the items are allocated to hierarchically organized (sub-)aggregates. The calculation of 
output and input indices then proceeds in stages. Theoretically, it suffices to distinguish only two 
stages. At the first stage one calculates indices for the subaggregates at some level, and at the 
second stage these subaggregate indices are combined to aggregate indices. 

 Consequentially, in expressions (7) and (8), instead of one-stage, also two-stage Fisher 
indices may be used; that is, Fisher indices of Fisher indices for subaggregates (see appendix A 
for precise definitions). Since the Fisher index is not consistent-in-aggregation, a decomposition 
by two-stage Fisher indices will in general numerically differ from a decomposition by one-stage 
Fisher indices. Fortunately, one-stage and two-stage Fisher indices are second-order differential 
approximations of each other (as shown by Diewert, 1978). 

 Using the two relations (7) and (8), the profitability ratio can be decomposed as 
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The (total factor) productivity index (IPROD), for period 1 relative to 0, is now defined by 

(10) .
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C

R
Q
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11 Note, however, that this is not unproblematic. For instance, when the Törnqvist price index  is used, then 

the implicit quantity index  does not necessarily satisfy the Identity Test (see appendix 
A). 

(.)TP

3 ′A(.)/)/( 0011 TPypyp ⋅⋅
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Thus IPROD(1, 0) is the real or quantity component of the profitability ratio. Put otherwise, it is 
the ratio of an output quantity index to an input quantity index; IPROD(1, 0) is the factor with 
which the output quantities on average have changed relative to the factor with which the input 
quantities on average have changed. If the ratio of these factors is larger (smaller) than 1, there is 
said to be productivity increase (decrease).12 

 Notice that, using (7) and (8), there appear to be three other equivalent representations of 
the productivity index, namely 

(11) 
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Put in words, we are seeing here respectively a deflated revenue index divided by a deflated cost 
index, a deflated revenue index divided by an input quantity index, and an output quantity index 
divided by a deflated cost index. 

 Further, if the revenue change equals the cost change, R  (for which zero 
profit in the two periods is a sufficient condition), then it follows from (9) that 

(14) 
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that is, the productivity index is equal to an input price index divided by an output price index. In 
general, however, the dual productivity index  will differ from the primal one, 

.  
)0,1(/)0,1( RC PP

 

2.3 Growth Accounting 
 The foregoing definitions are already sufficient to provide examples of simple but useful 
analysis. Consider relation (12), and rewrite this as  

(15) . 

Recall that revenue change through time is only interesting in so far as it differs from general 
inflation. Hence, it makes sense to deflate the revenue index, R , by a general inflation 
measure such as the Consumer Price Index (CPI). Doing this, the last equation becomes 

(16) 0101

01

/

)0,1()0,1()0,1(
/
/

CPICPI

PQIPROD
CPICPI
RR R

C ××=

                                                

. 

 
12 This approach follows Diewert (1992), Diewert and Nakamura (2003), and Balk (2003). 
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Lawrence, Diewert and Fox (2006) basically use this relation to decompose ‘real’ revenue 
change into three factors: productivity change, input quantity change (which can be interpreted 
as measuring change of the unit’s size), and ‘real’ output price change respectively.  

 Another example follows from rearranging expression (13) and taking logarithms. This 
delivers the following relation: 
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. 

We see here that the growth rate of average cost can be decomposed into two factors, namely the 
growth rate of input prices and a residual which is the negative of productivity growth. Put 
otherwise, in the case of stable input prices the growth rate of average cost is equal to minus the 
productivity growth rate. 

 Both are examples of what is called growth accounting. The relationship between index 
number techniques and growth accounting can, more generally, be seen as follows. Recall the 
generic definition (10), and rewrite this expression as 

(18) . ),(),(),( 010101 CR QIPRODQ ×=

Using logarithms, this multiplicative expression can be rewritten as 

(19) . 

For index numbers in the neighborhood of 1, the logarithms thereof reduce to percentages, and 
the last expression can be interpreted as saying that the percentage change of output volume 
equals the percentage change of input volume plus the percentage change of productivity. 
Growth accounting economists like to work with equations expressing output volume growth in 
terms of input volume growth plus a residual that is interpreted as productivity growth, thereby 
suggesting that the last two factors cause the first. However, productivity change cannot be 
considered as an independent factor since it is defined as output quantity change minus input 
quantity change. A growth accounting table is just an alternative way of presenting productivity 
growth and its contributing factors. And decomposition does not imply anything about 
causality.13 

 

2.4 Productivity Indicator 

 Let us now turn to profit and its development through time. This is naturally measured by 
the difference Π . Of course, such a difference only makes sense when the two money 
amounts involved, profit from period 0 and profit from period 1, are deflated by some general 
inflation measure (such as the headline CPI). In the remainder of this paper, when discussing 
difference measures, such a deflation is tacitly presupposed. 

 How to decompose the profit difference into a price and a quantity component? By 
noticing that 

 
13 Thus, saying that output growth outpaced input growth because TFP increased is “like saying that the sun rose 
because it was morning”, to paraphrase Friedman (1988, p. 58). 
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(20) , )()( 010101 CCRR −−−=Π−Π

we see that the question reduces to the question of how to decompose revenue change  

and cost change  into two parts. We now grab from the economic statistician’s toolkit 
a pair of price and quantity indicators that satisfy the Product Test:  

)( 01 RR −

)( 01 CC −
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A good choice is the Bennet (1920) price and quantity indicator, since these indicators satisfy not 
only the basic axioms (see appendix A), but also a number of other relatively important 
requirements (such as the Time Reversal Test) (see Diewert 2005). But any indicator that is a 
second-order differential approximation to the Bennet indicator may instead be used. Thus, 
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and similarly, 

(23)  

Notice that the dimensionality of the Bennet indicators in these two decompositions is in general 
different. 

 The Bennet indicators are difference analogs to Fisher indices. Their aggregation 
properties, however, are much simpler. The Bennet price or quantity indicator for an aggregate is 
equal to the sum of the subaggregate indicators. 

 Using indicators, the profit difference can be written as 

(24)  
Q),(P),(P 0101 RCR +−=

The first two terms at the right-hand side of the last equality sign provide the price component, 
whereas the last two terms provide the quantity component of the profit difference. Thus, based 
on this decomposition, the (total factor) productivity indicator (DPROD) is defined by 

(25) ; ),(Q),(Q),( 010101 CRDPROD −≡

that is, an output quantity indicator minus an input quantity indicator. Notice that productivity 
change is now measured as an amount of money. An amount larger (smaller) than 0 indicates 
productivity increase (decrease).14  

 The equivalent expressions for difference-type productivity change are 

(26)  

 
14 This approach follows Balk (2003). 
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(27)             ),(Q)],(P[ 010101
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which can be of use in different situations. Notice further that, if , then 0101 CCRR −=−

(29) . ),(P),(P),( 010101DPROD −≡ RC
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EMSLK

 For a non-market production unit, a productivity indicator is difficult to define. Though 
one might be able to construe an output quantity indicator, it is hard to see how, in the absence of 
output prices, such an indicator could be given a money dimension. 

 

2.5 Partial Productivity Measures 

 The productivity index IPROD  and the indicator DPROD  bear the adjective 
‘total factor’ because all the inputs are taken into account. To define partial productivity 
measures, in ratio or difference form, additional notation is necessary. 

 All the items on the input side of our production unit are assumed to be allocatable to the 
five, mutually disjunct, categories mentioned earlier, namely capital (K), labour (L), energy (E), 
materials (M), and services (S). The entire input price and quantity vectors can then be 
partitioned as  and  respectively. Energy, 
materials and services together form the category of intermediate inputs, that is, inputs (denoted 
by EMS), which are acquired from other production units or imported. Capital and labour are 
called primary inputs. Consistent with this distinction the price and quantity vectors can also be 
partitioned as  and , or as  and 

. Since monetary values are additive, total production cost can be 
decomposed in a number of ways, such as 
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Now, using as before Fisher indices, the labour cost ratio can be decomposed as 
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 (31) 

Then the labour productivity index (ILPROD) for period 1 relative to period 0 is defined by 
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(32) 
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that is, the ratio of an output quantity index to a labour input quantity index. Notice that usually 
the labour productivity index is defined by specifying the labour input quantity index to be the 
Dutot or simple sum quantity index . The ratio 

 is then said to measure the shift in labour quality or 
composition. 
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 In precisely the same way, one can define the capital productivity index 
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and the other partial productivity indices  for = . The ratio  
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is called the index of ‘capital deepening’. Loosely speaking, this index measures the change of 
the quantity of capital input per unit of labour input. 

 The relation between total factor and partial productivity indices is as follows. Let 
 be a two-stage Fisher index; that is,  )
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where all the  are Fisher indices. It is straightforward to check that then 
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which is not a particularly simple relation. If instead as a second-stage quantity index the Cobb-
Douglas functional form was chosen, that is, 

(37) , 

then it appears that 
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(38) . )0,1(ln)0,1(ln IkPRODIPROD
k

k∑= α

This is a very simple relation between total factor productivity change and partial productivity 
change. Notice, however, that this simplicity comes at a cost. Definition (37) implies for the 
relation between aggregate and subaggregate input price indices that 
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Such an index does not necessarily satisfy the fundamental Identity Test A3; that is, if all prices 
are the same in period 1 as in period 0, then  does not necessarily deliver the outcome 1. )0,1(P

 Let us now turn to partial productivity indicators. Using the Bennet indicators, the labour 
cost difference between periods 0 and 1 is decomposed as 
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Similarly, one can decompose the capital, energy, materials, and services cost difference. 
However, costs are additive, the total factor productivity indicator can be written as  

(41) . 

By definition, the left-hand side is real profit change. The right-hand side gives the contributing 
factors. The contribution of category k to real profit change is simply measured by the amount 

. A positive amount, which means that the aggregate quantity of input category k has 
increased, means a negative contribution to real profit change. 

 

3. Different Models, Similar Measures 

 

 The previous section laid out the basic features of what is known as the KLEMS model of 
production. This framework is currently used by the U.S. Bureau of Labor Statistics (BLS) and 
Statistics Canada for productivity measures at the industry level of aggregation (see Dean and 
Harper 2001, and Harchaoui et al. 2001 respectively). The KLEMS model, or, as I will denote it, 
the KLEMS-Y model delivers gross-output based total or partial productivity measures. 
However, there are more models in use, differing from the KLEMS-Y model by their input and 
output concepts. Since these models presuppose revenue as measured independently from cost, 
they are not applicable to non-market units. 

 

3.1 The KL-VA model 
 The first of these models uses value added (VA) as its output concept. The production 
unit’s value added (VA) is defined as its revenue minus the costs of energy, materials, and 
services; that is, 
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The value-added concept subtracts the total cost of intermediate inputs from the revenue 
obtained, and in doing so essentially conceives the unit as producing value added (that is, money) 
from the two primary input categories capital and labour. It is assumed that . 0>tVA

 Although gross output, represented by , is the natural output concept, the value-added 
concept is important when one wishes to aggregate single units to larger entities. Gross output 
consists of deliveries to final demand and intermediate destinations. The split between these two 
output categories depends very much on the level of aggregation. Value added is immune to this 
problem. It enables one to compare (units belonging to) different industries. From a welfare-
theoretic point of view the value-added concept is important because value added can be 
conceived of as the income (from production) that flows into society.

ty

15 

 In this input-output model the counterpart to profitability is the ratio of value added to 
primary inputs cost, t

KL
t CVA /

()0

, and the natural starting point for defining a productivity index is 
to consider the development of this ratio through time. Since 

)//()///()/( 0101011
KLKLKLKL CCVAVACVA VAC = , we need a decomposition of the value-

added ratio and a decomposition of the primary inputs cost ratio. 

 The question of how to decompose a value-added ratio into price and quantity 
components cannot be answered unequivocally. There are several options here, the technical 
details of which are deferred to appendix B. Suppose, however, that a satisfactory decomposition 
is somehow available; that is, 
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Using one- or two-stage Fisher indices, the primary inputs cost ratio is decomposed as 
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The value-added based (total factor) productivity index for period 1 relative to period 0 is then 
defined as 

(45) 
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15 In between the KLEMS-Y model and the KL-VA model there is the KLE”M”S-Margin model, applicable to 
distributive trade units. Here the set of material inputs M is split into two parts, M’ denoting the goods for resale and 
M” the auxiliary materials. Likewise E, the set of energy inputs, is split into E’ and E”. The Margin is then defined 
as revenue minus the cost of the goods for resale and the cost of the first of the two energy components. See Inklaar 
and Timmer (2008). 
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This index measures the ‘quantity’ change of value added relative to the quantity change of 
primary input; or, can be seen as the index of real value added relative to the index of real 
primary input.   

 This is by far the most common model. It is used by the U. S. Bureau of Labor Statistics, 
Statistics Canada, the Australian Bureau of Statistics, Statistics New Zealand, and the Swiss 
Federal Statistical Office in their official productivity statistics. 

 In the KL-VA model the counterpart to profit is the difference of value added and 
primary inputs cost, t

KL
t CVA − , and the natural starting point for defining a productivity 

indicator is to consider the development of this difference through time. However, since costs are 
additive, we see that, by using definition (42), 
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Thus, profit in the KL-VA model is the same as profit in the KLEMS-Y model, and the same 
applies to the price and quantity components of profit differences. Using Bennet indicators, one 
can easily check that  
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that is, the productivity indicators are the same in the two models. This, however, does not hold 
for the productivity indices. One usually finds that )0,1()0,1( IPRODIPRODVA ≠ . Balk (2009) 

showed that if profit is zero in both periods, that is  ( 1tt CR = ,0=t

)0,1(ln)0,1()0,1(ln IPRODDVA =

1)0,1( ≥D

), then, for certain two-stage 
indices which are second-order differential approximations to Fisher indices, 

(48) , IPROD

where  is the (mean) Domar-factor (= ratio of revenue over value added). Usually 
expression (48) is, in a continuous-time setting, derived under a set of strong neo-classical 
assumptions (see, for instance, Gollop (1979), Jorgenson et al. (2005, p. 298) or Schreyer (2001, 
p. 143)), so that it seems to be some deep economic-theoretical result. From the foregoing it may 
be concluded, however, that the inequality of the value-added based productivity index and the 
gross-output based productivity index is only due to the mathematics of ratios and differences. It 
does not point to any underlying economic phenomenon. 

 The value-added based labour productivity index for period 1 versus 0 is defined as 

(49) 
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where Q  was defined by expression (31). The index defined by expression (49) measures 
the ‘quantity’ change of value added relative to the quantity change of labour input; or, can be 
seen as the index of real value added relative to the index of real labour input.  
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 Recall that the labour quantity index  is here defined as a Fisher index, acting on 
the prices and quantities of all the types of labour that are being distinguished. Suppose that the 
units of measurement of the various types are in some sense the same; that is, the quantities of all 
the types of labour are measured in hours, or in full-time equivalent jobs, or in some other 
common unit. Then one frequently considers, instead of the Fisher quantity index, the Dutot or 
simple sum quantity index,  
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The simple value-added based labour productivity index, defined as 
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has the alternative interpretation as an index of real value added per unit of labour. As such this 
measure frequently figures at the left-hand side (thus, as explanandum) in a growth accounting 
equation. However, for deriving such a relation nothing spectacular is needed, as will now be 
shown. 

 Consider the definition of the value-added based total factor productivity index, (45), and 
rewrite this as 

(52) . 

Dividing both sides of this equation by the Dutot labour quantity index, and applying definition 
(51), one obtains16 
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Taking logarithms and, on the assumption that all the index numbers are in the neighborhood of 
1, interpreting these as percentages, the last equation can be interpreted as: (simple) labour 
productivity growth equals total factor productivity growth plus ‘capital deepening’ plus ‘labour 
quality’ growth. Again, productivity change is measured as a residual and, thus, the three factors 
at the right-hand side of the last equation can in no way be regarded as causal factors. 

 If, continuing our previous example, the primary inputs quantity index was defined as a 
two-stage index of the form  

α≡ ()0,1()0,1( LKKL QQQ ,     (54) 10for  << α , 

where the reader recognizes the simple Cobb-Douglas form, then the index of ‘capital 
deepening’ reduces to the particularly simple form  
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16 This is a discrete time version of expression (23) of Baldwin, Gu and Yan (2007). 
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The ‘labour quality’ index, , basically measures compositional shift or 
structural change among the labour types in the class L, because it is a ratio of two quantity 
indices. 

)0,1(/)0,1( D
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3.2 The K-CF model 
 The next model uses cash flow (CF) as its output concept.17 The unit’s cash flow is 
defined as its revenue minus the costs of labour and intermediate inputs; that is 
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This input-output model basically sees cash flow as the return to capital input. It is assumed that 
. Of course, if there is no owned capital (that is, all capital assets are leased), then 0>tCF

KC , and this model does not make sense.  

 The counterpart to profitability is now the ratio of cash flow to capital input cost, 
t
K

t CCF / , and the natural starting point for defining a productivity index is to consider the 
development of this ratio through time. Since 

)//()/()//()/( 01010011
K K K KCCCFCFCCFCCF = , we need a decomposition of the cash-flow 

ratio and a decomposition of the capital input cost ratio.  

 Decomposing a cash-flow ratio into price and quantity components is structurally similar 
to decomposing a value-added ratio (see appendix B). Thus, suppose that a satisfactory 
decomposition is somehow available; that is, 

(57) ).0,1()0,1(0

1CF
CFCF QP

CF
=  

Using Fisher indices, the capital input cost ratio is decomposed as 

).0,1()0,1(

0 ),,,(),,,( 00110011
1

KK

KKKK
F

KKKK
FK xwxwQxwxwPC

=
K

QP
C

≡

 (58) 

The cash-flow based (total factor) productivity index for period 1 versus 0 is then defined as 

(59) 
)0,1(
)0,1(

)0,1(
K

CF
CF Q

Q
IPROD =

                                                

. 

 
17 Cash flow is also called gross profit. The National Accounts term is ‘gross operating surplus.’ 
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This index measures the change of the quantity component of cash flow relative to the quantity 
change of capital input; or, it can be seen as the index of real cash flow relative to the index of 
real capital input. 

 In the K-CF model, the counterpart to profit is the difference of cash flow and capital 
input cost, t

K
t CCF − , and the natural starting point for defining a productivity indicator is to 

consider the development of this difference through time. However, since costs are additive, we 
see that 

(60)  
.tt

t
K

t
LEMS

tt
K

t

CR

CCRCCF

−=

−−=−

Thus, profit in the K-CF model is the same as profit in the KLEMS-Y model, and the same 
applies to the price and quantity components of profit differences. Using Bennet indicators, one 
easily checks that 

(61)  
);,( 01DPROD=

tt C= ,0=t

)0,1(ln)0,1()0,1( IPRODECF =

)0,1()0,1( DE ≥

+ ],[ +−= tt +− −= )1(t
−+ += )1(tt

),(Q),(Q

),(Q),(Q),(

0101
010101DPROD

CR

KCFCF

−=

−≡

that is, the productivity indicators are the same in the two models. This, however, does not hold 
for the productivity indices. In general it will be the case that . 
Following the reasoning of Balk (2009), it is possible to show that, if profit is zero in both 
periods, that is, R  ( 1 ), then, for certain two-stage indices which are second-order 
differential approximations to Fisher indices, 

)0,1()0,1( DPRODDPRODCF ≠

(62) , ln IPROD

1)0,1( ≥Ewhere  is the ratio of mean revenue over mean cash flow. Since , it follows 
that . 

tt VACF ≤

 

4.  Capital Input Cost 
 

 The K-CF model provides a good point of departure for a discussion of the measurement 
of capital input cost. Cash flow, as defined in the foregoing, is the (ex post measured) monetary 
balance of all the flow variables. Capital input cost is different, since capital is a stock variable. 
Basically, capital input cost is measured as the difference between the book values of the 
production unit’s owned capital stock at beginning and end of the accounting period considered. 

 Our notation must therefore be extended. The beginning of period t is denoted by , and 
its end by t . Thus a period is an interval of time t , where t  and 

. Occasionally, the variable t will also be used to denote the midpoint of the period. 
 All the assets are supposed to be economically born at midpoints of periods, whether this 

−t
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has occurred inside or outside the production unit under consideration. Thus the age of an asset 
of type i at (the midpoint of) period t is a non-negative integer numbe iJ,,0 K . The age of 
this asset at the beginning of the period is 5.0

r j =
−j , and at the end is 5.0+j . The econom

nt of the period, and to be 

f

ically 
axima

 from

sets idpoi
med

Hence,

closin tock at 
tions regard sale, acquisition, and discard o  assets. 

m l service life of asset type i is denoted by iJ . 

 The opening stock of capital assets is the inheritance of past investments and 
disinvestments; hence, this stock consists of cohorts of assets of various types, each cohort 
comprising a number of assets of the same age. By (Netherlands’ National Accounts) convention, 
assets that are discarded (normally retired or prematurely scrapped) or sold during a certain 
period t are supposed to be discarded or sold at the end of that period; that is, at +t . Second-hand 
assets that are acquired during period t other production units are supposed to be acquired 
at the beginning of the next period, −+ )1(t . However, all other acquisitions of second-hand 
assets and those of new as

 

are supposed to happen at the m

ing the 

im iately operational.  

  all the assets that are part of the opening stock remain active through the entire 
period ],[ tt . The period t investments are supposed to be active through the second half of 

period t, that is, ],[ tt . Put otherwise, the stock of capital assets at t, the midpoint of the period, 

is the same as the stock at −t , the beginning of the period, but 0.5 period older. At the midpoint 
of the period the investments, of various age, are added to the stock. Notice, however, that the 

stock at +t , the end of the period, is not necessarily identical to the opening s

+−

g 
−

+

, because of the conven+ )1(t

 Let t
ijK  denote the quantity (number) of asset type i ( Ii ,,1K= ) and age j ( iJj ,,1L= ) 

at the midpoint of period t. These quantities are nonnegative; some of them  equal to 0. 
F ij  denote the (non-negative) quantity (number) of asset type i ( Ii ,,1K= ) and age j 

( iJj ,,0 L= ) that is ad

might be

e following rela

or j ,1L=

or j ,1L=

or ,1

urther, le

ded to the stoc dpoint of period 
useful to keep in mind: 
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t
Ji i

K , 

and 

 152



Bert M. Balk  

where  denotes the balance of sale, acquisition, and discard at . We are now ready to 
define the concept of user cost for assets that are owned by the production unit.

+

+
t

jiB 50.,
+t

18  

 The first distinction that must be made is between assets that are part of the opening stock 
of a period, and investments that are made during this period. Consider an asset of type i that has 
age j at the midpoint of period t. Its price (or valuation) at the beginning of the period is denoted 

by , and its price (or valuation) at the end of the period by . For the time being, 

we consider such prices as being given, and postpone their precise definition to the next section. 

The prices are assumed to be non-negative; some might be equal to 0. In any case, ; 

that is, an asset that has reached its economically maximal age in period t is valued with a zero 
price at the end of this period. 

−

−
t

jiP 5.0,
+

+
t

jiP 5.0,

05.0, =
+

+
t
Ji i

P

 The (ex post) unit user cost over period t of an opening stock asset of type i that has age j 
at the midpoint of the period is then defined as 

(68) ,   for . t
ij

t
ji

t
ji

t
ji

tt
ij PPPru τ+−+≡

+−−

+−− )( .,.,., 505050 iJj ,,1L=

There are three components here. The first, , is the price (or valuation) of this asset at 

the beginning of the period, when its age is 

−

−
t

ji
t Pr 5.0,

5.0−j , times an interest rate. This component 
reflects the premium that must be paid to the owner of the asset to prevent it from being sold, 
right at the beginning of the period, and the revenue used for immediate consumption; it is 
therefore also called the price of ‘waiting.’19 Another interpretation is to see this component as 
the actual or imputed interest cost to finance the monetary capital that is tied up in the asset; it is 
then called ‘opportunity cost.’ Anyway, it is a sort of remuneration which, since there might be a 
risk component involved, is specific for the production unit.20 

 The second part of expression (68), , is the value change of the asset 

between the beginning and end of the accounting period. It is called (nominal) time-series 
depreciation, and combines the effect of the progress of time, from  to , with the effect of 
ageing, from j − 0.5 to j + 0.5. In general, the difference between the two prices (valuations) 
comprises the effect of exhaustion, deterioration, and obsolescence.  

+−

+− − t
ji

t
ji PP 5.0,5.0,

−t +t

 The third component, , denotes the specific tax(es) that is (are) levied on the use of an 
asset of type i and age j during period t.  

t
ijτ

                                                 
18 If there were no transactions in second-hand assets, then the number of assets  would be equal to the number 

of new investments of j periods earlier, , adjusted for the probability of survival. 

t
ijK

jt
iI −
0

19 According to Rymes (1983) this naming goes back to Pigou. 
20 The System of National Accounts 1993 prescribes that for non-market units belonging to the government sector 
the interest rate tr  must be set equal to 0. 
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 Unit user cost as defined in expression (68) is also called ‘rental price,’ because it can be 
considered as the rental price that the owner of the asset would charge to the owner as user. Put 
otherwise, unit user cost is like a lease price. 

 Let us now turn to the unit user cost of an asset of type i and age j that is acquired at the 
midpoint of period t. To keep things simple, this user cost is, analogous to expression (68), 
defined as 

(69) ,   for . t
ij

tt
ij
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tt
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The difference from the previous formula is that here the second half of the period instead of the 
entire period is taken into account.21 

 Total user cost over all asset types and ages, for period t, is then naturally defined by 

(70) . tI J
ttI J

tt ii

ij
i j

ijijij IvK ∑ ∑
= =

+
1 0

The set of quantities { } represents the so-called productive capital 
stock of the production unit. This is an enumeration of the assets that make production possible. 
The total value of these assets at the midpoint of period t can be calculated as 

(71) . 

This value is called the net (or wealth) capital stock.22 

 We are now able to connect the variables in expression (70) with the notation introduced 
in the foregoing; see expression (30). We see that the set K consists of two subsets, 
corresponding respectively to the type-age classes of assets that are part of the opening stock and 

the type-age classes of assets that are acquired later. The dimension of the first set is ∑ , 

and the dimension of the second set is ∑ . The input prices  ( ) are given by 

expressions (68) and (69) respectively, while the quantities  ( n

=
I
i iJ1

I t

∈ ) are given by K  and  
respectively. 

t
ij

t
ijI

                                                

 If all the variables occurring in expression (70) were observable, then our story would 
almost end here. However, this is not the case. Though the quantity variables are in principle 
observable, the price variables are not. To start with, the expressions (68) and (69) contain prices 
(valuations) for all asset types and ages, but, except for new assets and where markets for 
second-hand assets exist, these prices are not observable. Thus, we need models. 

 
21 The factor  is meant as an approximation to , and the factor  as an approximation to 

. 

tr)2/1(

j
2/1

5.0 )
−
−

1)1( 2/1 −+ tr t
ijτ)2/1(

t
ji

t
i

t
ij PP ,, )1/1(( −τ+

22 Coremberg (2008) considers the difference between a quantity index based on expression (70) – capital services – 
and on expression (71) – capital stock. 
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5. The Relationship between Asset Price and Unit User Cost 

 

 Consider expression (68) and rewrite it in the form 

(72)     for j 1= . 
+− ttttt
+− −+=τ− jijiijij PPru 50501 .,.,)( iJ,,K

1

For any asset that is not prematurely discarded it will be the case that its value at the end of 

period t is equal to its value at the beginning of period +t ; formally, P . 

Substituting this into expression (72), and rewriting again, one obtains 

−+ + )1(tt
−+ = 5.0)1, ji P +(,5.0 ji

(73) )( ,,.)(,., jijijitji uP )( tttt
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1+t

−− +11     for j 1= . 

This expression links the price of an asset at the beginning of period t with its price at the 
beginning of period , being then 1 period older. But a similar relation links its price at the 
beginning of period  with its price at the beginning of period 1+t +t , being then again 1 
period older, 
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This can be continued until 
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since we know that . Substituting expression (74) into (73), 

etcetera, one finally obtains 
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This is a materialization of the so-called fundamental asset price equilibrium equation. Notice, 
however, that there is no equilibrium assumed here -- whatever that may mean -- and there are no 
other economic behavioral assumptions involved; it is just a mathematical result. Expressions 
(72) and (76) are dual. The first derives the (ex tax) unit user cost from discounted asset prices, 
while the second derives the asset price as the sum of discounted future (ex tax) unit user costs; 
the discounting is executed by means of future interest rates. 

 A mathematical truth like expression (76), however, is not immediately helpful in the real 
world. At the beginning, or even at the end of period t, most if not all of the data that are needed 

for the computation of the asset prices   and  are not available. Thus, in practice, 

expression (76) must be filled in with expectations, and these depend on the point of time from 
which one looks at the future. A rather natural vantage point is the beginning of period t; thus, 
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the operator 
−tE  placed before a variable means that the expected value of the variable at  is 

taken. Modifying expression (76), the price at the beginning of period t of an asset of type i and 
age  is given by 

−t

5.0−j

(77) 
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Notice in particular that in this expression the economically maximal age, as expected at the 

beginning of period t, , occurs. Put otherwise, at the beginning of period t the remaining 

economic lifetime of the asset is expected to be E periods.

i
t JE
−

5.0−−
−

jJi
t  23  For each of the 

coming periods, there is an expected (ex tax) rental, and the (with expected interest rates) 
discounted rentals are summed. This sum constitutes the price (value) of the asset. 

 Similarly, the price at the end of period t of an asset of type i and age  is given by 5.0+j

(78) 

.

)(

))((

)()(

)(

)(

)(

)(

)( ,,

)(

)()(

,,
)(

)(

,,
)(

)(
.)(,.+

+

≡

=50,
t

jiP
+

)()( )()( jJEtttt

jJEt

JEi

jJEt

JEi

t

tttt

t
ji

t
ji

t

tt

t
ji

t
ji

t

t
ji

i
t

i
t

i
t

i
t

i
t

rErE

uE

rErE

uE

rE

uE

P

−++++

−+−++

++++

+
+

+
+

+

++

+
+

+
+

+

+
−+

−+−−

−+

−+

−+

−+

−

−−

−

−

−

−

++

τ−

+

++

τ−
+

+

τ−

1

1

1

1

1

111

1

2111

2
2

2
2

1

11

1
1

1
1

1

1
501

11

111

K

K

.0

 

Notice that this price depends on the economically maximal age, as expected at the beginning of 

period t+1 (which is the end of period t), , which may or may not differ from the 

economically maximal age, as expected one period earlier, . The last mentioned expected 
age plays a role in the price at the end of period t of an asset of type i and age 

i
t JE

−+ )1(

i
t JE
−

j

                                                

5+ , as 
expected at the beginning of this period, 

 
23 See Erumban (2008a) on the estimation of expected lifetimes for three types of assets in a number of industries. 
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Expression (79) was obtained from expression (77) by deleting its first term as well as the first 

period discount factor tt rE
−

+1 . This reflects the fact that at the end of period t the asset’s 
remaining lifetime has become shorter by one period. Generally one may expect that 

. 
−+−
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ji

t
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t PPE 5.0,5.0,

 Expression (78) differs from expression (79) in that expectations are at  instead of 
. Since one may expect that, due to technological progress, the remaining economic lifetime of 

any asset shortens, that is, , expression (78) contains fewer terms than 

expression (79). Generally one may expect that ; that is, the actual price 

of an asset at the end of a period is less than or equal to the price as expected at the beginning. 
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 Armed with these insights we return to the unit user cost expressions (68) and (69). 
Natural decompositions of these two expressions are 
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      ,    for j 0= . 

As before, the first term at either right-hand side represents the price of waiting. The second term, 
between brackets, is called anticipated time-series depreciation, and could be decomposed into 
the anticipated effect of time (or, anticipated revaluation) and the anticipated effect of ageing (or, 
anticipated cross-section depreciation). The third term, also between brackets, is called 
unanticipated revaluation. We will come back to these terms later. 

 The underlying idea is that, at the beginning of each period or, in the case of investment, 
at the midpoint, economic decisions are based on anticipated rather than realized prices. The 
fourth term in the two decompositions is again the tax term. It is here assumed that with respect 
to waiting and tax, anticipated and realized prices coincide. 
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 Substituting expressions (80) and (81) into expression (70), one obtains the following 
aggregate decomposition, 

(82)  

.)/(

)()(

)()(

)/(

.,.,.,.,

.,,.,.,

.,

t
ij

I

i

J

j

t
ij

t
ij

I

i

J

j

t
ij

t
ij

t
ji

I

i

J

j

t
ji

tt
ij

t
ji

I

i

J

j

t
ji

t

t
ij

t
ji

tI

i

J

j

t
ji

t
ij

t
ji

tI

i

J

j

t
ji

t
ij

t
ij

I

i

J

j

tt
ij

t
ji

I

i

J

j

tt
K

IK

IPPEKPPE

IPEPKPEP

IPrKPrC

ii

ii

ii

ii

∑ ∑∑ ∑

∑ ∑∑ ∑

∑ ∑∑ ∑

∑ ∑∑ ∑

= == =

+
= =

++
= =

+

+
= =

+
= =

−

= =
−

= =

τ+τ+

−+−+

−+−+

+=

++++−

++−−

−

1 01 1

50
1 0

5050
1 1

50

50
1 0

50
1 1

50

1 0
50

1 1

21

21

On the first line after the equality sign we have the aggregate cost of waiting, 
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Notice that the part between brackets differs slightly from expression (71). It can be interpreted 
as the production unit’s productive capital stock as used during period t. 

 On the second line after the equality sign in expression (82) we have the aggregate cost of 
anticipated time-series depreciation, 
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On the third line we have the aggregate cost of unanticipated revaluation, 
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Finally, on the fourth line we have the aggregate cost of tax, 
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Using these definitions, expression (82) reduces to 

(87) . 

Thus, capital input cost can rather naturally be split into four meaningful components. As will be 
detailed in the next section, this leads to four additional input-output models. 
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6. More Models 

6.1 The KL-NVA model 

 The first two models are variants of the KL-VA model. The idea is that the (ex post) cost 
of time-series depreciation plus tax should be treated like the cost of intermediate inputs, and 
subtracted from value added. Hence, the output concept is called net value added, and defined by 

(88) . )( ,,, taxKuKeK CCCVANVA ++−≡

0>tNVA

ttttt

The remaining input cost is the sum of labour cost, , and waiting cost of capital, . It is 

assumed that . 

t
LC t

wKC ,

 Some argue that this model is to be preferred from a welfare-theoretic point of view. If 
the objective is to hold owned capital (including investments during the accounting period) in 
terms of money intact, then depreciation -- whether expected or not -- and tax should be treated 
like intermediate inputs (see Spant 2003). This model was strongly defended by Rymes (1983). 
Apart from land, he considered labour and waiting as the only primary inputs, and connected this 
with a Harrodian model of technological change. 

 The counterpart to profitability in this model is 

 t
L

t
wK CC

NVA
+,

01 / NVA )/() 00
,

11
, LwKLwK CCCC ++

t
, 

and the problem is to decompose the ratios NVA  and (  into 
price and quantity components. The decomposition of the net-value-added ratio is structurally 
similar to the decomposition of the value-added ratio (see appendix B). Hence, let a solution be 
given by 

)0,1()0,1(0

1
NVANVA QP

NVA
NVA

=(89) . 

Using one- or two-stage Fisher indices, the input cost ratio can be decomposed as 

(90) )0,1(
11 CC +

)0,1(00
,

,
KwLKwL

LwK

LwK QP
CC

=
+

. 

The net-value-added based (total factor) productivity index for period 1 relative to period 0 is 
then defined as 

(91) 
)0,1(

)0,1(
KwL

NVA Q

)0,1()0,1( IPRODIPRODNVA ≠
tt C= ,0

)0,1(NVAQ
IPROD ≡ . 

In general, . Following the reasoning of Balk (2009) it is possible 

to show that, if profit is zero in both periods, that is, R  ( 1=t ), then, for certain two-
stage indices which are second-order differential approximations to Fisher indices, 
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(92) , )0,1(ln)0,1()0,1(ln IPRODDIPRODNVA ′=

where  is the ratio of mean revenue over mean net value added. Since , it 
follows that . 

1)0,1( ≥′D
0,1(D′

tt VANVA ≤
)0,1() D≥

 The counterpart to profit in the KL-NVA model is , but one easily 
checks that 

)( ,
t
L

t
wK

t CCNVA +−

(93) . ttt
L

t
wK

t CRCCNVA −=+− )( ,

Thus, profit in the KL-NVA model is the same as profit in the KLEMS-Y model, and the same 
applies to their price and quantity components. Hence, there is nothing really new here. 

 

6.2 The KL-NNVA Model 
 Diewert, Mizobuchi and Nomura (2005), Diewert and Lawrence (2006) and Diewert and 
Wykoff (2010) suggested we should consider unanticipated revaluation, which is the 
unanticipated part of time-series depreciation, as a monetary component that must be added to 
profit. The result could be called “profit from normal operations of the production unit.” 
Following this suggestion, the output concept becomes 

(94) , ),
t

taxK
ttt CVANNVA +≡

L
t

wK , 0>tNNVA

( ,eKC−

which could be called normal net value added. The inputs considered are labour, , and the 

waiting cost of capital, C . It is assumed that . 

tC

 The counterpart to profitability now is 

 t
L

t
wK

t

CC
NNVA

+,

01 / NNVA )/()( 00
,

11
, LwKLwK CCCC ++

, 

and the problem is to decompose the ratios NNVA  and  
into price and quantity components. The decomposition of the normal-net-value-added ratio is 
structurally similar to the decomposition of the value-added ratio (see appendix B). Hence, let a 
solution be given by  

(95) )
1

0,1()0,1(0 NNVANNVA QP
NNVA
NNVA

= . 

The decomposition of the input cost ratio was given by expression (90). The normal-net-value-
added based (total factor) productivity index for period 1 relative to period 0 is then defined as 

(96) 
)0,1(
)0,1(

)0,1(
KwL

NNVA
NNVA Q

Q
IPROD ≡

)0,1()0,1( NVANNVA IPRODIPROD

. 

≠ . In general it will be the case that 
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 The counterpart to profit in the KL-NNVA model is . However, 
one easily checks that 

)( ,
t
L

t
wK

t CCNNVA +−

(97)  t
uK

ttt
L

t
wK

t CCRCCNNVA ,, )( +−=+−

Hence, the KL-NNVA model really differs from the KLEMS-Y model. 

 

6.3 The K-NCF model 
 The last two models are variants of the K-CF model. Here also the idea is that the (ex 
post) cost of time-series depreciation plus tax should be treated like the cost of intermediate 
inputs, and subtracted from cash flow. The output concept is called net cash flow, and defined by 

(98) . )( ,,,
t

taxK
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uK
t

eK
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0>tNCF

wK ,
01 0

,
1 / wKC

The remaining input cost is the waiting cost of capital, . It is assumed that . t
wKC ,

tt CNCF / The counterpart to profitability now is  and the problem is to decompose 

the ratios  and  into price and quantity components. The 
decomposition of the net-cash-flow ratio is structurally similar to the decomposition of the value-
added ratio (see appendix B). Hence, let a solution be given by 

/ NCFNCF ,wKC
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NCF
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Using Fisher indices, the waiting cost of capital ratio can be decomposed as 

)0,1()0,1(0
,

,
KwKw

wK

wK QP
C

=
1C

(100) . 

The net-cash-flow based (total factor) productivity index for period 1 relative to 0 is then defined 
as 

(101) 
)0,1(

1(
)0,1(

Kw

NCF
NCF Q

Q
IPROD ≡

)0,1() IPROD

)0,
. 

0,1(IPRODNCFIn general, it will be the case that ≠ . Following the reasoning of 

Balk (2009), it is possible to show that, if profit is zero in both periods, that is,  (tt CR = ,0 1=t ), 
then, for certain two-stage indices which are second-order differential approximations to Fisher 
indices, 

(102) , )0,1(ln)0,1()0,1(ln IPRODEIPRODNCF ′=

1)0,1( ≥′E tt CF≤
)0,1()0,1( EE ≥′

where  is the ratio of mean revenue over mean net cash flow. Since NCF , it 
follows that .  
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The counterpart to profit in the K-NCF model is , but one easily checks  
that 

t
wK

t CNCF ,−

(103) . ttt
wK

t CRCNCF −=− ,

Thus, profit in the K-NCF model is the same as profit in the KLEMS-Y model, and the same 
applies to their price and quantity components. Hence, there is nothing really new here. 

 

6.4 The K-NNCF Model 
 A variant of the K-NCF model is obtained by considering unanticipated revaluation, 
which is the unanticipated part of time-series depreciation, as a component that must be added to 
profit. Hence, the output concept becomes  

(104) , )( ,,
t
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t
eK

tt CCCFNNCF +−≡

t
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01 / NNCF 0
,

1
, / wKwK CC

tax

which could be called normal net cash flow. It is assumed that . The only input 
category is the waiting cost of capital, C .

0>tNNCF
24 

 The counterpart to profitability now is , and the problem is to decompose 

the ratios NNCF  and  into price and quantity components. The 
decomposition of the normal-net-cash-flow ratio is structurally similar to the decomposition of 
the value-added ratio (see appendix B). Hence, let a solution be given by 

t
wK

t CNNCF ,/

(105) )0,1()0,1(
1

NNCFNNCF QPNNCF
= . 0NNCF

The decomposition of the input cost ratio was given by expression (100). The normal-net-value-
added based (total factor) productivity index for period 1 relative to period 0 is then defined as 

(106) .
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The counterpart to profit in the K-NNCF model is . However, one easily 
checks that  

t
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t CNNCF ,−

t
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ttt
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t CCRCNNCF ,, +−=−

                                                

(107) . 

 
24 In the model of Hulten and Schreyer (2006) total (= unanticipated plus anticipated) revaluation is added to profit. 
This is consistent with SNA93’s prescription for non-market units. 
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Hence, the K-NNCF model really differs from the KLEMS-Y model. However, the K-NNCF 
model is the same as the KL-NNVA model, as can be concluded from a comparison of 
expressions (97) and (107). 

 

7. The Rate of Return 
 

 It is useful to recall the various models in their order of appearance. We are using thereby 
the notation introduced gradually. Further, recall that Π  denotes profit. The 
KLEMS-Y model is governed by the following accounting identity, where input categories are 
placed left and output categories are placed right of the equality sign: 
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The  model is then seen to be governed by KL

(109) . )(,,,,
t
S

t
M

t
E

ttt
L

t
taxK

t
uK

t
eK

t
wK CCCRCCCCC ++−=Π+++++

The  model is governed by NVA−

( ,,,,
t
M

t
E

t
taxK

t
uK

t
eK

ttt
L

t
wK CCCCCRCC ++++−=Π++(110) , 

while the KL-NNVA model is governed by 

(111) , S

t
uK

tt C ,
* +Π≡with Π  being the profit from normal operations. In contrast, Π  could be called 

the profit from all operations. 

 Similarly, departing from expression (108), the K-CF model is seen to be governed by 
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The K-NCF model is governed by 

(113) , C

while the K-NNCF model is governed by 

(114) . 

The last two expressions provide an excellent point of departure for a discussion of the rate of 
return r , which determines the aggregate cost of waiting or opportunity cost C  according to 
expression (83). Using definition (98) and expression (83), the accounting identity of the K-NCF 
model can be rewritten as 

t
wK ,
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Recall that the part between big brackets can be interpreted as the (value of the) production unit’s 
capital stock as used during period t. Provided that , the last equation then says 
that, apart from profit, net cash flow provides the return to the (owner of the ) capital stock. This 
is the reason why 

0≥Π≥ ttNCF

tr  is also called the ‘rate of return’.  

 In principle, the value of the capital stock as well as the net cash flow are empirically 
determined. That leaves an equation with two unknowns: the rate of return tr  and profit tΠ . 

 Setting 0=Π  and solving equation (115) for t tr  delivers the so-called ‘endogenous,’ or 
‘internal’ or ‘balancing’ rate of return. This solution is, of course, specific for the production unit. 
Net cash flow is calculated ex post, since it contains total time-series depreciation. Thus, the 
endogenous rate of return as calculated from expression (115) is also an ex post concept.  The al-
ternative is to specify some reasonable, exogenous value for the rate of return, say the annual 
percentage of headline CPI change plus something. Then, of course, profit follows from equation 
(115) and will in general be unequal to 0. 

 Thus, the endogenous rate of return is defined by the equation 
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Combining this with expression (115) delivers the following relation between the endogenous 
and an exogenous rate of return: 

(117) . ⎞⎛ −I J I J ttttttt + iijK50.= r

Hence, profit Π  is positive if and only if . 

 Alternatively, using definition (104), the accounting identity of the K-NNCF model can 
be rewritten as 
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Now, provided that , normal net cash flow is seen as the return to the (owner 
of the) capital stock. Setting  and solving equation (118) for tr  delivers what can be 
called the ‘normal endogenous’ rate of return. In a sense, this rate absorbs not only profit but also 
the monetary value of all unanticipated asset revaluations. Alternatively, one can specify some 
reasonable, exogenous value for the rate of return. Then, of course, t*Π  follows from equation 
(118), and by subtracting the sum of all unanticipated asset revaluations, C , one obtains  
profit. 

t
uK ,
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 The two expressions (115) and (118) and their underlying models are polar cases. In the 
first, all unanticipated revaluations (that is, the whole of ) are considered as intermediate 
cost, whereas in the second they are considered as belonging to profit. Clearly, positions in 
between these two extremes are thinkable. For some asset types unanticipated revaluations might 
be considered as intermediate cost and for the remaining types these revaluations might be 
considered as belonging to profit. 

t
uKC ,

 This is a good moment to draw a number of conclusions. First, we have considered a 
number of input-output models: KLEMS-Y, KL-VA, KL-NVA, KL-NNVA, K-CF, K-NCF, and 
K-NNCF respectively. All these models lead to different (total factor) productivity indices. 
However, most of these differences are artifacts, caused by a different mixing of subtraction and 
division.25 Thus, it depends on purpose and context of a study which particular model is chosen 
for the presentation of results. When productivity indicators are compared, the real difference 
turns up, namely between the KL-NNVA and K-NNCF models on the one hand and the rest on 
the other hand. 

 Second, there is no single concept of the endogenous rate of return. There is rather a 
continuum of possibilities, depending on the way one wants to deal with unanticipated 
revaluations. 

 Third, an endogenous rate of return, of whatever variety, can only be calculated ex post. 
Net cash flow as well as normal net cash flow require for their computation that the accounting 
period has expired.  

 Fourth, as the name suggests, a total factor productivity index or indicator suggests that 
all the inputs and outputs are correctly observed. Unobserved inputs and outputs and 
measurement errors lead to a distorted profit figure and have impacts on the interpretation of 
total factor productivity change. Since an endogenous rate of return can be said to absorb profit -
- see expression (117) -- the extent of undercoverage has also implications for the interpretation 
of the rate of return (see also Schreyer 2010). Put otherwise, since an endogenous rate of return 
closes the gap between the input and the output side of the production unit, it is influenced by all 
sorts of measurement errors. 

 The question whether to use, for a certain production unit, an endogenous or an 
exogenous rate of return belongs, according to Diewert (2008), to the list of still unresolved 
issues. The practice of official statistical agencies is varied, as a brief survey reveals. 

 The U. S. Bureau of Labor Statistics uses endogenous rates (see Dean and Harper 
2001), 26  as does Statistics Canada (see Harchaoui et al. 2001). The Australian Bureau of 
Statistics uses, per production unit considered, the maximum of the endogenous rate and a 
certain exogenous rate (set equal to the annual percentage change of the CPI plus 4 percent) (see 
Roberts 2006). Statistics New Zealand uses endogenous rates (according to their Sources and 
Methods 2006 publication). The Swiss Federal Statistical office has the most intricate system: 
per production unit the simple mean of the endogenous rate and a certain exogenous rate is used 

                                                 
25 Rymes (1983) would single out the KL-NVA model as the “best” one, but this is clearly not backed by the 
argument presented here. 
26 It seems to me that Jorgenson (2009) is also proposing endogenous rates of return for the four sectors considered. 
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as the final exogenous rate (see Rais and Sollberger 2008). Concerning the endogenous rates, 
however, these sources are not clear as to which concept is used precisely.  

 The fact that an endogenous rate of return can only be calculated ex post seems to imply 
that ex ante unit user costs can only be based on exogenous values for the rate of return. This, of 
course, implies some arbitrariness. However, since the anticipated unit user costs serve as data in 
economic decision processes, it is not unimportant to consider the question whether there is a 
sense in which such unit user costs can be based on an endogenous rate of return. This is a topic 
considered by Oulton (2007). The rather simple model he is using already makes clear that a fair 
amount of mental acrobatics is needed to combine the concept of endogeneity with that of 
anticipation. Let us consider the situation in our set-up. 

 The (at the beginning of period t) anticipated unit user cost for an asset of type i and age j 
over period t is, based on expression (77) and (79), given by 
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These unit user costs concern assets that are available at the beginning of period t. There are, 
however, also investments to be made. In our set-up these investments happen at the midpoint of 
each period. Then, compare expression (81), the (at the midpoint of period t) anticipated unit 
user cost for an asset of type i and age j over the second half of period t is given by 
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Anticipated total user cost over period t is now equal to 
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ijÎwhere the quantities  ( == ) are as yet to be determined. Thus, given asset 

prices, expected asset prices, and expected amounts of tax-per-unit, expression (121) contains 

 unknown investment quantities, in addition to the two rate of return terms, )1(1∑ = +I
i iJ tt rE

−
 

and tt rE . Now this expression corresponds to the left-hand side of the accounting identity of the 
K-CF model. For the right-hand side we need the anticipated value of period t’s cash flow. Based 
on past experience, at the beginning of period t the production unit may have expectations about 
its output prices, and the prices of its labour, energy, materials, and services inputs. The 
corresponding quantities, however, are as yet to be determined. Taken together, we are having 
here a single equation with many unknowns and, except under heroic, simplifying assumptions, 
it seems difficult to get an indubitable solution for the required, endogenous rate of return. 
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 Finally, the concept of an endogenous rate of return does not make sense for non-market 
units, since there is no accounting identity based on independent measures at the input and the 
output side. 

 

8. Capital Utilization 
 

 Until now it was tacitly assumed that the productive capital stock was fully used in actual 
production. We want to make this assumption explicit. For introducing the capital utilization rate, 
let us return to the K-CF model, which is governed by the equation 

t
K

tt CF=Π+

t

C , (122) 

where KC  is given by expression (70). Cash flow, if positive, is seen as the return to the 
productive capital stock. But what if this stock is only partly used in productive operations? 
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Kθ , is the part of the 
productive capital stock that is actually used during period t. For ease of presentation the 
utilization rate t

Kθ  is assumed to be the same for all asset types and ages. Then one easily checks 
that the foregoing equation, governing the K-CF model, can be written as 
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 are the user costs of the used and unused parts of the capital 
stock, respect

 Now, like unanticipated revaluation, one can argue that the cost of unused capital should 
be added to profit and that the measurement of productivity change should be based on the 
equation 

t(124) K K CFC =Π+θ ** , 
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t C Π+θ−≡ )(** 1with Π  being the profit adjusted for underutilization of capital. Put 
otherwise, in this model the (total factor) productivity index for period 1 relative to period 0 is 
defined as 
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This is the index of real cash flow divided by the index of real capital input multiplied by the 
change of the capital utilization rate. 

 It is straightforward to check that the utilization rate can be introduced in any of the 
models discussed in this paper. This exercise is left to the reader. 
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9. Implementation Issues 

 

 There remain a number of implementation issues to discuss. For this, the reader is invited 
to return to expression (82). To ease the presentation, a period is now set equal to a year. 

 The quantities { } and { } are usually 
not available. Instead, as is the case in the Netherlands, the Perpetual Inventory Method 
generates estimates of the opening stock of assets at period  prices 

{ }, and the Investment Survey generates 

estimates of mid-period values { }. 
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 Models for time-series depreciation are briefly discussed in appendix C. The time-series 
depreciation for an asset of type i and age j that is available at the beginning of period t is in 
practice frequently modeled as 
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iPPIwhere  denotes the Producer Price Index (or a kindred price index) that is applicable to new 

assets of type i, and δ  is the annual cross-section depreciation rate that is applicable to an asset 
of type i and age j. This depreciation rate ideally comes from an empirically estimated age-price 
profile. 

 Thus, time-series depreciation is modeled as a simple, multiplicative function of two, 

independent factors. The first one, , which is one plus the annual rate of price 
change of new assets of type i, concerns the effect of the progress of time on the value of an asset 
of type i and age j. The second one, 

−+ t
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t
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01 >− ijδ , concerns the effect of ageing by one year on the 

value of an asset of type i and age j. Ageing by one year causes the value to decline by 100×ijδ  
percent. 

 Similarly, anticipated time-series depreciation is modeled as 
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In this expression, instead of the annual rate of price change of new assets, as observed ex post , 
the annual rate as expected at the beginning of period t is taken. 

 But what to expect? There are, of course, several options here. The first that comes to 
mind is to use some past, observed rate of change of PPI  or a more general PPI. Second, one 
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could assume that expectedly the rate of price change of new assets is equal to the rate of change 
of the (headline) CPI, and use the ‘realized expectation’: 
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Under the last assumption, the anticipated time-series depreciation is measured as 
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and, combining expressions (126) and (129), unanticipated revaluation is measured by 
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Similar expressions hold for assets that are acquired at the midpoint of period t, except that we 
must make a distinction between new and used assets. The time-series depreciation for an asset 
of type i and age j is modeled as 
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The anticipated time-series depreciation is measured by 
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and unanticipated revaluation is measured by 
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An important question is in which circumstances the unit user costs u  and  become non-
positive? Consider, for instance, expression (80), and substitute expressions (129) and (130). 
This yields 

t t
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Hence,  if and only if 0≤t
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In certain, extreme cases this can indeed happen. Consider assets with a very low cross-sectional 
depreciation rate (such as certain buildings or land) and a very high revaluation rate (or rate of  
price increase). A low interest plus tax rate can then lead to negative unit user costs. Put 
otherwise, when the ex post revaluation (as measured by a PPI) more than offsets interest plus 
tax plus depreciation then the unit user cost of such an asset becomes negative. 

 If the unanticipated revaluation is deleted from the user cost, that is, unit user cost is 
measured by 
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then  if and only if 
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The likelihood that such a situation will occur is small. For this to happen, expected revaluation 
(as measured by a CPI) must more than offset interest plus tax plus depreciation. 

 

10. The Netherlands’ System in Perspective 
 

 Against the backdrop of the preceding analysis, I now briefly review the Netherlands’ 
system of productivity statistics, as laid out in Van den Bergen et al. (2007). Basically the system 
is built on the KLEMS-Y and KL-VA models. 

 Revenue R (or the value of gross output), value added VA, and intermediate inputs cost 
 is obtained from National Accounts’ supply and use tables at current and previous year 

prices. The level of detail is a cross classification of 120 industries and 275 commodity groups. 
When it comes to consolidation, imputations must be made for trade and transport margins. The 
reason is that inter-industry deliveries of these margins are not recorded, but must be estimated 
from column and row totals. 

EMSC

),( 1−ttR ),( 1−ttQVA ),( 1−ttEMS

)1,(

 The quantity indices Q , , and Q  are, for the time being 
and to be consistent with National Accounts’ practice, chosen as Laspeyres. 

 Labour cost, , is based on a cross-classification of two types (employees and self-
employed workers) and 49 industries. The unit of measurement is an hour worked. It is assumed 
that, with some exceptions, in each industry self-employed workers have the same annual 
income as employees. Again, the quantity index 

LC

−ttQL  is Laspeyres. 

 The cost of capital input, KC , is based on a cross-classification of 20 asset types by 60 
industries by 18 institutional sectors. Beginning of year estimates of the available capital stock 
are generated by a version of the Perpetual Inventory Method, whereas the annual Investment 
Survey delivers the values of additions to and subtractions from the capital stock. User cost is 
calculated according to expression (70), with (68) and (69) substituted, except that at the level of 
asset type (and age) the tax (plus subsidies) components are not known. Thus, the tax (plus 
subsidies) components must be inserted at a higher level of aggregation. Wherever necessary, 
beginning and end of year price index numbers are approximated by geometric means of 

adjacent year (average) annual price index numbers. For instance,  is approximated by 

. The quantity index 

+t
iPPI

211 /)( +t
i

t
i PPIPPI )1,( ttQ −K  is Laspeyres. All the operational details are 

discussed by Balk and Van den Bergen (2006). The capital utilization rate is set equal to 1. 
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 The interest rate tr  is set equal to the so-called Internal Reference Rate, which is the 
interest rate that banks charge to each other, plus 1.5 percent. For all the assets, unanticipated 
revaluation is retained as part of their unit user cost.27 

 Tying the various strands together, the gross output based total factor productivity index 
is computed as 
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and the value-added based total factor productivity index as 
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A number of sensitivity analyses were performed to gauge the influence of assumptions on 
outcomes. I review the main results: 

1. Changing the index formula, from Laspeyres to Paasche and Fisher, did not lead 
to remarkable adjustments. 

2. For all the assets, unanticipated revaluation was excluded from their unit user cost, 
which means that it was added to profit. This led to small, immaterial differences 
between the TFP index numbers. 

3. Varying the exogenous interest rate, for instance by setting it equal to the annual 
rate of change of the headline CPI plus 4 percent, also caused relatively small 
changes. 

4. Using endogenous interest rates, computed according to expression (115), had 
considerably more impact. The endogenous rates themselves showed a substantial 
variability, both cross-sectionally (over industries) and intertemporally. Moreover, 
there appeared to be a strong dependence on the imputation method used for the 
compensation of self-employed workers. The resulting TFP index numbers varied 
wildly, especially in agriculture and the mining industry.28 

Interesting empirical results were obtained by Vancauteren et al. (2009). Over the years 1995 to 
2007 these authors calculated total factor productivity changes according to the KLEMS-Y, KL-

 
27 The only exception, by SNA93 conventions motivated, concerns the asset type “transfer of property rights.” 
28 It is also interesting to look at the results of the sensitivity analyses carried out by Erumban (2008b), in particular 
those concerning the interest rate and the revaluation part of the user cost. MacGibbon (2008) compared results from 
endogenous and exogenous rates of return and from the in- and exclusion of revaluations. Also interesting are the 
numerical results obtained by Coremberg (2008). He compared results from using Laspeyres and Törnqvist indices, 
undifferentiated and differentiated labour input categories, and capital input quantity indices for stocks and services. 
The biggest effect came from the introduction of a capital utilization rate. 

 172



Bert M. Balk  

VA, KL-NVA, K-CF and K-NCF models, with exogenous and endogenous interest rates, for 
nine industrial sectors and their aggregate. 

 

11.  Conclusion 

 

 After measurement comes explanation. Depending on the initial level of aggregation, 
there appear to be two main directions. The first is disaggregation: the explanation of 
productivity change at an aggregate level (economy, sector, industry) by productivity change at a 
lower level (firm, plant) and other factors, collectively subsumed under the heading of re-
allocation (expansion, contraction, entry, and exit of units). This topic was reviewed by Balk 
(2003, section 6). As the example of Balk and Hoogenboom-Spijker (2003) demonstrates, this 
type of research is of an economic-statistical nature, and there are no neoclassical assumptions 
involved. 

 The second direction is concerned with the decomposition of productivity change into 
factors such as technological change, technical efficiency change, scale effects, input- and 
output-mix effects, and chance. The basic idea can be explained as follows. 

 To start with, for each time period t the technology to which the production unit under 
consideration has access is defined as the set  of all the input-output quantity combinations 
which are feasible during t. Such a set is assumed to have nice properties like being closed, 
bounded, and convex. Of particular interest is the subset of S , called its frontier, consisting of 
all the efficient input-output combinations. An input-output quantity combination is called 
efficient when output cannot be increased without increasing some input and input cannot be 
decreased without decreasing some output. 

tS

t

111 ),( Syx ∈

), 11 yx 1

),( 11 yx 0

 From base period to comparison period our production unit moves from  to 

. Decomposition of productivity change means that between these two points some 
hypothetical path is constructed, the segments of which can be given a distinct interpretation. 

000 ),( Syx ∈

 In particular, we consider the projection of  on the frontier of , and the 

projection of (  on the frontier of S . Comparing the base period and comparison period 
distances between the original points and their projections provides a measure of efficiency 
change.  

),( 00 yx 0S

 Two more points are given by projecting  also on the frontier of , and 

 on the frontier of S . The distance between the two frontiers at the base and com-
parison period projection points provides a (local) measure of technological change. And, finally, 
moving over each frontier (which is a surface in N + M-dimensional space) from a base period to 
a comparison period projection point provides measures of the scale and input-output mix effects. 

),( 00 yx 1S

 The construction of all those measures was discussed by Balk (2004). Since there is no 
unique path connecting the two observations, there is no unique decomposition either. 
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 And here come the neoclassical assumptions, at the end of the day rather than at its 
beginning. Suppose that the production unit always stays on the frontier, that its input- and 
output-mix is optimal at the, supposedly given, input and output prices, and that the two 
technology sets exhibit constant returns to scale, then productivity change reduces to 
technological change (see Balk (1998, section 3.7) for a formal proof). The technology sets are 
thereby supposed to reflect the true state of nature, which rules out chance as a factor also 
contributing to productivity change.29 

 

Appendix A. Indices and Indicators 
 

 The basic measurement tools used are price and quantity indices and indicators. The first 
are ratio-type measures, and the second are difference-type measures. What, precisely, are the 
requirements for good tools? 

 

A1. Indices 

 A price index is a positive, continuously differentiable function 
 that correctly indicates any increase or decrease of the elements 

of the price vectors  or , conditional on the quantity vectors  and . A quantity index 
is a positive, continuously differentiable function of the same variables 

 that correctly indicates any increase or decrease of the elements 

of the quantity vectors  and , conditional on the price vectors  or . The number N is 
called the dimension of the price or quantity index. 
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 The basic requirements on price and quantity indices are: 

A1. Monotonicity in prices. )  is increasing in comparison period prices 

 and decreasing in base period prices  ( n

,,, 001 ypy
0
np ,,1K1

np N= ). 

.1A ′ ,,,( 0011 ypypQ
1
ny 0 N

 Monotonicity in quantities. )  is increasing in comparison period 

quantities  and decreasing in base period quantities  (ny n ,,1K= ). 

A2. Linear homogeneity in comparison period prices. Multiplication of all comparison 
period prices by a common factor leads to multiplication of the price index number by 
this factor; that is, . )0(  ),,,() >= λλ ypypP,,,( 00110011λ ypypP

)0(  ),,,(),,,( 00110011 >λλ=λ ypypQypyp

                                                

.2A ′  Linear homogeneity in comparison period quantities. Multiplication of all 
comparison period quantities by a common factor leads to multiplication of the quantity 
index number by this factor; that is, Q . 

 
29 On stochastic productivity measurement see Chambers (2008). 
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A3. Identity test. If all the comparison period prices are equal to the corresponding base 
period prices, then the price index number must be equal to 1: . 1),,,( 0011 =ypypP

.3A ′

( 0pQ

 Identity test. If all the comparison period quantities are equal to the corresponding 
base period quantities, then the quantity index number must be equal to 1: 

. 1),,, 000 =ypy

A4. Homogeneity of degree 0 in prices. Multiplication of all comparison and base 
period prices by the same factor does not change the price index number; that is, 

.  )0(  ),,,(),,,( 00110011 >= λλλ ypypPypypP

.4A ′  Homogeneity of degree 0 in quantities. Multiplication of all comparison period 
and base period quantities by the same factor does not change the quantity index number; 
that is, . )0(  ),,,(),,,( 00110011 >= λλλ ypypQypypQ

A5. Dimensional invariance. The price index is invariant to changes in the units of 
measurement of the commodities: for any diagonal matrix Λ  with elements of ++ℜ  it is 

required that . )0,,,( ),,,( 011100111 ypypPypypP =ΛΛΛΛ −−

.5A ′  Dimensional invariance. The quantity index is invariant to changes in the units of 
measurement of the commodities: for any diagonal matrix Λ  with elements of ++ℜ , it is 

required that . )0y,,,( ),,,( 011100111 pypQypypQ =ΛΛΛΛ −−

Product Test. . 001100110011 /),,,(),,,( ypypypypQypypP ⋅⋅=

 Any function  that satisfies axiom A5 can be written as a function of 

only 3N variables, namely the price relatives , the comparison period values , 

and the base period values  (
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 Similarly, any function  that satisfies axiom  can be written as a 
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 Some simple examples might be useful to illustrate this. Consider the Laspeyres price 
index as a function of prices and quantities, 

 , 00010011 /),,,( ypypypypPL ⋅⋅≡

and notice that this index can be written as a function of price relatives and (base period) values, 
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Similarly, the Paasche price index  

 , 
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can be written as a function of price relatives and (comparison period) values, 
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Finally, the Fisher price index, defined as the geometric mean of the Laspeyres and Paasche 
indices, reads 
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Such functional forms are useful for the definition of two-stage indices. Let the aggregate under 
consideration be denoted by A, and let A be partitioned arbitrarily into K subaggregates , 

 k AA =∪=   φ=∩ ′kk AA ′,     for kk ≠ . 

Each subaggregate consists of a number of items. Let  denote the number of items 
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 Let , )(KP)(⋅P )1(P (.), ..., (.) be price indices of dimension N,,1 K
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NK  , K  respectively 
that satisfy A1,...,A5. Then the price index defined by 

 ;0 kVk(140) kkkkk
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is of dimension N and also satisfies A1,...,A5. The index  is called a two-stage index. The 

first stage refers to the indices  for the subaggregates  ()()( ⋅kP Kk ,,1K= ). The second stage 

refers to the index (.)P hat is applied to the subindices ()(kP 1 t )⋅  ( Kk ,,K= ). A two-stage index 
such as is defined by expression (140) closely corresponds to the calculation practice at statistical 
agencies. All the subindices are usually of the same functional form, for instance Laspeyres or 
Paasche indices. The aggregate, second stage index may or may not be of the same functional 
form. This could be, for instance, a Fisher index. 

 If the functional forms of the subindices  ()()( ⋅kP Kk ,,1K= ) and the aggregate index 

 are the same, then  is called a two-stage )(* ⋅P )(⋅P)(⋅P  index. Continuing the example, the two-
stage Laspeyres price index reads 
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and one simply checks that the two-stage and the single-stage Laspeyres price indices coincide. 
However, this is the exception rather than the rule. For most indices, two-stage and single-stage 
variants do not coincide. 

 Similarly, let , , ...,  be quantity indices of dimension )(⋅Q )()1( ⋅Q )()( ⋅KQ KNNK ,, , 1 K  
respectively that satisfy ,…, . Then the quantity index defined by 1′ 5AA .′

(141)  ),...,1;  ,),,,,((),,,( 010011)(0011* KkVVypypQQypypQ kkkkkk
k =≡

is of dimension N and also satisfies 1A ′ ,…, .5A ′  The index  is called a two-stage index. )(* ⋅Q

 

A2. Indicators 
 Provided that certain reasonable requirements are satisfied, the continuous functions 

 and ℜ→ℜ ++
Nypyp 40011 :),,,P( ℜ→ℜ++

Nypyp 40011 :),,,

1
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Q(  will be called a price indicator 
and a quantity indicator respectively. Notice that these functions may take on negative or zero 
values. The basic requirements are: 

AA1. Monotonicity in prices.  is increasing in comparison period 

prices  and decreasing in base period prices  (

),,,P( 0011 ypyp
0
np n = ). 

.1AA ′  Monotonicity in quantities.  is increasing in comparison period 

quantities  and decreasing in base period quantities  (

),,,Q( 0011 ypyp
1
ny 0

ny Nn ,,1K= ). 

AA3. Identity test. If all the comparison period prices are equal to the corresponding 
base period prices, then the price indicator must deliver the outcome 0: 
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00001 =),,, ypyp
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0 ,P( p

3AA ′ . Identity test. If all the comparison period quantities are equal to the 
corresponding base period quantities, then the quantity indicator must deliver the 
outcome 0: Q( . 

AA4. Homogeneity of degree 1 in prices. Multiplication of all comparison and base 
period prices by a common factor changes the price indicator outcome by this factor; that 
is, P( . λ

4AA ′ . Homogeneity of degree 1 in quantities. Multiplication of all comparison period 
and base period quantities by a common factor changes the quantity indicator outcome by 
this factor; that is, Q( . 

AA5. Dimensional invariance. The price indicator is invariant to changes in the units of 
measurement of the commodities: for any diagonal matrix Λ  with elements of ++ℜ , it is 

required that . ),,,P(),,,P( 0011100111  ypypypyp =ΛΛΛΛ −−
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5AA ′

++ℜ

. Dimensional invariance. The quantity indicator is invariant to changes in the 
units of measurement of the commodities: for any diagonal matrix Λ  with elements of 

, it is required that . ),,,Q(),,,Q( 0011100111  ypypypyp =ΛΛΛΛ −−

Analogue of the Product Test. . 001100110011 ypypypypypyp ⋅−⋅=+ ),,,Q(),,,P(

Any function  that satisfies axiom AA5 can be written as a function of 
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 Also here some simple examples might be useful. Consider the Laspeyres price 

indicator as a function of prices and quantities, 
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and notice that this indicator can be written as a function of price relatives and (base period) 
values, 
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Similarly, the Paasche price indicator, 

 , 1010011 yppypypP ⋅−≡ )(),,,(P

can be written as a function of price relatives and (comparison period) values, 
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Finally, the Bennet indicator is usually defined as 

 , 

but can be written as 

  
⎡ 0010011 NB

The Bennet price indicator for an aggregate is a simple sum of Bennet price indicators for its 
subaggregates: 

 ,  

and a similar relation holds for quantity indicators. 
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Appendix B. Decompositions of the Value Added Ratio 
 

 Value added is defined as revenue minus the cost of intermediate inputs.  For the loga-
rithm of the value added ratio, we get by repeated application of the logarithmic mean30 , ),( baL
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For  recall expression (7) and decompose the ratio C  by one- or two stage 
Fisher indices as 

01 / RR / EMSEMS C
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Then the logarithm of the value added ratio can be expressed as 
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This can be rearranged as  
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where , that is, as mean revenue over mean value added, and ),(/),( 0101 VAVALRRL≡φ

)( 0L≡ ,(/), 101 VAVALCC EMSEMSψ , that is, as mean intermediate inputs cost over mean value 
added. Thus, value added price and quantity indices can rather naturally be defined by 
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30  For any two strictly positive real numbers a and b their logarithmic mean is defined by 

 if  and )/ln(/)(),( bababaL −= ba ≠ aaaL =),( . 
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These indices generalize the conventional Montgomery-Vartia indices (see Balk 2008, 87 for 
their definition). They are Consistent-in-Aggregation, but fail the Equality Test. The reason is 
that, 
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The numerator is a Laspeyres-type double deflator, and the denominator is the inverse of a 
Paasche-type double deflator. Similarly,  is defined as a Fisher-type index of the 
subindices  and . These indices satisfy the Equality Test, but fail the 
Consistency-in-Aggregation Test. Moreover, there are situations where Fisher-type indices are 
undefined. 

 

Appendix C. Decompositions of Time Series Depreciation 
 

 Time-series depreciation of an asset of type i and age j over period t is, according to 

expression (68), defined by , which is the (nominal) value change of the asset 

between the beginning and the end of the period. This value change combines the effect of the 
progress of time, from  to , with the effect of ageing, from 

+−
− tt PP

−t +t −j  to . Since value 
change is here measured as a difference, a natural decomposition of time-series depreciation 
according to these two effects is 
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(150)  

This decomposition is symmetric. The first term on the right-hand side of the equality sign 
measures the effect of the progress of time on an asset of unchanged age; this is called 
revaluation. The revaluation, as measured here, is the arithmetic mean of the revaluation of a 
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5.0−j  periods old asset and a  periods old asset, and may be said to hold for a j periods 
old asset.  

5.0+j

 The second term concerns the effect of ageing, which is measured by the price difference 
of two, otherwise identical, assets that differ precisely one period in age. This is called Hicksian 
or cross-section depreciation. The arithmetic mean is taken of cross-section depreciation at the 
beginning and end of the period, and, hence, may be said to hold at the midpoint of period t. 

 Since the Perpetual Inventory Method combines the beginning-of-period price with the 
corresponding cohort quantities, expression (150) is rewritten as 
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At the left-hand side of this expression we have (  as an inverse ratio-type 

measure of time-series depreciation. Considered as a decomposition, however, expression (151) 
is not symmetric. A symmetrical decomposition is given by 
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The first term on the right-hand side of the equality sign measures revaluation. The second term 
measures cross-section depreciation. As one can see, revaluation depends on age, and cross-
section depreciation depends on time. In the usual model, these two dependencies are assumed 

away. Revaluation is approximated by , the price change of a new asset of type i from 
beginning to end of period t. Cross-section depreciation is approximated by 

−+ t
i

t
i PP /

δ− ij1 , where δ  is 
the percentage of annual depreciation that applies to an asset of type i and age j. The specific 
formulation highlights the fact that ageing usually diminishes the value of an asset. 

 Under these two assumptions, the basic time-series depreciation model 

for an asset of type i and age j, over period t, is given by 
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For assets that are acquired at the midpoint of period t one must distinguish between new and 
used assets. Over the second half of period t, the model reads 
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 serves as an approximation to . The percentage of annual 

depreciation, , ideally comes from an empirically estimated age-price profile for asset-type i. 

Under a geometric profile one specifies 
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Chapter 8 
THE LOWE CONSUMER PRICE INDEX AND ITS 

SUBSTITUTION BIAS 
Bert M. Balk and W. Erwin Diewert1 

 

1. Introduction 
 

 Usually the substitution bias of an official CPI is assessed under the assumption that such 
an index is an estimator of a Laspeyres price index. The generic form of the Laspeyres price 
index is 
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where  is the current (reference) period price vector and  is the reference period 
quantity vector. The question then is how this index relates to its true cost of living counterpart. 

)( 0ppt 0q

 Indeed, many statistical agencies are employing a Laspeyres price index as their 
conceptual target. For example, the Netherlands’ CPI is modelled this way, where currently the 
reference period is the year 2006, and t is any month from January 2007 onwards. Nevertheless, 
the headline inflation figure is obtained as the percentage change between the current month and 
the corresponding month of the previous year. Put otherwise, the really interesting index number 
is the one given by 
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which is a fixed basket price index, but definitely not a Laspeyres index. Actually, the right-hand 
side of this expression is an instance of the Lowe price index, 2  and will be denoted by 

),,( 012 qppP tt
Lo

−

index than the Laspeyres index. 
. Thus it makes much more sense to inquire after the substitution bias of this 
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so many statistical agencies which employ as conceptual target for their CPI a 
so-called modified Laspeyres index. This concept measures the price change between reference 
month 0 and current month t as a
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rget index is a Lowe index. 

 The foregoing is sufficient to motivate the question to be addressed in this paper: can the 
pically

that is, the ta

Lowe index ),,( 0 bt
Lo qppP , where ty  tb <≤ 0 , be related to one derived from the 

follows. Section a very 

g Index 

onsumption vectors 
that can be represented by the continuous increasing utility function  Thus 

For any vector of

economic approach to index number theory? Note that when b = 0, the Lowe index reduces to 
the Laspeyres index. Thus our question is more general than the usual one. The lay-out of this 
paper is as  2 considers in general way the Lowe index as an 
approximation to a cost of living index. Sections 3 and 4 respectively pursue first- and second- 
order approximations to its substitution bias. Section 5 concludes. 

 

2. The Lowe Index as an Approximation to a Cost of Livin
 

 Assume that the consumer has preferences defined over c
),,( 1 Nqq K≡  

( 01qf
annual consump

b  as the utility 
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tility
if )() qf> , then the consumer prefers the consumption vector 1q  to 0q . Let bq  be the 

tion vector for the consumer in the base year b. Define the base year u  level 
u vel that corresponds to )(qf  evaluated at q : 
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Let (b pp ≡ ),,1
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Assume
 year cost minimiz

be the vector of annual prices that the consumer faced in the base year b. 

 that the observed base year consumption vector solves the following 

The cost function will be used below in order to define the consumer’s cost of living index. 

 Let  and be the monthly price vectors that the consumer faces in months 0 and t. 
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year utility level )( bb qfu  as the reference standard of living, is defined as the following ratio 
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Thus if the nonnegative substitution bias terms  and  are small, then the Lowe index 
between months 0 and t, , will be an adequate approximation to the cost of 

living index between months 0 and t, 
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 A bit of algebraic manipulation shows that the Lowe index will be exactly equal to its 
cost of living counterpart if the substitution bias terms satisfy the following relationship:3  
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Equations (14) and (15) can be interpreted as follows: if the rate of growth in the amount of 
substitution bias between months 0 and t is equal to the rate of growth in the minimum cost of 
achieving the base year utility level  between months 0 and t, then the observable Lowe 
index, , will be exactly equal to its cost of living index counterpart, 
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e

pP . 4  It is difficult to know whether condition (15) will hold or whether the 

substitution bias terms  and  will be small. Thus in the following two sections, first and 
second order Taylor series approximations to these substitution bias terms will be developed. 

0 te

 

3. A First-Order Approximation to the Substitution Bias of the Lowe Index 
 

 The cost of living index between months 0 and t, using the base year utility level  as 
the reference utility level, is the ratio of two unobservable costs, . 
However, both of these hypothetical costs can be approximated by first-order Taylor series 
approximations that can be evaluated using observable information on prices and base year 
quantities. 

bu
), 0p(/),( uCpuC btb
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3 This assumes that e  is greater than zero. If e  is equal to zero, then to have equality of P  and , it must 

also be the case that  is equal to zero. 
4 It can be seen that when month t is set equal to month 0, e  and  and thus (15) is 
satisfied and . This is not surprising since both indices are equal to unity when t = 0. 
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 The first-order Taylor series approximation to  around the annual base year 

price vector  is given by the following approximate equation:
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where Shephard’s Lemma and assumption (8) have been used. Similarly, the first-order Taylor 
series approximation to  around the annual base year price vector  is given by the 
following approximate equation: 
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Comparing (16) to (12), and (17) to (13), we see that to the accuracy of the first order the 
substitution bias terms  and  will be zero. Using these results to reinterpret (14), it can be 
seen that if the month 0 and month t price vectors,  and , are not too different from the 

base year vector of prices , then the Lowe index  will approximate the cost 

of living index 

te

, t
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 to the accuracy of the first order. This result is quite useful, since 

it indicates that if the monthly price vectors  and  are just randomly fluctuating around the 

base year prices  (with modest variances), then the Lowe index will serve as an adequate 
approximation to a theoretical cost of living index. However, if there are systematic long term 
trends in prices and month t is fairly distant from month 0 (or the end of year b is quite distant 
from month 0), then the first-order approximations given by (16) and (17) may no longer be 
adequate and the Lowe index may have a considerable bias relative to its cost of living 
counterpart. The hypothesis of long run trends in prices will be explored in the following section. 

0p tp

 

                                                 
5 This type of Taylor series approximation was used in Schultze and Mackie (2002; 91) in the cost of living index 
context but it essentially dates back to Hicks (1941-42; 134) in the consumer surplus context. See also Diewert 
(1992; 568). 
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4. A Second-Order Approximation to the Substitution Bias of the Lowe Index 

 

 A second-order Taylor series approximation to  around the base year price 

vector  is given by the following approximate equation: 
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where the last equality follows using (16). 6  Similarly, a second-order Taylor series 
approximation to  around the base year price vector  is given by the following 
approximate equation: 
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where the last equality follows using (17). 

 Comparing (18) to (12), and (19) to (13), it can be seen that to the accuracy of the second 
order, the month 0 and month t substitution bias terms,  and , will be equal to the following 
expressions involving the second-order partial derivatives of the consumer’s cost function 
evaluated at the base year standard of living  and the base year prices : 
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Since the consumer’s cost function  is a concave function in the components of the price 
vector p,

),( puC
7 it is known8 that the N × N (symmetric) matrix of second-order partial derivatives is 

                                                 
6 This type of second-order approximation is due to Hicks (1941-42; 133-134) (1946; 331). See also Diewert (1992; 
568) and Schultze and Mackie (2002; 91). 
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negative semidefinite.9 Hence, for arbitrary price vectors ,  and , the right-hand sides 
of (20) and (21) will be nonnegative. Thus to the accuracy of the second order, the substitution 
bias terms  and  will be nonnegative.  

bp

n

0p tp

0e te

 Now assume that there are systematic long run trends in prices. Assume that the last 
month of the base year for quantities occurs M months prior to month 0, the base month for 
prices, and assume that prices trend linearly with time, starting with the last month of the base 
year for quantities. Thus assume the existence of constants N,Kn( ,1=α ) such that the price 
of commodity n in month t is given by: 
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Substituting (22) into (20) and (21) leads to the following second-order approximations to the 
two substitution bias terms: 
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It should be noted that the parameter γ  will be zero under two sets of conditions:10 

 -  All of the second-order partial derivatives of the consumer’s cost function equal zero. 

 - Each commodity price change parameter nα  is proportional to the corresponding 

commodity n base year price .b
np 11 

 The first condition is empirically unlikely since it implies that the consumer will not 
substitute away from commodities whose relative price has increased. The second condition is 
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7 See Diewert (1993b; 109-110). 
8 See Diewert (1993b; 149). 
9 A symmetric N×N matrix A with n -th element equal to a  is negative semidefinite if and only if for every 

vector  it is the case that ∑ ∑ . ,,1 K

10 A more general condition that ensures the positivity of γ  is that the vector ( ), N,1 αα K
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the matrix of second-order partial derivatives ∂  that corresponds to a zero eigenvalue. 
11 It is known that C  is linearly homogeneous in the components of the price vector p; see Diewert (1993b; 

109) for example. Hence, using Euler’s Theorem on homogeneous functions, it can be shown that p  is an 

eigenvector of the matrix of second-order partial derivatives ∂  that corresponds to a zero 

eigenvalue and thus ; see Diewert (1993b; 149) for a detailed proof. 
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also empirically unlikely, since it implies that the structure of relative prices remains unchanged 
over time. Thus in what follows, it will be assumed that γ  is a positive number.  

 In order to simplify the notation in what follows, define the denominator and numerator 
of the month t Lowe index, , as a and b respectively; that is, define ),,( 0 bt

Lo qppP
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using respectively (26) and (27), (12) and (13), (23) and (24), (28) and (29), and (30). 

 Thus for 1≥t , the Lowe index will have an upward bias (to the accuracy of a second 
order Taylor series) relative to the corresponding cost of living index, since the approximate bias 
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defined by the last expression in (31) is the sum of one nonpositive and two negative terms. 
Moreover this approximate bias will grow quadratically in time t.12  

 In order to give the reader some idea of the magnitude of the approximate bias tB  
defined by the last line of (31), a simple special case will be considered at this point. Suppose 
there are only 2 commodities and at the base year, all prices and quantities are equal to 1. Thus 

 for  and . Assume that M = 24 so that the base year data on 
quantities take 2 years to process before the Lowe index can be implemented. Assume that the 
monthly rate of growth in price for commodity 1 is 
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b
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1α  = 0.002 so that after 1 year, the price of 
commodity 1 rises 0.024 or 2.4%. Assume that commodity 2 falls in price each month with 2α  = 
−0.002 so that the price of commodity 2 falls 2.4% in the first year after the base year for 
quantities. Thus the relative price of the two commodities is steadily diverging by about 5 
percent per year. Finally, assume that ∂  and 

. These assumptions imply that the own price 
elasticity of demand for each commodity is −1 at the base year consumer equilibrium. Making all 
of these assumptions means that: 
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Thus the Lowe index keeps for all months t the value 1. Substituting the parameter values given 
in (32) into (31) leads to the following formula for the approximate amount that the Lowe index 
will exceed the corresponding true cost of living index at month t: 
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296000008.0
2

−
+

=−
ttBt . 

Evaluating (33) at t = 12, t = 24, t = 36, t = 48 and t = 60 leads to the following estimates for 
tB− : 0.0029 (the approximate bias in the Lowe index at the end of the first year of operation); 

0.0069 (the bias after 2 years); 0.0121 (3 years); 0.0185 (4 years); 0.0260 (5 years). Thus at the 
end of the first year of the operation of the Lowe index, it will only be above the corresponding  
cost of living index by approximately a third of a percentage point but by the end of the fifth year 
of operation, it will exceed the corresponding cost of living index by about 2.6 percentage points, 
which is no longer a negligible amount.13  

 The numerical results in the previous paragraph are only indicative of the approximate 
magnitude of the difference between a Lowe index and the corresponding cost of living index. 
The important point to note is that to the accuracy of the second order, the Lowe index will 
generally exceed its cost of living counterpart. However, the results also indicate that this 
difference can be reduced to a negligible amount if: 

 - the lag in obtaining the base year quantity weights is minimized, and 

                                                 
12 If M is large relative to t, then it can be seen that the first two terms in the last equation of (31) can dominate the 
last term, which is the quadratic in t term. 
13 Note that the relatively large magnitude of M compared to t leads to a bias that grows approximately linearly with 
t rather than quadratically. 
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 - the base year is changed as frequently as possible.14  

It also should be noted that the numerical results depend on the assumption that long run trends 
in prices exist, which may not be true,15 and on elasticity assumptions that may not be justified.16 
Thus statistical agencies should prepare their own carefully constructed estimates of the 
differences between a Lowe index and a cost of living index in the light of their own particular 
circumstances. 

 

5. Conclusion 
 

 The conceptual target for measuring consumer price change appears to be a Lowe price 
index rather than a Laspeyres price index. In this paper we derived first- and second-order 
approximations to the substitution bias of the Lowe index. A simple, but not unreasonable, 
example was used to get some idea of the magnitude of this bias. The bias is seen to crucially 
depend on the time span between the year to which the quantities refer and the price reference 
month. 
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Chapter 9 
LOWE INDICES 

Peter Hill1 

 

1. Introduction 
 

 The Lowe price index is a type of index in which the quantities are fixed and 
predetermined. The Lowe quantity index is a type of index in which the prices are fixed and 
predetermined. Many of the indices produced by statistical agencies turn out to be Lowe indices. 
They range from Consumer Price Indices to the Geary-Khamis quantity indices used in the first 
three phases of the International Comparisons Project of the United Nations and the World Bank. 
Lowe indices have certain characteristic features that throw light on their underlying properties. 

 The name “Lowe Index” was introduced in the international Consumer Price Index 
Manual: Theory and Practice (2004) -- the 2004 CPI Manual hereafter -- and in a paper by Balk 
and Diewert (2003, 2009). 2  However, it is not a new index number formula. It makes its 
appearance in paragraph 1.17 of Chapter 1 of the 2004 CPI Manual where it is described as 
follows: 

“One very wide, and popular, class of price indices is obtained by defining the 
index as the percentage change, between the periods compared, in the total cost of 
purchasing a given set of quantities generally described as a ‘basket’... This class 
of index is called a Lowe index after the index number pioneer who first proposed 
it in 1823” (see Chapter 15). 

Such indices are often described loosely as Laspeyres indices or Laspeyres type indices. 
However, a true Laspeyres price index is one in which the quantities that make up the basket are 
the actual quantities of the price reference period. This is the earlier of the two periods compared, 
assuming that the price changes are being measured forwards in time. Consumer Price Indices, or 
CPIs, are not Laspeyres indices as just defined, even though they may officially be described as 
Laspeyres type indices. The expenditures and quantities used as weights for CPIs typically come 
from household budget surveys undertaken some years before the price reference period for the 
CPI. For practical reasons, the quantities always refer to a period which pre-dates the price 
reference period, possibly by a considerable length of time. 

 
1 The author would like to thank Bert Balk and Erwin Diewert for a number of helpful and constructive comments 
on an earlier draft of this paper. 
2 The 2004 international CPI Manual was produced under the auspices of a group of international agencies - the ILO, 
IMF, OECD, EU (Eurostat), UNECE, and World Bank - advised by an international group of experts that included 
Bert Balk, Erwin Diewert and the author. Erwin Diewert wrote the entire sequence of chapters on index number 
theory from Chapter 15 onwards.  
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 In the interest of greater accuracy and precision, and to avoid confusion about the actual 
status of CPIs, it was decided to introduce the concept of a ‘Lowe index’ in the 2004 CPI Manual. 
The term ‘Lowe index’ will not be found in the index number literature before 2003. In a Lowe 
price index the quantities are not restricted to those in one or another of the periods compared. 
Any set of quantities may be used. They could even be hypothetical quantities that do not refer to 
any actual period of time.  

 This paper is not just concerned with CPIs. Lowe indices are used extensively throughout 
the entire field of economic statistics. This paper introduces the concept of the Lowe quantity 
index which is defined as the ratio of total costs, or values, of two different baskets of goods and 
services valued at the same set of prices. Any set of prices may be used and they do not have to 
be those observed in either of the two periods compared. Lowe quantity indices are used 
extensively by statistical agencies. They are commonly used in national accounts.  

 Moreover, Lowe indices are not confined to inter-temporal comparisons. As they are 
transitive, Lowe indices have been widely used in multilateral comparisons of real product 
between countries. For example, the Geary-Khamis method used in the first three phases of the 
International Comparisons Project of the United Nations and World Bank uses a Lowe quantity 
index in which the prices are the average prices for the group of countries as a whole3. Other 
types of Lowe indices have also been used for international comparisons. 

 The first section of the paper focuses on the use of Lowe price indices as CPIs drawing 
upon material contained in the 2004 CPI Manual. Later sections focus mainly on Lowe quantity 
indices, particularly as used in international comparisons.  

 

2. CPIs as Lowe Price Indices 
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 An inter-temporal Lowe price index compares the total value of a given set, or basket, of 
quantities in two different time periods. The quantities that make up the basket are described as 
the reference quantities and are denoted by r
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 In a Lowe index, any set of quantities could serve as the reference quantities. They do not 
have to be the quantities purchased in one or other of the two periods compared, or indeed in any 
other period of time. They could, for example, be arithmetic or geometric averages of the 
quantities in the two periods compared or purely hypothetical quantities.  

                                                 
3 See Kravis, Heston and Summers (1982, pp. 89-94) and Hill (1997, pp. 57, 58).  
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 In CPIs, the quantities selected to serve as the reference quantities are generally those 
actually purchased by households over the course of a year or possibly over a longer period. The 
data source is typically a survey of household consumption expenditures conducted well in 
advance of the period which is to serve as the price reference period. For example, if Jan. 2000 is 
chosen as the price reference period for a monthly CPI, the quantities may be derived from an 
annual expenditure survey carried out in 1997 or 1998, or perhaps spanning both years. As it 
takes a long time to collect and process expenditure data, there is usually a considerable time lag 
before such data can be introduced into the calculation of CPIs. The basket may also refer to a 
year, whereas the periodicity of the index may be a month or quarter.  

 When the reference quantities in a CPI belong to an actual time period it is described as 
the quantity reference period. It will be denoted as period b. As just noted, the quantity reference 
period b is likely to precede price reference period 0 and it will be assumed throughout this 
section that the order of the three time periods is t0b << . The Lowe index for period t with 
period b as the quantity reference period and period 0 as the price reference period is written as 
follows: 
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 The index can be written, and calculated, in two ways: either as the ratio of two value 
aggregates, or as an arithmetic weighted average of the price ratios, or price relatives, , for 

the individual products using the hybrid expenditures shares  as weights. They are described 
as hybrid because the prices and quantities belong to two different time periods, 0 and b 
respectively. The hybrid weights may be obtained by updating the actual expenditure shares in 
period b, namely , for the price changes occurring between periods b and 0 by 

multiplying them by the price relatives  and then normalising them to sum to unity.  
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3. Laspeyres and Paasche Indices 
 

 Laspeyres and Paasche indices are special cases of the Lowe index. The Laspeyres price 
index is the Lowe index in which the reference quantities are those of the price reference period 
0 -- that is, period b coincides with period 0 in equation (2).4 The Paasche price index is the 
Lowe index in which the reference quantities are those of period t -- that is, period b coincides 

                                                 
4 When the quantity reference period is not the same as the price reference period, the term ‘base period’ can be 
ambiguous as it could mean either period. The term ‘base period’ is therefore avoided here where possible. In a 
Laspeyres index the price and quantity reference periods are the same so that it can unambiguously be described as 
the base period.  
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with t. Assuming that , the Laspeyres index uses the basket of the earlier of the two periods 
while the Paasche uses that of the later period.  

t0 <

 The properties of Laspeyres and Paasche indices are well known and discussed 
extensively in the index number literature. When the price and quantity relatives for period t 
based on period 0 are negatively correlated, which happens when consumers substitute goods 
that are becoming relatively cheaper for goods that are becoming relatively dearer, the Laspeyres 
index exceeds the Paasche.5 This almost invariably happens in practice, at least with CPIs. For a 
more detailed and rigorous discussion of the inter-relationships between Laspeyres and Paasche 
indicies, see paragraphs 15.11 to 15.17 and Appendix 15.1 by Erwin Diewert in the 2004 CPI 
Manual. In the present context, it is necessary to consider the relationships beween Lowe, 
Laspeyres and Paasche indices.  

 A Lowe price index can be expressed as the ratio of two Laspeyres prices indices based 
on the quantity reference period b. For example, the Lowe index for period t with price reference 
period 0 is equal to the Laspeyres index for period t based on period b divided by the Laspeyres 
index for period 0 also based on period b. Thus, 
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where the subscript LA denotes Laspeyres.  

 Equation (3) also implies that the Laspeyres index for period t based on period b can be 
factored into the product of two Lowe indices, namely for period 0 on period b multiplied by that 
for period t on period 0. Re-arranging (3) we have 
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since  is identical to  and  is identical to . Equation (4) illustrates an important 
property of Lowe price indices, namely that they are transitive. The Lowe (=Laspeyres) index for 
period t based on the quantity reference period b can be viewed as a chain Lowe index in which 
periods b and t are linked through the intermediate period 0.  

0,b
LOP 0,b

LAP t,b
LOP t,b

LAP

 It is more interesting and important to consider the case where the link is through a period 
that does not lie between the two periods compared. The Lowe index for period for period t on 
period 0 can be factored as follows by rearranging (3): 

                                                 
5 This result was first derived by von Bortkiewicz (1923). The proof is given in Appendix 15.9 by Erwin Diewert in 
the 2004 CPI Manual. See also Hill (2006), pp. 315- 323.  
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 This shows that the direct Lowe index for t on 0 is identical to the chain Lowe index that 
links t with 0 via period b. This reflects the fact that Lowe indices are transitive. However, as just 
noted,  is identical to  and  is identical to . Thus, the direct Lowe index is also 
identical to the Paasche index for b based on 0 multiplied by the Laspeyres index for t based on b. 
Given that the order of the three periods is 

0,b
LOP 0,b

LAP t,b
LOP t,b

LAP

t0b << , the Paasche index for b with period 0 as the 
price reference period measures the price change backwards from 0 to b. Thus, (5) can be 
interpreted as showing that the Lowe index for t on 0 is a chain index in which the first link is the 
backwards Paasche6 from 0 to b while the second link is the forwards Laspeyres from b to t. 

 This roundabout way of measuring the change between 0 and t via period b becomes 
increasingly arbitrary and unsatisfactory the further back in time the quantity reference period b 
is from the price reference period 0.  

 

4. Short Term Price Movements 

 

 Most users of CPIs are more interested in short term price movements in the recent past 
than in the total price change between the possibly remote price reference period 0 and period t. 
Consider the index for period  on period t with price reference period 0 and quantity 
reference period b. The order of the periods remains 

1t +
1tt0b +<<< . The change between t and 

t+1 is obtained indirectly by dividing the index of t+1 by the index for t, as follows: 
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 In general, the ratio of two Lowe indices is also a Lowe index. Here, the index for t+1 on 
t is a Lowe index with period b as the quantity reference period. It does not depend on the 
quantities in the original price reference period 0.  

 As just shown above, this index can also be viewed as a chain index in which the first 
link is , the backwards Paasche index that measures the price change from period t back to 

period b, while the second link is , the forwards Laspeyres from b to t+1. Linking two 

b,t
PAP

1b,t
PAP +

                                                 
b,0

LAP/6 The backwards Paasche index is equal to 1 . It is the reciprocal of the Laspeyres index for period 0 that uses 
period b as the price (and quantity) reference period. 
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consecutive time periods in this roundabout way through some third period in the past is 
inherently arbitrary and unreasonable. There can be no economic rationale for such a procedure. 
With the passage of time, the relative quantities in periods t and t+1 are likely to diverge 
increasingly from the relative quantities in period b. In this case, the quantities of period b 
become increasingly irrelevant to a price comparison between t and t+1 the longer the lapse of 
time between period b and period t.7 

 In order to have short term Lowe indices whose reference quantities are of some 
relevance to the two periods compared, the gap between the quantity reference period b and 
period t should be kept to a minimum. This implies that the quantity reference period itself 
should be updated as frequently as possible. The Lowe indices themselves need to be chained. 

 

5. Lowe, Laspeyres and Cost of Living Indices 
 

 A cost of living index, or COLI, may be defined as the ratio of minimum expenditures 
needed to attain the same level of utility in two time periods. Assuming that the actual 
expenditures in the first period are minimal, the COLI measures the minimum amount by which 
expenditures need to change in order to maintain the level of utility in the first period. 

 COLIs cannot be calculated exactly because the second set of expenditures cannot be 
observed. However, a COLI may be approximated by means of a superlative index. The concept 
of a superlative index was introduced by Erwin Diewert (1976). Superlative indices treat both 
periods symmetrically, the two most widely used examples of superlative indices being the 
Fisher index and the Törnqvist index. These indices and their properties are explained in some 
detail in Chapters 1, 15, 16 and 17 of the 2004 CPI Manual.  

 A well known result in index number theory is that the Laspeyres price index places an 
upper bound on the COLI based on the first period, while the Paasche index places a lower 
bound on the COLI based on the second period.8 It useful therefore to establish how a Lowe 
index that uses as reference quantities the quantities of period b may be expected to relate to the 
Laspeyres based on period 0 where, as usual, b is earlier than 0.  

 This relationship is examined in paragraphs 15.44 to 15.48 and Appendix 15.2 of the 
2004 CPI Manual. As it depends on the behaviour of prices and quantities over time, no 
unconditional generalizations can be made. However, it is possible to make generalizations that 
are conditional on particular types of behaviour, just as it can predicted that a Laspeyres index 
will exceed the corresponding Paasche index if there is a negative correlation between the price 
and quantity relatives. The conclusion reached in paragraph 15.45 of the 2004 CPI Manual is that 
“under the assumptions that there are long-term trends in prices and normal consumer 
substitution responses, the Lowe index will normally be greater than the corresponding 
Laspeyres index.” 

                                                 
7 In a paper on the relative merits of direct and chained indices included in the present volume, Balk (2009) also 
concludes that when measuring the change between consecutive time periods “it is not at all clear why period 0 price 
and/or quantity data should play a role in the comparison of periods τ  and 1−τ  ( t,,2 K=τ ).” 
8 The proof is given in paragraphs 17.9 to 17.17 of the 2004 CPI Manual. The proof is attributable to Konǖs (1924).  
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 It is reasonable to conclude that, in most cases, the Lowe index will exceed the 
corresponding Laspeyres index, and that the gap between them is likely to increase the further 
back in time period b for the Lowe reference quantities is compared with period 0, the base 
period for the Laspeyres index.  

 Given that period b precedes period 0, the ranking of the indices for period t on period 0 
under the assumed conditions will be: 

 Lowe ≥ Laspeyres ≥ Fisher ≥ Paasche.  

 As the Fisher is a superlative index it may be expected to approximate a COLI.  

 Statistical offices need to take these relationships into consideration. There may be 
practical advantages and financial savings from continuing to make repeated use over many 
years of the same fixed set of quantities to calculate a CPI. However, the amount by which such 
a CPI exceeds some conceptually preferred target index, such as a COLI, is likely to get steadily 
larger the longer the same set of reference quantities is used. Many users are likely to interpret 
the difference as upward bias, which may eventually undermine the credibility and acceptability 
of the index.  

 Assuming long term trends in prices and normal consumer substitution, Balk and Diewert 
(2003) conclude that, the difference between a Lowe index and a COLI may be “reduced to a 
negligible amount if: 

 - the lag in obtaining the base year quantity weights is minimized, and  

 - the base year is changed as frequently as possible.” 

Essentially the same recommendation was made at the end of the previous section but on slightly 
different grounds. 

 

6. Lowe Price Indices as Deflators and Their Associated Implicit Quantity Indices 

 

 Lowe price indices may be used to deflate time series of consumption expenditures at 
current prices in order to obtain the implicit quantity indices. The two implicit quantity indices of 
main interest are the index for period t on period 0 and for period t+1 on period t. Deflating the 
change in current expenditures between period 0 and period t by the Lowe index for period t, we 
have: 
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where QPA denotes a Paasche quantity index. The implicit quantity index is therefore equal to the 
ratio of the Paasche quantity index for t on b divided by that for 0 on b.  

 In the likely case in which the Lowe price index for t on 0 exceeds the Laspeyres index 
for t on 0, then the implicit quantity index for t on 0 will be less than the Paasche index for t on 0.  
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 The implicit quantity index between period t and period t+1 is as follows.  

( ) t,b
PA

1t,b
PA

n

1i

b
1

t
i

n

1i

t
i

t
i

n

1i

b
i

1t
i

n

1i

1t
i

1t
i

n

1i

b
i

t
i

n

1i

b
i

1t
i

n

1i

t
i

t
i

n

1i

1t
i

1t
i

Q

Q

qp

qp

qp

qp

qp

qp

qp

qp
8

+

=

=

=

+

=

++

=

=

+

=

=

++

=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

∑

∑

∑

∑

∑

∑

∑

∑
 

Thus, it equals the ratio of the Paasche quantity index for t+1 on b to the Paasche index of t on b. 
It does not depend on the prices or quantities in the price reference period 0.  

 The ratio of two Paasche quantity indices is a conceptually complex measure whose 
meaning is not intuitively obvious. Such indices are not common and Lowe price indices do not 
seem to be widely used as deflators.9  

 

6. Inter-temporal Lowe Quantity Indices 

 

 Consider a set of n products with quantities  ( niq ,,2,1i K= ). A Lowe quantity index is 
defined as the ratio of the total values of the quantities in two different time periods valued at the 
same set of reference prices. Any set of prices may be chosen as the reference prices. They do 
not have to be those observed in some actual period.  

 The inter-temporal Lowe quantity index, , for period t with period 0 as the quantity 
reference period is defined as follows: 
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where the  denote the reference prices. When the reference prices are those observed in some 
actual time period b it will be described as the price reference period.  

r
ip

 The Lowe quantity index for period t with period 0 as the quantity reference period and 
period b as the price reference period is defined as follows: 

                                                 
9 Although aggregate Lowe price indices, such as the overall CPI, may not be widely used to deflate expenditure 
aggregates, the detailed disaggregated price indices of which they are composed are commonly used to deflate 
individual components of final expenditures or output in national accounts. The disaggregated component indices 
may be reweighted as required or appropriate.  
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Like the Lowe price index, the Lowe quantity index can be written, and calculated, in two ways: 
either as the ratio of two value aggregates, or as an arithmetic weighted average of the quantity 
relatives, , using the hybrid expenditures shares  as weights. The hybrid weights may 

be obtained by updating the actual expenditure shares in period b, namely , by 

multiplying them by the quantity relatives  and then normalising them to sum to unity.  
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7. Lowe, Laspeyres and Paasche Quantity Indices 
 

 The properties and behaviour of Lowe quantity indices match those of the corresponding 
price indices and will therefore only be summarized here.  

 First, the Laspeyres and Paasche quantity indices are special cases of the Lowe quantity 
index. Second, any Lowe quantity index can be expressed as the ratio of two Laspeyres quantity 
indices based on the price reference period b. 

 Third, the Lowe quantity index is transitive. Consider a pair of Lowe quantity indices 
using the same set of reference prices such as those of period b. The Lowe quantity index for 
period k with period j as the quantity reference period multiplied by the index for period l with 
period k as the quantity reference period is identical with the Lowe quantity index for period l 
with period j as the quantity reference period:  
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8. Time series at Constant Prices 
 

 It is common in national accounts to publish time series for an aggregate such as 
Household Consumption Expenditures at constant prices. A convenient year such as 2,000 is 
chosen as the base year and the values of the aggregate in subsequent years are given by 
revaluing the quantities at the reference prices of year 2,000. The constant price series is usually 
obtained by deflating the values of the aggregate at current prices by Paasche price indices based 
on 2,000. The movements in the resulting constant prices series are, of course, identical with 
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those of a Laspeyres quantity index based on 2,000. The base year 2,000 will be denoted here 
simply as year 0. 

 The proportionate change in the constant price series between any pair of consecutive 
years, such as t and t+1, that do not include the base year is a Lowe quantity index: namely, 
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where pi
0 is the price of product i in 2,000. It equals the Laspeyres quantity index for year t+1 

divided by that for year t. In practice, the change between t and t+1 may be of greater interest to 
users and of more relevance for policy purposes than the total change between the price 
reference year 2,000 and year t+1.  

 As in the corresponding case of a Lowe price index, this Lowe quantity index can be 
viewed as a chain index that links t and t+1 via the base year 0:  
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The first term on the right of (12) is the (backwards) Paasche quantity index for year 0 with year 
t as the quantity reference period. It measures the quantity change from t back to 0. The second 
term in (12), the Laspeyres for t+1 based on 0, then measures the forward change from 0 up to 
t+1. As in the case of the corresponding Lowe price index, this roundabout way of measuring the 
change between t and t+1 is inherently arbitrary and unsatisfactory. The reference prices for year 
0 are likely to become increasingly inappropriate for a comparison between t and t+1 with the 
passage of time.  

 For this reason, it is generally accepted that, despite the convenience of constant price 
series for many uses, it not desirable to permit the series to continue for more than a few years 
before moving the price reference year forwards. Each new price reference year then acts as the 
link between the previous series and the new series10.  

 

9. Lowe Indices in International Comparisons 

 

 As Lowe indices are transitive, they are widely used for purposes of multilateral 
comparisons within groups of countries. There are many ways in which the reference quantities 

                                                 
10 The 1993 SNA Manual remarks in paragraph 16.77 that “… the underlying issue is not whether to chain or not but 
how often to rebase. Sooner or later the base year for fixed weight Laspeyres volume indices and their associated 
constant price series has to be updated because the prices in the base year become increasingly irrelevant.”  
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or prices might be specified. Two important classes of multilateral price and quantity indices 
actually used in international comparisons are the average quantity methods and the average 
price methods11.  

 The average quantity methods use as reference quantities a basket whose quantities 
consist of some kind of average of the quantities in all the countries in the group. The purchasing 
power parity, or PPP, for a pair of countries is then defined as the ratio of the values of the 
reference basket in the two countries valued at their own prices in their own national currencies. 
Either country may serve as the reference country. The average price methods use a set of 
average prices for the group as a whole as the reference prices to construct international quantity 
indices. 

 The average quantity methods generate Lowe PPPs while the average price methods 
generate international Lowe quantity indices. However, they are not described as ‘Lowe’ PPPs or 
indices in the existing literature on PPPs and International Comparisons as the term ‘Lowe’ 
index was only introduced in 2003, as already mentioned. 

 

10. Lowe PPPs 
 

 Consider first the PPP between a single pair of countries, j and k. A basket of n reference 
quantities is specified, the quantities being denoted by . The prices in each country denoted by 

, are denominated in the national currency of the country. The Lowe PPP, or , for 
country k with country j as the reference country is defined as follows: 
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Any set of quantities could serve as the reference quantities. They do not have to be the 
quantities purchased in one or other of the two countries compared, or indeed in any actual 
country. They could be arithmetic or geometric averages of the quantities in the two countries 
compared or averages over a larger group of countries for which multilateral PPPs are required.  

 If the reference quantities are specified to be those of the reference country j the PPP 
becomes a Laspeyres PPP. If the reference quantities are those of country k, it becomes a 
Paasche PPP.12 As in inter-temporal indices, Laspeyres and Paasche indices are special cases of 
Lowe indices.  

 

                                                 
11 See Kravis, Heston and Summers (1982) pp. 77-79 and Hill (1997, pp. 54-62).  
12 See, for example, Table 7.2 of Kravis, Heston and Summers (1982) which lists all the Laspeyres and Paasche 
indices between 34 countries.  
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11. Multilateral PPPs Using the Star method 

 

 The attraction of a Lowe PPP in the context of a set of multilateral comparisons for a 
group of countries is that the Lowe index is transitive. There are many possible sets of reference 
quantities to choose from. One possibility to select the quantities in one of the countries in the 
group, say country b, and to use them as the reference quantities for the PPPs between every pair 
of countries in the group. In this case, country b acts as the base country for the multilateral 
comparisons. The reference quantities  become the actual quantities in country b or . The 
Lowe PPP between country k and country j is then equal to the ratio of their Laspeyres PPPs 
based on country b:  
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 In practice, Laspeyres PPPs are calculated between every country and the base country b. 
The various Lowe PPPs between pairs of countries that do not include the base country are all 
derived indirectly by dividing one Laspeyres by another.  

 This arrangement can be portrayed graphically by a star in which the base country is 
placed at the centre and every other country is placed in a ring around the centre. This kind of 
method is therefore described as a star method.  

 Star methods in which an individual country is chosen to be at the centre of the star have 
been used in the past.13 However, the results obtained obviously vary according to the subjective 
choice of country to act as the base country. For this reason, star methods that place an actual 
country at the centre of the star are generally considered to be unacceptable. A less arbitrary 
method is needed.  

 As quantities of the same product can be summed across countries, another obvious 
possibility is to choose the total quantities of each product over the group of countries concerned 
as the reference quantities. This makes the reference quantities characteristic of the group of 
countries as a whole, which may be considered a desirable property for a set of multilateral 
comparisons. Alternatively, the total quantities may be replaced by the average quantities 
obtained by dividing the total quantities by the number of countries. Dividing by a constant does 
not change the relative quantities of different kinds of product and it is immaterial whether the 
average or the total quantities are used in Lowe PPPs.  

 The use of such average or total quantities as reference quantities for international Lowe 
PPPs was first proposed by Walsh (1901) and also considered as a possibility by Van Ijzeren 
(1956)14. Both Walsh and Van Ijzeren also examined the possibility of using other kinds of 

                                                 
13 For example, a type of star method was used to calculate PPPs among the so-called Group II countries of Eastern 
Europe in the 1980’s with Austria at the centre of the star.  
14 See Diewert (1993) and Hill (1997, p. 55). 
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averages such as geometric averages. Lowe PPPs that use arithmetic average quantities as 
reference quantities have been calculated by the United Nations Economic Commission for Latin 
America and the Caribbean. 

 When average quantities are used as the reference quantities, the method still remains a 
star method, but one in which an ‘average country’ is placed at the centre of the star instead of an 
actual country.15 This is explained more fully below. 

 

12. Lowe PPPs as deflators 
 

Using Lowe PPPs as deflators produces derived or implicit measures of relative real 
expenditures that are conceptually complex. As illustrated in equation (15), if the ratio of the 
expenditures in national currencies for countries k and j is divided by a Lowe PPP with reference 
quantities , the result is the ratio of two Paasche quantity indices based on country b. Country 
b may be an average country or an actual country: 
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 In international comparisons, there is typically more interest in the quantity comparisons 
than in the PPPs and the international agencies tend to give quantity comparisons priority over 
PPPs. Lowe quantity indices which provide conceptually simple and meaningful comparisons of 
real expenditures have therefore been preferred to the kinds of complex implicit quantity 
measures given in (14).  

 

13. International Lowe Quantity Indices 

 

 Let the two countries compared be j and k and let the selected reference prices be denoted 
by . The Lowe quantity index for country k based on country j, or , is defined as follows: r
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15 The fact that all average quantity and average price methods are examples of the star method was pointed out by 
Hill (1997, pp. 54-60).  
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Any set of prices could be selected as the reference prices, .  r
ip

 In a set of multilateral comparisons, if the prices of one of the countries, say country b, 
are selected as the reference quantities, the method becomes a star method in which that country 
is placed at the centre of the star. As shown above in the corresponding case of Lowe PPPs, the 
Lowe quantity index between countries j and k can then be obtained as the ratio of the Laspeyres 
quantity indices for countries k and j based on b. 

 Each Lowe quantity index can also be interpreted as a chain index in which country j is 
compared indirectly with country k via country b at the centre of the star:  
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 The Lowe index in (17) is the product of the Paasche quantity index for country b based 
on country j multiplied by the Laspeyres index for country k based on country b. If countries j 
and k are very different from each other while country b is intermediate between them, the chain 
index may provide a satisfactory quantity measure. However, if countries j and k are very similar 
to each other while country b is very different from both of them, the chain index is not likely to 
provide a satisfactory quantity measure. In any case, the arbitrary selection of the prices of one 
country to act as the reference prices is not generally consider to be an acceptable method. In 
practice, some kind of average prices for the group are preferred.  

 

14. The Geary Khamis quantity index 

 

 The Geary Khamis, or GK, quantity index is a Lowe index that uses average international 
prices as the reference prices. The GK index has been widely used. It was used in the first three 
phases of the International Comparisons Project, or ICP, of the United Nations and World Bank 
that started in 1970. It has also been used by the OECD as one of the methods for making 
comparisons among OECD countries. The GK method may be described as follows. 

 Assume there are C countries in the group. The GK quantity index for country k on 
country j, , is defined as follows. jk
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 The aggregate purchasing power parity for country c, , is defined as follows: cPPP
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The average prices and the PPPs are determined simultaneously in the GK method 16 . The 
average prices are denominated in the numeraire currency for the group. The method is invariant 
to the choice of numeraire currency,  

 The GK average international price has a simple interpretation because it is defined in the 
same way as the national average price for a single country. A national average price is defined 
as the total value of the transactions in the product divided by the total quantity of the product. It 
is a quantity weighted arithmetic average of the prices at which the product is sold within the 
country. Similarly, a GK average international price as defined in (18) is a quantity weighted 
average of the prices at which the product is sold across the entire group of countries after the 
prices have all been converted into the designated numeraire currency. The group can therefore 
be regarded as if it were a super country with average prices  and total quantities , the 

s serving as the reference prices for the Lowe quantity index. 
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 The PPP for country c in (19) is a Paasche price index for country c based on the group G. 
This means that the PPP between any two countries, such as countries j and k, is the ratio of the 
two Paasche indices based on the group G:  
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This expression does not simplify. The properties of GK PPPs are not so simple and transparent 
as those of GK quantity indices.  

 As it is a Lowe index, the GK quantity index can be expressed as the ratio of two 
Laspeyres quantity indices based on the group G:  
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The GK method can be viewed as a star method which places the group itself at the centre of the 
star.17 The denominator in each of the two Laspeyres indices in (21) is the total value of all 

                                                 
16 See Kravis, Heston and Summers (1982), pp. 89-94 for a full explanation of the GK method and its properties.  
17 See Hill (1997) pp. 54-60. 
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transactions in all products in all countries of the group valued at the average prices for the group 
expressed in the numeraire currency. The resulting GK indices do not actually depend on the 
total quantities , however, as the two denominators in (21) cancel each other out.G

iQ 18  

 Alternatively, the GK quantity index can be viewed as chain index as follows.  
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jk
GKQ  is a chain index in which k is linked to j via the group G. It equals the Paasche quantity 

index for G on j multiplied by the Laspeyres quantity index for k on G.  

 

15. Missing Products  
 

 Linking countries through the group G can have advantages over direct comparisons 
between the countries concerned. One of the main problems encountered in constructing 
international price and quantity indices is the fact that not all the products that can be found in 
the group as a whole are to be found in every country. On the contrary, in any one country, many 
products are likely to be missing, especially if the group of countries is large and economically 
diverse and patterns of consumption vary considerably among the countries.  

 There are obviously no prices to be observed for products whose quantities are zero. As 
the number products available varies from country to country, the sets of country prices that 
might potentially be used as reference prices for Lowe quantity indices also vary in size from 
country to country. The largest and most comprehensive set of prices consists of the average 
prices for the group as a whole. This set must include every product in every country.  

 A direct binary comparison between two countries carried out independently of other 
countries uses only the prices and quantities of those two countries. However, it may not be 
possible to use all the quantity information if there are some products that are found in only one 
of the two countries. For example, it is not possible to include products that are found in country 
k but not in country j in the direct Laspeyres quantity index for k based on j because there are no 
prices for them in j. Similarly, it is not possible to include products found in j but not in k in the 
Paasche quantity index for k on j as there are no prices for them in k. In these circumstances, the 
Laspeyres and Paasche quantity indices may be regarded as being subject to bias.  

                                                 
18 In the UN / World Bank International Comparisons Project, the denominator in each of the two Laspeyres indices 
in (21) could be interpreted as the total GDP of the group of countries as a whole expressed in the numeraire 
currency. If the group included all countries in the world, the denominator would be World GDP. Implicitly, in the 
GK method the Laspeyres index for the GDP of each individual country is calculated based on the total GDP for the 
group. The GDP quantity indices for pairs of countries are then obtained indirectly as the ratios of the corresponding 
Laspeyres indices based on the group as a whole.  
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 However, all the products in both countries can be included in the Lowe quantity index 
between them that uses the average international prices for the group of countries to which they 
belong as the reference prices. As already noted, there must be an average international price for 
every product that is found in any country in the group. Thus, a Lowe quantity index that uses 
international prices is able to utilize all the quantities in both countries. For this reason it might 
provide a better measure of the relative quantities in the two countries than a direct binary index 
that has to ignore certain quantities. .  

 Much depends on how appropriate or relevant the average international prices are 
considered to be for a comparison between two countries. The GK average international prices 
have a clear economic interpretation and must be relevant for comparisons between countries 
within the group. As already explained, the GK index can be viewed as the ratio of the two 
Laspeyres quantity indices based on the group as a whole. Each index is able to include all the 
quantities in that country irrespectively of whether they are found in the other country. As shown 
in (22), the GK quantity index can also be viewed as a chain index that links the two countries 
though the group. Each link covers all the products in the country in question even though the 
coverage is not the same in the two links. However, this is an advantage. The main reason for 
chaining is that this approach is able to deal with situations, whether over time periods or 
countries, in which the set of products covered is variable.   

 If the two countries are very different with a relatively small overlap of products between 
them, chaining through the group as a whole is likely to produce a better quantity index than a 
direct comparison between them that is restricted to using only the price and quantities in the two 
countries concerned. On the other hand, if the sets of products available in the two countries 
largely coincide, the direct quantity index between them may be preferable to a chain index 
through the group. The argument is similar to that used earlier to argue that consecutive time 
periods for the same country, which are likely to have almost identical sets of products, should 
not be linked through some earlier time period, and especially not through some period in the 
remote past. In some circumstances chain indices are superior to direct indices while in other 
circumstances, direct indices are superior. The choice of preferred index depends on the 
circumstances.  

 

16. Other Average Price Methods 

 

 Any set of prices can serve as the reference prices in a Lowe quantity index. Although a 
GK average price, being the international equivalent of a national average price, has a 
meaningful economic interpretation, there are other ways in which an average international price 
might be defined. Different types of averages might be used instead of an arithmetic average, and 
different kinds of weighting may be used.  

 For example, one possibility would be to use unweighted geometric means of the national 
average prices as the reference prices in an international Lowe quantity index. This method was 
advocated by Gerardi (1982), but it was first proposed by Walsh (1901).19 An intriguing feature 

                                                 
19 See Diewert (1993).  
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of this method is that it makes no difference to the quantity indices whether the national average 
prices are converted into a common numeraire currency or not.  

 When considering the relative merits of the different methods, the key issue is what effect 
the different kinds of average prices may be expected to have on the international quantity 
indices. This depends on how closely the various sets of national prices are correlated with the 
average international prices. Whatever international prices are used, they must be closer to some 
sets of national prices than others. Because of ordinary substitution effects, for a given set of 
quantities, the Lowe quantity index for a country may be expected to be lower the more closely 
the pattern of the reference prices resembles the pattern for the prices of that country.20  

 Consider the example of two countries. Suppose the initial vector of average international 
prices used as the reference prices for the Lowe quantity index is roughly equidistant from the 
price vectors for countries k and j. Next, suppose the vector of reference prices is changed to 
bring it closer to country k’s vector and further away from j’s vector, the quantities in both 
countries remaining unchanged. As the vector of reference prices approaches the actual pattern 
of relative prices in k that was responsible for generating the actual quantities in k, the Laspeyres 
quantity index for k based on the group G will tend to fall. Conversely, as the vector of reference 
prices moves away from the actual prices in j, the Laspeyres index for j will tend to rise. Thus, 
the Lowe quantity index for k on j will tend to fall.  

 The effects on the Lowe quantity indices of defining the average international prices in 
different ways are sometimes predictable for reasons just given. Suppose the average prices are 
weighted according to the economic size of the country as in the GK method. The vector of 
average international prices will tend to be closer to the vectors of actual prices for the richest 
countries than if the average prices are unweighted, as in the Gerardi method. Thus, the GK 
quantity indices for the richest countries will tend to be lower than if unweighted Gerardi prices 
are used.  

 This is an illustration of the Gerschenkron effect. It does not demonstrate which of the 
two types of index is biased. If unweighted average prices are preferred on the grounds that each 
country should be given equal weight as a matter of principle, then the Lowe quantity indices for 
the richest countries using GK prices as reference prices may be regarded as having a downward 
bias, thereby understating the gap between rich and poor countries. On the other hand, in reality 
countries are not all the same size and some countries account for much larger shares of total 
world income and output than others. From this perspective, Lowe quantity indices that use 
unweighted average international prices may be regarded as having an upward bias for the 
largest and richest countries. These are issues that cannot be decided on technical grounds alone. 
Value judgments are inevitably involved.  

 

                                                 
20 This phenomenon is described in the literature as the ‘Gerschenkron effect.’ It occurs with all multilateral indices 
that use some kind of average group prices as the reference prices.  
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17. Conclusions 

 

 Lowe indices are popular for several reasons. They are conceptually simple and 
meaningful. They enable statistical agencies to economize by continuing to make use of the same 
set of reference prices of quantities over many years. They are transitive and additive. These two 
properties are particularly attractive to users of both inter-temporal and international Lowe 
quantity indices. 

 Very many of the price and quantity indices produced by statistical agencies turn out to 
be Lowe indices although their generic similarity has not been so obvious until recently because 
of the lack of a common name.  

 Lowe indices have two closely interrelated characteristics. They can be expressed as 
ratios of Laspeyres indices and they can be viewed as chain indices that link through some other 
period, country or group of countries. The quality of a Lowe index depends on the relevance or 
suitability of the link. In the case of temporal price or quantity indices where the link is some 
past period, its relevance must diminish as it recedes into the past. In these circumstances, a 
Lowe price index is also likely to be subject to increasing upward bias as compared with a cost 
of living index. In the case of international Lowe quantity indices, the situation is complicated. 
Linking a pair of countries through the group of countries to which they belong may be regarded 
as strengthening or weakening the comparison between them depending on circumstances.  
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Chapter 10 
DIRECT AND CHAINED INDICES: 
A REVIEW OF TWO PARADIGMS 

Bert M. Balk1 

 

1. Introduction 
 

 A recurrent theme when measuring aggregate price and quantity change between more 
than two periods is the choice between the computation of direct or chained index numbers. 
Suppose we consider periods 0, 1, 2, …,T and want to measure change relative to the base period 
0. A direct index number comparing period t (t = 1,…,T) to period 0 results from inserting period 
t and period 0 data into a bilateral index formula. A chained index number comparing period t to 
period 0 results from successively inserting period 1 and period 0 data, period 2 and period 1 
data, …., and period t and period t-1 data into a bilateral index formula and multiplying the 
outcomes with each other. 

 A commonly claimed advantage of the method of chaining is the reduction of so-called 
index number spread. As the CPI Manual (2004) states: 

“The main advantage of the chain system is that under normal conditions, 
chaining will reduce the spread between the Paasche and Laspeyres indices.” (par. 
15.83) 

“Basically, chaining is advisable if the prices and quantities pertaining to adjacent 
periods are more similar than the prices and quantities of more distant periods, 
since this strategy will lead to a narrowing of the spread between the Paasche and 
Laspeyres indices at each link.” (par. 15.85) 

The detailed numerical example discussed in chapter 19 of the CPI Manual also reflects this 
viewpoint, as the following quotations make clear: 

“ … if the underlying price and quantity data are subject to reasonably smooth 
trends over time, then the use of chain indices will narrow considerably the 
dispersion in the asymmetrically weighted indices.” (par. 19.16) 

 
1 Rotterdam School of Management, Erasmus University, and Statistics Netherlands, The Hague. Email: 
bbalk@rsm.nl. The views expressed in this paper are those of the author and do not necessarily reflect those of 
Statistics Netherlands. The author thanks Erwin Diewert for comments on a previous version. 
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“ … the combined effect of using both the chain principle as well as 
symmetrically weighted indices is to dramatically reduce the spread between all 
indices constructed using these two principles.” (par. 19.21) 

 The overall impression one gets is that chained index numbers are somehow closer to the 
truth than direct index numbers. But is this impression warranted? 

 The technique of chaining index numbers was introduced by Lehr (1885) and Marshall 
(1887) primarily as a means to overcome the problems of making comparisons for distant 
periods when there are many disappearing and newly appearing commodities through time. 
Statistical agencies were reluctant to officially use chained index numbers. However, during the 
last two decades this situation has started to change. 

 The growing acceptance of chained index numbers was not brought about by some 
convincing theoretic demonstration of the ‘verisimilitudiness’ of the method of chaining. Instead, 
under the influence of a small number of researchers, some important agencies in the field of 
economic measurement changed their ways.  

 Both the use of chaining and the replacement of the Laspeyres and Paasche indices 
(which are asymmetrically weighted) by Fisher indices (which are symmetrically weighted) are 
practices that have met with criticism from some, notably Peter von der Lippe2.  Certainly it 
would be helpful to know more about how the approaches compare. 

 The plan of this paper is as follows. Section 2 summarizes the traditional point of view 
that is based on the use of direct Laspeyres and Paasche indices. Section 3 summarizes the 
modern point of view based on the use of chained Fisher indices. In section 4, the two views are 
compared. The conclusion that emerges is that, mathematically at least, a unification of the two 
approaches is impossible. A related question that remains to be answered is: What precisely does 
a chained price or quantity index measure? I search for an answer in section 5 using micro-
economic theory, and in section 6 using Divisia index theory. Section 7 concludes. 

 

2. The Traditional Point of View 
 

 I consider an economic aggregate consisting of a number of transaction categories that I 
will call ‘commodities’. For the time being, I will assume that these commodities do not change 
through time. Each commodity (n = 1,…,N) has an (average) price  per unit in each period t 

and a corresponding quantity  measured using the same units. The superscript t denotes the 
time period (thought of here as being a year). The (transaction) value of commodity n in period t 

is then , and the value of the entire aggregate is . It is efficient to use 

from hereon simple vector notation. Hence, , where t and t  denote two, not 
necessarily different, time periods.   
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2 See Von der Lippe (2000), (2001a), (2001b), Reich (2000), and Rainer (2002). The discussion appears to be by and 
large limited to the readership of the Allgemeines Statistisches Archiv. A recent summary of Von der Lippe’s 
position is provided by Von der Lippe (2007, Chapter 7). 
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 Consider now the development of this aggregate through a number of consecutive 
periods, say t = 0, 1, 2, …., T. The associated sequence of nominal values is given by  

(1)  , , , …., . 00 qp ⋅ 11 qp ⋅ 22 qp ⋅ TT qp ⋅

 It is clear that the nominal value development is caused by both price and quantity 
changes. The problem is to disentangle the two components in order to get a picture of the ‘real’, 
quantity part of the development. 

 The traditional solution3 involves transforming the sequence of nominal values into a 
sequence of values-at-constant-prices. If one employs the period 0 prices as constant prices, the 
solution becomes that of computation of the sequence  

(2)  , , , …., . 00 qp ⋅ 10 qp ⋅ 20 qp ⋅ Tqp ⋅0

 In practice, the computation is carried out elementwise in two ways. One way is to 
multiply (inflate) each commodity’s nominal period 0 value by its quantity change, 

(3)    (t = 1,…,T). t
nnn

t
nnn qp)q/q(qp 0000 =

The other way is to divide (deflate) each commodity’s period t value by its price change, 

(4)    (t = 1,…,T). t
nnn

t
n

t
n

t
n qp)p/p/(qp 00 =

The adding-up of  for n = 1,…,N delivers  for each period t. Recall that the 

Laspeyres price index is defined by , the Paasche price index is 

defined by 

t
nnqp0 tqp ⋅0

'tt p/q⋅ 't't
L qp)'t,t(P ⋅≡

t'ttt
P qp/qp(P ⋅⋅
t /q⋅
t

)'t,t ≡
't't qp ⋅

'tt

, the Laspeyres quantity index is defined by 

, and the Paasche quantity index is defined by  't
L p)'t,t(Q ≡

t
P qp ⋅/q⋅p)'t,t(Q ≡ . With hindsight, the sequence (2) can be considered as having been 

obtained by taking the sequence of nominal values given in (1) and deflating these using the 
Paasche price index numbers, or by inflating these using the Laspeyres quantity index numbers, 
since 

(5)  ),t(Qqp),t(P/qpqp LP
ttt 00 000 ⋅=⋅=⋅   (t = 1,…,T). 

 The aggregate quantity change between any two periods can now be computed simply by 
taking the ratio of the corresponding two values from the sequence (2). For instance, if one is 
interested in the change between two adjacent periods t-1 and t, this is given by  

(6)     (t = 1,…,T). );t,t(Qqp/qp Lo
tt 01100 −=⋅⋅ −

This formula is an instance of what in the literature is known as a Lowe quantity index4. Its 
interpretation is straightforward: the numerator contains the period t quantities evaluated at their 
base period prices, and the denominator contains the period t-1 quantities evaluated at the same 
prices.  

                                                 
3 I associate this view with the SNA 1968, the relevant paragraph being 4.46. 
4 Some are accustomed to calling this a ‘modified Laspeyres quantity index’. 
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 The framework provided by (1), (2) and (6) has the virtue of simplicity. This simplicity 
does not carry through, however, to the price index counterpart to the Lowe quantity index given 
in (6). This price index, which can be obtained by dividing the value change by the quantity 
change, is given by: 

(7)  100

11

−

−−

⋅⋅

⋅⋅
tt

tttt

qp/qp
qp/qp   (t = 1,…,T). 

This formula not only is less simple than (6), but also has an important disadvantage. Suppose 
that between periods t-1 and t all the prices change by the same factor, that is,  (n = 
1,…,N) for a certain 

1−= t
n

t
n pp λ

0>λ . In this situation, formula (7) in general will exhibit an outcome 
different from λ . 

 In practice one also has to face all the difficulties connected with the fact that our 
assumption of (an) unchanging (set of) commodities is not valid. First, in the course of time, new 
commodities enter the aggregate. The problem becomes clear by looking at formulas (3) and (4). 
For any new commodity, its base period value as well as quantity equal zero; hence, formula (3) 
cannot be used. Although the period t value and price are known, the base period price does not 
exist; hence, formula (4) cannot be used either. Of course, for commodities that in the course of 
time have disappeared from the aggregate an analogous problem.  

 Second, even when there are no (dis-) appearing commodities, usually it is still necessary 
to deal with quality change. Quality change of commodity n occurs when its period t price 
cannot be compared to its base period price without allowing for changes in the nature of the 
commodity; or, equivalently, when its period t quantity cannot immediately be compared to its 
base period quantity. Dependent on the calculation method chosen – according to formula (3) or 
(4) – the quantity or price change must somehow be adjusted for the quality change that has 
occurred. 

 The important point is that in all these cases, imputations or estimates must be made, and 
this becomes more difficult and more dubious the longer the time span becomes between the 
base period and period t. In addition, with the lapse of time it becomes less and less meaningful 
to aggregate recent quantities with prices from a past period, as in expression (6). Therefore, 
every five or ten years, a new set of constant prices must be taken to act as base prices, which 
causes structural breaks in the time series of values-at-constant-prices. 

 

3. The Modern Point of View 
 

 The modern view is rooted in the perspective that primary interest lies in measuring the 
real change between two adjacent periods. Stated more formally, according to the modern view, 
the primary problem is to decompose the value change,  

(8)     (t = 1,…,T), 11 −− ⋅⋅ tttt qp/qp

into price and quantity change components. There are various ways to do this. One frequently 
used approach decomposes the value change into a Paasche price index and a Laspeyres quantity 
index; that is, the value change is decomposed as: 
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(9)  )t,t(Q)t,t(P
qp
qp

LPtt

tt
1111 −−=

⋅

⋅
−−   (t = 1,…,T). 

Alternatively, the axiomatic approach leads to the recommendation5 to use Fisher price and 
quantity indices for this decomposition. Using Fisher indices, the value change can be 
decomposed as follows:  

  
21

111

121

111
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tt

tt
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tt/
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tt
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⎥
⎦
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⎡

⋅
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⋅
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⋅

⋅
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−
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−

−−  

(10)    )t,t(Q)t,t(P FF 11 −−≡     (t = 1,…,T). 

The first term in square brackets on the right-hand side of the first equality sign in (10) is the 
price index and the second one is the quantity index.6  

 New commodities, disappearing commodities, and quality change also cause problems in 
the computation of the components of (10). However, since the time span between periods t-1 
and t is quite small – usually a year – the extent of the problems that must be solved is smaller 
than in the case discussed in the previous section: there are fewer new and disappearing 
commodities, and fewer (and probably smaller) quality changes to account for when comparing 
two adjacent periods than two periods far apart. 

 Not so well known, but extremely useful, is the fact that the Fisher quantity index can be 
written in a form comparable to formula (6). This result, for the first time discovered by Jan van 
IJzeren (1952), reads  

(11)  
11

1

1
2
1

1
2
1

1
−−

−

⋅−+

⋅−+
=−

t
F

tt

t
F

tt

F
q))t,t(P/pp(

q))t,t(P/pp(
)t,t(Q   (t = 1,…,T). 

The numerator contains the period t quantities valued at the average, deflated prices for periods t-
1 and t, whereas the denominator contains the period t-1 quantities valued at the same deflated 
prices as appear in the numerator. Notice that each individual component of the price vector 

)t,t(P/pp F
tt 11 −+− depends on all the prices and all the quantities. This formula enables one 

to view the measure for the aggregate quantity change, )t,t(QF 1− , as a weighted arithmetic 

average of individual quantity changes,  (n = 1,…,N).1−t
n

t
n q/q 7 This makes clear to what extent 

the various commodities contribute to the aggregate quantity change.  

 Does there exist in this approach a more general analogue to the sequence of values-at-
constant-prices (2)? The answer appears to be: yes. Based on expression (5), the analogue to (2) 
is given by the sequence of real values   

                                                 
5 A summary of the underlying literature can be found in Diewert (1996). 
6 Because these are Fisher indices, the price and quantity indices have the same functional form; that is, by 
interchanging prices and quantities the indices transform into each other. 
7 See Balk (2004) for alternatives. Formula (11) has been in use since 1999 by the U.S. Bureau of Economic 
Analysis; see Ehemann et al. (2002). Of course, a similar formula holds for the Fisher price index.   
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(12)    (t = 1,…,T), ),t(Qqp),t(P/qp tt 00 00 ⋅=⋅

where  is some price index and  is some quantity index. Notice that (12) 
expresses in a slightly different form what in the axiomatic approach is called the Product Test. 

)'t,t(P )'t,t(Q

 The SNA 1993 recommends either of two methods. One is to start at the left-hand side of 
(12) and to deflate nominal values by chained Fisher price index numbers; that is, to replace 

 by   ),t(P 0

(13)    (t = 1,…,T). ∏ = −≡ t
F

c
F ),(P),t(P 1 10 τ ττ

The other is to start at the right-hand side of (12) and to inflate the nominal base period value by 
chained Fisher quantity index numbers; that is, to replace  by   ),t(Q 0

(14)    (t = 1,…,T). ∏ = −≡ t
F

c
F ),(Q),t(Q 1 10 τ ττ

The real values obtained in this manner correspond to what in the United States have come to be 
called ‘chained dollars’8. The use of chained Fisher price index numbers in (13) is consistent 
with (10). This follows because, dividing the real values of two adjacent periods into each other 
yields   

(15)  )t,t(Q
)t,t(P
qp/qp

),t(P/qp
),t(P/qp

F
F

tttt

c
F

tt

c
F

tt
1

101
0 11

11 −=
−
⋅⋅

=
−⋅

⋅ −−

−−   (t = 1,…,T), 

which is an expression for the quantity change that has occurred between the two periods. The 
same holds for the use of chained Fisher quantity index numbers as in (14). 

 An unsatisfactory alternative was proposed by Hillinger (2002); see the Appendix for 
details. 

 

4. Comparison 
 

 The traditional approach gives priority to the construction of sequences of values-at-
constant-prices according to expression (5). Quantity changes between adjacent periods are then 
evaluated using expression (6). The modern approach gives priority to the computation of 
quantity index numbers for adjacent periods according to expression (10). Real values can then 
be computed using expression (12) and chained index numbers. These are two distinct 
paradigms. 

 The core of Von der Lippe’s critique (mentioned in the text and footnote 2 in section 1 
above) is that the properties of the sequence of real values given in (5) differ from those of (12), 
and that the properties of the Lowe quantity index given in (6) differ from those of the Fisher 

                                                 
8 The practice in other countries is to use chained Paasche price index numbers and Laspeyres quantity index 
numbers respectively, as was recommended by Al et al. (1986); see also De Boer et al. (1997). The ESA 1995 
considers this practice to be acceptable. The use of chained Fisher index numbers was already mentioned in the SNA 
1968, par. 4.47. 
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quantity index in (10). One important difference is that the real values computed according to 
(12) by chained index numbers are not additive, whereas the real values in (5) do exhibit 
additivity. Thus, the chained index numbers (can) exhibit behavior that is different from the 
direct index numbers.  

 It is relatively simple to show that the two approaches cannot be unified; that is done in 
this section.  

 The first key question is whether there exists a quantity index  such that  )'t,t(Q

(16)  ),'t(Q/),t(Q)'t,t(Q 00= . 

A quantity index that satisfies this condition exhibits the property of circularity and can be 
written as   

(17)  )'t(f/)t(f)'t,t(Q = . 

The fundamental requirement that 1=)'t,t(Q  if the quantity vectors of the two periods are equal 
leads to the conclusion that f(t) in (17) must be a function of the quantities only. Hence, prices 
cannot play any role in .)'t,t(Q

)

9 This implies that the price index corresponding to , 

, does not pass the fundamental Identity Test; that is, if the price 
vectors of the two periods are equal, then this last expression will not necessarily equal 1.  

)'t,t(Q

't,t(Q/)qp/qp( 't'ttt ⋅⋅

 The second key question concerns the additivity, or, more generally, the consistency-in-
aggregation, of price and quantity indices. Suppose that our aggregate can be partitioned into K 
subaggregates and let (after permutation of commodities) the price and quantity vectors be 
partitioned as )p,...,p(p t

K
tt
1=  and )q,...,q(q t

K
tt
1=

't,t(Qk

 respectively, where  is the 
subvector corresponding to the subaggregate k = 1,…,K. Let  be a price index with the 
same functional form as , but with its number of variables reduced to the number of 
commodities of subaggregate k. Similarly, let  be a quantity index with the same 
functional form as , but with its number of variables reduced to the number of 
commodities of subaggregate k. Now the real values computed according to (12) are called 
additive if  

)q,p( t
k

t
k

)'t,t(Pk
)'t,t(P

)'t,t(Q
)

(18a)  ∑
=

⋅
=

⋅K

k

tt

k

t
k

t
k

),t(P
qp

),t(P
qp

1 00
; 

or, in other words, if the real subaggregate values add up to the real aggregate value. In terms of 
quantity indices, additivity means that  

(18b)  . ∑
=

⋅=⋅
K

k
kkk ),t(Qqp),t(Qqp

1

0000 00

                                                 
9 A more formal proof is given by Balk (1995); see also Balk (2008). 
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 The more general concept of consistency-in-aggregation for price and quantity indexes 
was defined by Balk (1995), (1996), (2008)10. A price index  is called consistent-in-
aggregation if   

)'t,t(P

(19a)  , )qp,qp),'t,t(P()qp,qp),'t,t(P( 't'ttt't
k

't
k

K

k

t
k

t
kk ⋅⋅=⋅⋅∑

=
ψψ

1

where (.)ψ  is a function that is continuous and strictly monotonic in its first variable. Likewise, 
a quantity index  is called consistent-in-aggregation if  )'t,t(Q

(19b)  , )qp,qp),'t,t(Q()qp,qp),'t,t(Q( 't'ttt't
k

't
k

K

k

t
k

t
kk ⋅⋅=⋅⋅∑

=
ζζ

1

where (.)ζ  is a function that is continuous and strictly monotonic in its first variable. 

 There are many, in fact infinitely many, functional forms for price and quantity indices 
that satisfy (19a) or (19b). As an example, the reader is invited to consider the generalized mean 

price index  where ρρ /N
n

't
n

t
n

't't
n ])p/p)(V/v([)'t,t(P 1

1∑ == 0≠ρ . However, problems arise 
as soon as a number of very basic requirements are imposed on the price and quantity indices.  

 Suppose it is assumed that  

• the price and quantity indices satisfy the Product Test (12); 

• the price index satisfies the Equality Test; that is, if all the subaggregate price index 
numbers are equal –  that is, if λ=)'t,t  for all k = 1,…,K –  then the aggregate price index 
number takes on the same magnitude,

(Pk
λ=)'t,t ;  (P

• the quantity index satisfies the Equality Test; that is, if λ=)'t,t  for all k = 1,…,K, 
then 

(Qk
λ=)'t,t ; (Q

• the price index )'t,t(P  is linearly homogeneous in current period prices tp ; 

• when the number of commodities in an aggregate reduces to 1, then the price index 
reduces to a price relative; that is, 'tt p/p  whenever N = 1. )'t,t(P =

Under these assumptions it can be shown that the only price indices satisfying the consistency-
in-aggregation requirement (19a) are the Laspeyres and Paasche.11 Moreover, it is 
straightforward to show that any chained price index deviates from these two functional forms. 
For instance, for the chained Laspeyres price index it can be shown that  

(20)  00

0

00

0

1 11

1
0

qp
qp

qp
qp

qp
qp),t(P

ttc
L

⋅

⋅
≠

⋅

⋅
=

⋅

⋅
=

∗

= −−

−

∏τ ττ

ττ
, 

since  
                                                 
10 Pursiainen (2005) proposed a more general definition of consistency-in-aggregation, which appears to reduce to 
the one presented here for the situations considered here. 
11 See Balk (1995), (2008). 
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tt p
qp

qppp ≠
⋅

⋅
= ∏ = −−

−
∗

2 11

1
1

τ ττ

ττ
. (21)  

 Given this mathematical, state-of-affairs, it seems justified that priority is given to  
comp

. On the Economic Theoretic Interpretation of Chained Index Numbers  

The strategy of chaining has primarily been motivated by practical considerations. The 

.1 Constant homothetic preference ordering 

 for t = 0,1,…,T can be rationalized by a 

is the cost function that is dual to . Duality theory 

de osing the value change between adjacent periods into price and quantity index 
components. If one is to construct real values for a sequence of periods, then chained index 
numbers must be used for deflating or inflating.12 With the present day computation facilities 
and the basic data, however, it should be relatively simple, for analytical purposes, to compute 
alternative price and quantity index numbers, as well as alternative sequences of real values, 
among which are included values-at-constant-prices.  

 

5
 

 
question considered in this, and the next, section is: what precisely does a chained index 
measure? This section approaches the question from the economic-theoretic point of view. For 
direct (bilateral) price and quantity indexes there is a well-established body of theory. Can this 
theory be used to provide an answer to our question? That question is addressed here. 

 

5

 Suppose our price and quantity data q,p( tt )
utility function. That is, suppose there exists a continuous function )q(U  representing a 
preference ordering that satisfies mild regularity conditions. More specifically, suppose that  

(22)  ))q(U,p(Cqp tttt =⋅ , 

where }( pC  )(|{min), uqUqpu q ≥⋅≡
that )q(U is homothetic if and o

 )q(U
posetells us nly if the cost function can be decom d as  

(23)  )p(c)u(F),p(C)u(F)u,p(C ≡= 1 , 

where F(u) is a function that is monotonicly increasing in u, and  is called the unit cost 

Konüs cost of living index for period t relative to period , 

(24)  

)p(c
function. Varian (1983), based on earlier work by Diewert (1973), showed that there exists a data 
rationalizing utility function, which is homothetic if and only if a condition called the 
Homothetic Axiom of Revealed Preference (HARP) is satisfied. The specific form of this 
function is of no concern here. 

 As is well known, the  't
conditional on the utility level u, is defined by  

)u,p(C
)u,p(C t

)U(u Range∈)u;'t,t(P 'tK ≡  . 

                                                 
12 A practical way of dealing with the additivity problem was developed by Balk and Reich (2008). 
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 If the utility function is homothetic, then the Konüs cost of living index can be expressed 
 of values of the unit cost function; that is, the Konüs cost of living index can be 

expressed as  
as the ratio

(25)  )'t,t(P)p(c/)p(c)u;'t,t(P K
'tt

K ≡=   

for any two periods t, . Using relations (25), (22), and the definition of the cost function, it is 
-known Laspeyres and Paasche bounds: 

't
straightforward to derive the well

(26)  )'t,t(P
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qp

))q(U,p(C
))q(U,p(C't,t(P L't't't'tK =

⋅

⋅
≤=  )

'tt'tt

)'t,t(P
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⋅
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Based on this double inequality, it is reasonable to view the Fisher price index, 
, as an approximation to the Konüs index 21 /

PLF )]'t,t(P)'t,t(P[)'t,t(P = )'t,t(PK . In fact, 
)'t,t(P)'t,t(P KF =  if and only if the unit cost function c(p) is quadratic.   

ts of bounds can also be derived. Consider for instance an 
Ts ≤≤0 . Then, by the same method, we find that also 
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  However, many other se
arbitrary third period 
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 The obvious generalization of the above procedure is to consider all spanning trees 
the periods 0,1,…,T. A spanning tree is a connected graph without cycles. Suppose 

that on such a tree the periods  and t are connected via the periods s(2),…,s(L-1), where 
connecting 

 't 3≥L , 
and call )(s't 1=  and )L(st = . Let L=2 represent the case where 't  and t are adjacent (hence the 
number of intermediate periods equals zero). Then  

(30)  ∏ ∏
= =

− −≤
L L

L)(s

)(s
K ))(s),(s(P

)p(c
)p(c't,t(

2 2
1 1

l l
l

l

ll . =)P

Taking the minimum of the right-hand side of this expression over all spanning trees delivers the 
er bound for )'t,t(PKtightest upp . Similarly, one obtains that  

(31)  ∏ ∏
=

− −≥=
L L

P)(s

)(s
K ))(s),(s(P

)
)p(c)'t,t(P 1 1

l
l

l

ll , 
= p(c2 2l

                                                 
13 See Konüs and Byushgens (1926), Diewert (1976), and Lau (1979). 
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and taking the maximum of the right-hand side of this expression over all spanning trees delivers 
 lower bound for )'t,t(PKthe tightest . Both of these tightest bounds can be computed by 

employing Warshall’s algorithm  also checks whether HARP is satisfied and, if 

t HARP

. This algorithm
so, computes the tightest upper and lower bounds.  

 It is clear that, given tha  is satisfied, the (direct) Laspeyres price index )'t,t(PL  

as well as the chained Laspeyres price index )'t,t(Pc
L  are elements of the set of upper bounds 

for the Konüs cost of living index )'t,t(PK . Similarly, the (direct) Paasche price index )'t,t(PP  

as well as the chained Paasche price index Pc )'t,t(P  are elements of the set of lower bounds. If 

)'t,t(P)'t,t(P L
c
L <  then the chained Laspeyres price index is a tighter upper bound for the 

Konüs index than the (direct) Laspeyres price index. Similarly, if )'t,t(P)'t,t(P P
c
P >  then the 

r bound for the Konüs index than the (direct) 
.  

 We may conclude that, if both conditions are satisfied, the her price 
index 21 /c

chained Paasche price index is a tighter lowe
Paasche price index

n the chained Fis

P
c
L

c
F )]'t,t(P)'t,t(P[)'t,t(P =  is a better approximation to )'t,t(PK  than the (direct) 

Fisher price index. 

 

5.2 Constant preference ordering 
However, the nice result just derived only holds when HARP is satisfied. When HARP is 

ot satisfied, it is still possible that there exists a data rationalizing utility function such that (22) 
ssarily homothetic. Varian (1982), based on earlier work 

 
n
holds; however, this function is not nece
by Afriat and Diewert (1973), showed this to be the case if and only if a condition called the 
Generalized Axiom of Revealed Preference (GARP) is satisfied. Under this weaker assumption, 
the standard bounding result reads: 

(32)  )'t,t(P))q(U;'t,t(P L
't

K ≤  

(33)  P))q(U;'t,t(P P
t

K ≥ )'t,t( . 

It can then be shown14 that there exists a utility level  between  and  such that ∗u )q(U 't )q(U t

)u;'t,t(PK
∗  lies between  and )'t,t(PL )'t,t(P . )P 't,t(FP  is a symmetric average of )'t,t(PL  

and )'t,t(PP . Hence, if the interval between t(PL  and P)'t, )'t,t(P  is sm

 

all, it would be 
expected that  

(34) )u;'t,t(P)'t,t(P KF
∗≈  for some ∗u en )q(U 't  and )q(U t . 

The result give

 betwe

n above is interesting, but not very useful if the periods t and  are far apart and 
the difference between the Laspeyres and Paasche price index numbers is large. If this is the 

y be better to consider t  e inde hich i built up from 

                                                

't

case, it ma he chained Fisher pric x, w s 

 
14 The proof by Diewert (1981) goes back to Konüs. 
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comparisons of adjacent periods. For these comparisons, the Laspeyres-Paasche spread may be 
more likely to be small enough to justify the use of (34). Hence,  
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     d   for some  between an . 

 This result is still not very insightful. Equation (35) means that the chained Fisher price 
tes a ained dex ver time. Getting rid 

 of u ld b  This can ccomp hed by noticing that 

that, conditional on prices  and , 

 ∗τu )q(U 1−τ  )q(U τ

index approxima ch  Konüs in  where the levels of utility vary o
of the variation in levels tility wou e helpful.  be a lis
the Konüs index defined in (24) is continuous in the utility level u. Choose 21 /)'tt(s ++=  and 
assume that  

(36)  )}(exp{))(;1,();1,( saqUPuP s
KK −−=− ∗ τττττ τ  for some a , 

which means 

0≠

τp 1−τp )u;,(PK
∗− τττ 1  is a loglinear function 

variable associated with the reference utility level. B ry an ytical methods, 
one can then show that  

sitivity of the Konüs index for some fixed u. Thus, if 
e chained Fisher price index 

of the time y elementa al
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where the last equality follows from the tran
(36) holds, then th )'t,t(Pc

F  can be viewed as approximating the 

Konüs cost of living index ))q(U;'t,t(P s
K , where s is an intermediate time period. Notice that 

assumption (36) rules out any cycles. 

 

5.3 Variable preference ordering 
A still weaker, but not testable, assumption is that the preference ordering is changing 

 represents the period t 
nction. The Laspeyres and P asche bounds still apply, but must be reformulated as  

 

 
over time, so that (22) must be replaced by  

(38)  ))q(U,p(Cqp tttttt =⋅  

where )q(U t  represents the period t preference ordering and )u,p(Ct

dual cost fu a

(39) )'t,t(P))q(U;'t,t(P L
't't't

K ≤  

(40)  )'t,t(P))q(U;'t,t(P ttt
P≥ . K

 A result such as (34), o however, is n w impossible because the utility functions 

 represent different preference orderings. It is meaningless to compare their num

)q(U 't  

erical and )q(U t
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values across periods. There is a way out, however. A cost of living index includi
preference change effect was defined by Balk (1989) as  

(41)  

ng the 

))q(U,p(C
))q(U,p(C)q;'t,t(P 't't't

ttt
't,t ≡ . 

This index conditions on q
indifference

 the quantity vector  and compares the period t cost of the period t 
 class of q to the period  cost of the period  indifference class of q. It is a natural 

extension of the Konüs cost of living index: if the period t and  preference orderings are 
't 't

't
identical, then ))q(U;'t,t(P)q;'t,t(P K

't,t = . The index (41) can be decomposed into two parts 
relating, respectively, to the effects of price change and preference change. The effect of 
preference chan )q't,t  by setting 'tt pp = . This effect is not necessarily 
equal to 1, but, as argued by Balk (1989), has the right sign. 

 Balk (1989) also showed that the Laspeyres and Paasche bounds still apply, so that: 

(42) )',();',( '', ttPqttP L
ttt ≤  

ge is measured by ;'t,t(P

(4 )',();',(', ttPqttP P
ttt ≥ . 3) 

In this case, Diewert’s (1981) proof can be used to show that there exists a quantity vector 
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Fisher price index: 
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Assuming now tha

≈

t for adjacent periods the Laspeyres-Paasche spread is indeed small, the 
ing approximation using t  F in ay be close enough to be useful:  
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 The right-hand side of expression (45) contains indices that are conditional on quantity 
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where the last equality follows from the transitivity of (41) for fixed q. Thus, if (46) holds, the 
her price index )'t,t(Pc

Fchained Fis  may be considered to provide an approxim on to the cost 

ual to 1 wh

ati

of living index including the preference change effect )q;'t,t(P , where s is an intermediate 
time period. Notice that assum 46) also rules out any cycles.  

 Recall that )q;'t,t(P  is not necessarily eq en pp = . This feature is 

shared by a chained index such as )'t,t(Pc

s't,t

ption (
s't,t 'tt

F . Put otherwise, the fact that a chained index violates 
asses the effect of 

ed preference orderings and optimization, 
light on the relation between direct and chained 

dices. This theory, however, requires a mental leap: time periods must be considered as being 

the (bilateral) Iden that such an index encom
preference change.  

 

6. A Divisia Index Theory Perspective 

tity Test reflects the fact p

 

 For those who do not believe in well-behav
Divisia index theory might be used to shed 
in
of infinitesimal length and time itself as a continuous variable. Prices and quantities are supposed 
to be strictly positive, continuous and piecewise differentiable functions of time. Thus, when 
time τ  moves from period 0 to period T, prices and quantities )(q),(p ττ  map out a path 
through the 2N-dimensional, strictly positive, Euclidean orthant. It is also assumed that 
observations are available at periods 0, 1, 2, …, T; that is, it is assumed that we observe 

(48)  ττ p)(p =   and  ττ q)(q =  for T,...,,10=τ . 

 The starting point for Divisia index theory is the Product Test equation (12). It is 
straightforward to show, using elementary integral calculus, that this equation can be written as  
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and 

(52)  )(q)(p/)(q)(p)(s nnn τττττ ⋅≡  (n = 1,…,N). 

The problem is how to estimate these index numbers, given that one only has 
number of periods. Integral calculus provides us 

ul decompositions: 

 
observations on prices and quantities for a finite 
with the following two usef

(53)  ∏ = −≡ t DivDiv ),(P),t(P 1 10 τ ττ   (t = 1,…,T) 
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and 

(54)    (t = 1,…,T).  

y pair of bilateral price 

∏ = −≡ t DivDiv ),(Q),t(Q 1 10 τ ττ

 Now, as demonstrated by Balk (2005), (2008, Chapter 6), for an
and quantity indices )'t,t(Q),'t,t(P  there exists a (hypothetical) vector of functions 
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)t(p)t(p̂ = , and )t(q )t(qˆ = hat   

)'t,t(t(P Div  
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ubscript C indicates that the integrals are computed using the functions defined by C 
the true, but unknown, functions occurring in (50) and (51). The closer one believes 
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(56)  , )'t,t(Q)'t,t(Q Div
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where the s
rather than 
that C approximates these unknown functions, the better )'t,t(Q),'t,t(P  will approximate 

)'t,t(Q),'t,t(P DivDiv . The survey quoted makes clear as well that )'t,t(Q),'t,t(P FF  

asonable price-quantity path than, say, corresponds to a more re )'t,t(Q),'t,t(P LP

 Given this theoretical knowledge, there are two d pp

. 

istinct ways of a roximating 

),t(Q),,t(P DivDiv ),t(Q),,t(P FF 00 , 00 . The first is by calculating direct index numbers 

which use only the period 0 and e interval. The
second is, according ed index numbers 

t data and map out a path over the whole tim  
to expressions (53) and (54), by calculating chain

),t(Q),,t(P c
F

c
F 00 . These chained index numbers also use the available data for the 

intermediate periods and map out a segmented path that coincides with the true one at the 
 It seems clear that this second option should be preferred, since all available 

observations are used this way and the hypothesized path will stay closer to the true one. 

 

7. Conclusion 

observation points.

ion I return to the main problem: that of decomposing a value ratio into 
rice and quantity components. Let

 

 By way of conclus
 )'t,t(Q),'t,t(Pp  be a pair of bilateral price and quantity 

and 

 

indices that satisfy the Product Test. Then we have for any period t = 2, …, T the choice between 
the decompositions  
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∏∏ == −−= tt ),(Q),(P 11 11 ττ ττττ(58)  ; 

ave the choice between using direct indices or chained indices. Notice, however, that 
(57) can easily be rewritten as  

that is, we h
expression 
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 which is comparable to that of expression (58). om this point of view, the question 
is not so much whether to decompose the value ratio between periods t and 0 by direct or chained 
the form of Fr

indices, but whether adjacent periods should be compared by indices of the form 
),(Q/),(Q),,(P/),(P 010010 −− ττττ  or ),(Q),,(P 11 −− ττττ . Posed in this way, the 

answer seems obvious, because it is not at all clear why period 0 price and/or quantity data 
should play a role in the comparison of periods τ  and 1−τ  (τ  = 2, …

h  and quantity indices 
dmit 

d Fisher price index numbers by chained 
arshall-Edgeworth price index numbers; that is, he proposed to replace formula (13) by   

, t). 

 As advanced in section 5.3, micro-economic theory suggests the use of Fisher indices for 
the comparison of adjacent periods, since in t at case the chained price
a the respective interpretation of being approximations to cost of living and standard of 
living indices under changing preferences. The main condition on which this result is predicated 
is that the observed quantities do not exhibit cyclical behavior. 

 

Appendix: A Note on Hillinger’s (2002) Proposal 
 

 Hillinger (2002) proposed to replace chaine
M
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ME

c
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where the Marshall-Edgeworth price index is defined as   
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This proposal has the disadvantage that the equality of deflation and inflation – see expression  
(12) – gets lost, since   

),t(Q
),t(P
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ME
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0
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where Qc ),t(E 0M  is a chained Marshall-E geworth quantity index defined by (A.1) and (A.2) 
after interchanging prices and quantities.  

It appears

d

  that for two adjacent periods the quantity component,   
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homogeneous in tq . By mimicking the proof of Balk (1983), it is straightforward to show that 
the quantity index (A.4) is exact for a linear utility function. 
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where the next to last equality is based on definition (A.2). The difference of two real values can 

of Hillinger’s (2002) proposal is to also use the deflator (A.1) for 

eferences 

l, P.G., B.M. Balk, S. de Boer and G.P. den Bakker (1986), “The Use of Chain Indices for Deflating the National 

-363. 

ce, 

thus be written as a weighted average of individual quantity differences, 1−− t
n

t
n qq , which 

provides a nice interpretation.  

 The second component 
the computation of real values of subaggregates. The additivity problem is thereby not solved, 
but circumvented. Hillinger’s argument is, however, not convincing. As Ehemann et al. (2002) 
see it, Hillinger’s proposal “appears to provide data users with very little information beyond 
what is already provided in the aggregates valued at current prices.”. These authors also show 
that the Hillinger proposal can lead to perverse outcomes.  

 

R

 
A

Accounts”, Statistical Journal of the United Nations ECE 4, 347-368. 
Balk, B.M. (1983), “A Note on the True Factorial Price Index”, Statistische Hefte / Statistical Papers 24, 69-72. 

M. (1989), “Changing Consumer Preferences and the Cost-of-Living InBalk, B. dex: Theory and Nonparametric 
Expressions”, Journal of Economics 50, 157-169. 

Balk, B.M. (1995), “Axiomatic Price Index Theory: A Survey”, International Statistical Review 63, 69-93. 
M. (1996), “Consistency-in-Aggregation and StuvelBalk, B.  Indices”, Review of Income and Wealth 42, 353

Balk, B.M. (2004), “Decompositions of Fisher Indexes”, Economics Letters 82, 107-113.  
Balk, B.M. (2005), “Divisia Price and Quantity Indices: 80 Years After”, Statistica Neerlandica 59, 119-158. 
Balk, B.M. (2008), Price and Quantity Index Numbers: Models for Measuring Aggregate Change and Differen

Cambridge University Press. 

 233



Bert M. Balk 

 

234

234

l 

al Paper Nr. NA-087, Statistics Netherlands. 
al 

nt, Eurostat, United Nations, The 

Diewert
Diewert xact and Superlative Index Numbers”, “Exact and Superlative Index Numbers,” Journal of 

pp. 

Diewert
 Consumer Behaviour in Honour of Sir Richard Stone, Cambridge University 

Diewert

Eheman d the US National Economic 

Hillinge ity Measures”,  Journal of Economic 

. 

Lehr, J. ( e (J. D. Sauerlander, Frankfurt). 
-82. 

um of Federal Statistics, Volume 16 

ines Statistisches Archiv 85, 343-347. 

Marshal ary Review 51, 355-375. 
 Report No. 106, 

, 

es Archiv 84, 461-478. 
 

ce of the United Nations, New York. 
 

national Monetary Fund, 

Varian, 
Varian, 0, 99-110. 

trische 

Balk, B.M. and U.P. Reich (2008), “Additivity of National Accounts reconsidered,” Journal of Economic and Socia
Measurement 33, 165-178. 

Boer, S. de, J. van Dalen and P. Verbiest (1997), Chain Indices in the National Accounts: The Dutch Experience, 
National Accounts Occasion

CPI Manual (2004), Consumer Price Index Manual: Theory and Practice, International Labour Office, Internation
Monetary Fund, Organisation for Economic Co-operation and Developme
World Bank. 

, W.E. (1973), “Afriat and Revealed Preference Theory,” Review of Economic Studies 40, 419-425. 
, W.E. (1976), “E
Econometrics 4, 115-145; reprinted as chapter 8 in W.E. Diewert and A.O. Nakamura (eds.) (1993, 
223-252 ), North-Holland.  

, W.E. (1981), “The Economic Theory of Index Numbers: A Survey”, in A. Deaton (ed.), Essays in the 
Theory and Measurement of
Press, pp. 163-208; reprinted as chapter 7 in Diewert and Nakamura (1993, pp. 177-221). 

, W.E. (1996), “Price and Volume Measures in the System of National Accounts”, in The New System of 
National Accounts, edited by J. Kendrick, Kluwer Academic Publishers. 

Diewert, W. E. and A. O. Nakamura (1993), Essays in Index Number Theory, Vol. I, North-Holland. 
n, C., A.J. Katz and B.R. Moulton (2002), “The Chain-Additivity Issue an
Accounts”, Journal of Economic and Social Measurement 28, 37-49. 

ESA (1995), European System of Accounts (Eurostat, 1996). 
r, C. (2002), “Consistent Aggregation and Chaining of Price and Quant
and Social Measurement 28, 1-20. 

Konüs, A.A. and S.S. Byushgens (1926), “On the Problem of the Purchasing Power of Money” (in Russian), 
Voprosi Konyunkturi II(1), 151-172

Lau, L.J. (1979), “On Exact Index Numbers”, The Review of Economics and Statistics 61, 73-82. 
1885), Beiträge zur Statistik der Preis

Lippe, P. von der (2000), “Der Unsinn von Kettenindizes”, Allgemeines Statistisches Archiv 84, 67
Lippe, P. von der (2001a), Chain Indices: A Study in Price Index Theory. Spectr

(Metzler-Poeschel, Stuttgart). 
Lippe, P. von der (2001b), “Zur Interpretation von Kettenindizes: Wie U. P. Reich Widersinn bei Kettenindizes zum 

Verschwinden bringt”, Allgeme
Lippe, P. von der (2007), Index Theory and Price Statistics, Peter Lang, Frankfurt am Main. 

l, A. (1887), “Remedies for Fluctuations of General Prices”, Contempor
Pursiainen, H. (2005), Consistent Aggregation Methods and Index Number Theory, Research

Department of Economics, University of Helsinki. 
Rainer, A. (2002), “Verkettung gegensätzlicher Positionen zu Indexfragen”, Allgemeines Statistisches Archiv 86

385-389. 
Reich, U.P. (2000), “Messung des Geldwertes: Zur Statistik und Theorie der reinen Preisbewegung,” Allgemeines 

Statistisch
SNA (1968), A System of National Accounts, Studies in Methods, Series F, No. 2, Rev. 3, Department of Economic

and Social Affairs, Statistical Offi
SNA (1993), System of National Accounts 1993, Prepared under the auspices of the Inter-Secretariat Working Group

on National Accounts (Commission of the European Communities, Inter
Organisation for Economic Co-operation and Development, United Nations, Worldbank). 

H.R. (1982), “The Nonparametric Approach to Demand Analysis”, Econometrica 50, 945-973. 
H.R. (1983), “Nonparametric Tests of Consumer Behaviour”, Review of Economic Studies 5

IJzeren, J. van (1952), “On the Plausibility of Fisher’s Ideal Indices” (in Dutch), Statistische en Econome
Onderzoekingen (CBS), Nieuwe Reeks, 7, 104-115. 



Chapter 11 
ON THE STOCHASTIC APPROACH TO INDEX NUMBERS 

W. Erwin Diewert1 

 
“In mathematics disputes must soon come to an end, when the one side is proved 
and the other disproved. And where mathematics enters into economics, it would 
seem that little room could be left for long-continued disputation. It is therefore 
somewhat surprising that one economist after another takes up the subject of 
index-numbers, potters over it for a while, differs from the rest if he can, and then 
drops it. And so nearly sixty years have gone by since Jevons first brought 
mathematics to bear upon this question, and still economists are at loggerheads 
over it. Yet index-numbers involve the use of means and averages, and these 
being a purely mathematical element, demonstration ought soon to be reached, 
and then agreement should speedily follow.” 

Walsh [1921; preface]. 

1. Introduction 
 

 The recent appearance of a book on the stochastic approach to index number theory by 
Selvanathan and Prasada Rao [1994] marks an appropriate occasion to provide a critical review 
of this approach. This is the primary purpose of the present paper. 
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chapter 11, pp. 235-262 in  
W.E. Diewert, B.M. Balk, D. Fixler, K.J. Fox and A.O. Nakamura (2010), 
PRICE AND PRODUCTIVITY MEASUREMENT: Volume 6 -- Index Number Theory. Trafford Press. 
Also available as a free e-publication at www.vancouvervolumes.com and www.indexmeasures.com. 
 
© Alice Nakamura, 2010. Permission to link to, or copy or reprint, these materials is granted without restriction, 
including for use in commercial textbooks, with due credit to the authors and editors. 
 

0iit p/p it

                                                

 The stochastic approach2 to index number theory originated with Jevons [1863; 23-26] 
[1865; 121-122] [1869; 156-157], Edgeworth [1887; 245] [1888a] [1888b] [1889; 286-292] and 
Bowley [1901; 219] [1911] [1919; 346] [1926] [1928; 217]. Basically, this approach was driven 
by the quantity theory of money: as the quantity of gold or money is increased, all prices should 
increase approximately proportionally. Thus a measure of the general increase in prices going 
from period 0 to period t could be obtained by taking an appropriate average of price relatives, 

, where p  denotes the price of commodity i in period t. This average of the price 
relatives can be regarded as an index number of price change going from period 0 to t. 
Selvanathan and Prasada Rao [1994; 5-6] express this ancient theory in more modern language 
as follows: 

 
1 W. Erwin Diewert is with the Department of Economics at the University of British Columbia and can be reached 
at diewert@econ.ubc.ca. This research was supported by a Strategic Grant from the Social Sciences and Humanities 
Research Council of Canada. Thanks are due to Louise Hebert and Keltie Stearman for typing a difficult manuscript. 
2 This term is due to Frisch [1936; 3-4]. 
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“The stochastic approach considers the index number problem as a signal 
extraction problem from the messages concerning price changes for different 
commodities. Obviously the strength of the signal extracted depends upon the 
messages received and the information context of the messages.” 

 The recent resurrection of the stochastic approach to index number theory is due to Balk 
[1980], Clements and Izan [1981] [1987], Bryan and Cecchetti [1993] and Selvanathan and 
Prasada Rao [1994]3. The main attraction of the approach over competing approaches to index 
number theory is its ability to provide confidence intervals for the estimated inflation rates: 

“Accordingly, we obtain a point estimate of not only the rate of inflation, but also 
its sampling variance. The source of the sampling error is the dispersion of 
relative prices from their trend rates of change -- the sampling variance will be 
larger when the deviations of the relative prices from their trend rates of change 
are larger. This attractive result provides a formal link between the measurement 
of inflation and changes in relative prices.” 

Clements and Izan [1987; 339]. 

 Selvanathan and Prasada Rao note the above advantage but go further and claim that the 
stochastic approach can be utilized to derive standard errors for many well known index number 
formulae: 

“The attraction of this approach is that is provides an alternative interpretation to 
some of the well known index numbers as the estimators of parameters of specific 
regression models. For example, the Laspeyres, Paasche, Theil-Törnqvist and 
other index numbers can be derived from various regression models. Further this 
approach provides standard errors for these index numbers.” 

Selvanathan and Prasada Rao [1994; 6]. 

 At this point, it should be mentioned that the two main competing approaches to index 
number theory are the test approach and the economic approach. 

 The test approach can apply to two periods (the bilateral case) or to many periods (the 
multilateral case). The bilateral test approach assumes that complete price and quantity 
information on the relevant set of commodities is available for the two periods under 
consideration, say periods s and t. Denote the price and quantity vectors for these two periods by 

 and  where , etc. A bilateral price index is defined as a function 

P of the four sets of variables, . The bilateral test approach attempts to 
determine the functional form for P by assuming that P satisfies certain plausible tests, axioms or 
mathematical properties. In the case of only one commodity in the set of commodities to be 
aggregated, the imposed tests generally cause the price index  to collapse 
down to the single price ratio, 

sp , tp ,q,q ts ]p,,p[p Nss1
s K=

,p,p(P ts )q,q ts

)q,q,p,p(P t1s1t1s1
.pp s1t1  There is an analogous bilateral test approach for the 

quantity index Q  Fisher [1911; 403] observed that in the present context of 
complete information on prices and quantities, the price and quantity indexes, P and Q, should 
satisfy the following conservation of value equation: 

).q,q,p,p( tsts

                                                 
3 See Selvanathan and Prasada Rao [1994; 6] for an extensive list of their recent contributions. 
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(1)  sstttstststs qp/qp)q,q,p,p(Q)q,q,p,p(P ⋅⋅=

where  The importance of (1) is that once the functional form for P has 
been determined, then (1) automatically determines the functional form for Q. Moreover, tests 
for the quantity index Q can be translated into tests for the corresponding price index P defined 
via (1). Useful references for the test approach are Walsh [1901] [1921] [1924], Fisher [1911] 
[1921] [1922], and Diewert [1992a] [1993a; 6-10]. The early history of the test approach is 
reviewed by Frisch [1936; 5-7] and Diewert [1993b; 38-41]. 

.qpqp ntnt
N

1n
tt

=∑=⋅

 In the test approach, the vectors of prices and quantities for the two periods are regarded 
as independent variables. In the economic approach, the two price vectors are regarded as 
independent variables but the quantity vectors are regarded as solutions to various economic 
maximization or minimization problems. In the consumer price context, it is assumed that the 
consumer has preferences over N commodities and these preferences can be represented by an 
aggregator or utility function ).q(f)q,...,q(f N1 ≡  It is also assumed that in each period t, the 

consumer minimizes the cost  of achieving the utility level  when facing the 

period t vector of prices  The Konüs [1924] true cost of living index between 
periods s and t, using the reference utility level  is defined as the ratio of costs of achieving 

the reference utility level when facing the period s and t prices, . If the 
consumer’s utility function is linearly homogeneous, then the cost function  factors 
into two components, f  where  is defined as the unit (utility level) cost function, 

 In this homogeneous case, the Konüs true cost of living index reduces to the unit cost 

ratio,  and the corresponding quantity index is the utility ratio, . 

]p),q(f[C tt

].p,...,p, Ntt2t
q(f

),p )p(c

)q(f t

C/]p), t

q(f t

p[p 1
t

(c)q(

),

]p),q(f[q(f[C s

]p),q(f[C

)q(f/) s
[ ].p,1C

c )p(c/)p( st

 Finally, consider a given formula for the price index, say  We say that P 
is exact for the consumer preferences dual to the unit cost function c if under the assumption of 
cost minimizing behavior on the part of the consumer for periods s and t, we have 

).q,q,p,p(P tsts

(2) . )p(c/()p(c)q,q,p,p(P tttsts =

Similarly, a given functional form for the quantity index,  is ),q,q,p,p(Q tsts exact for the 
linearly homogeneous utility function f if, under the assumption of cost minimizing behavior for 
periods s and t, we have 

(3) . )q(f/)q(f)q,q,p,p(Q sttsts =

The economic approach to index number theory concentrates on finding functional forms for 
price indexes P that are exact for flexible4 unit cost functions c and on finding functional forms 
for quantity indexes Q that are exact for flexible linearly homogeneous utility functions f. Index 
number formulae that are exact for flexible functional forms are called superlative.5 The theory 

                                                 
4 A flexible functional form is one that has a second order approximation property; see Diewert [1974; 115]. 
5 See Diewert [1976; 117]. 
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of exact index numbers was developed by Konüs and Byushgens [1926], Afriat [1972; 44-47], 
Samuelson and Swamy [1974] and Pollak [1989; 15-32]. The early history of exact index 
numbers is reviewed in Diewert [1993b; 45-50]. For examples of superlative indexes, see 

s of the 

lems 
volved in providing measures of reliability for based on the test or economic approaches. 

. The Early Statistical Approaches to Index Number Theory 

athan and 
ad ao [1994; 49-51] consider is given by the following equations for t=1,2,...T: 

Diewert [1976] [1978] [1992b; 576]. 

 As can be seen from the above brief reviews of the test and economic approaches to 
index number theory,6 these approaches are silent on the problem of providing an estimate of the 
reliability of the suggested bilateral index number formulae. Thus the new champion
stochastic approach appear to have a strong a priori argument in favor of their approach. 

 In section 2 below, we review the original approaches of Jevons, Edgeworth and Bowley. 
In section 3, we review the initial new stochastic approaches of Clements and Izan [1981] and 
Selvanathan and Prasada Rao [1994; 51-61]. In section 4, we review the more sophisticated 
stochastic approaches of Balk [1980], Clements and Izan [1987] and Selvanathan and Prasada 
Rao [1994; 61-110]. The stochastic specifications that are utilized in the models presented in 
sections 3 and 4 are easily rejected from an empirical point of view. Thus in section 5, we 
present a new stochastic model that seems to be in the spirit of the type of model that Edgeworth 
had in mind but was never able to implement. In section 6, we present some practical criticisms 
of the new stochastic approaches to index number theory that will make it difficult for Statistical 
Agencies to embrace these approaches. Section 7 concludes by reconsidering the prob
in

 

2
 

 We assume that we are given price and quantity data, itp  and ,qit  for periods t=0,1,...,T 
and for commodities i=1,2,...,N. The first stochastic index number model that Selvan
Pras a R

(4) ;p itt0itpi ε+α=  i=1,2,...,N; 

where tα  represents the systematic part of e price change going from period 0th  to t and the 
independently distributed random it variables ε  satisfy the following assumptions: 

(5) ;Var;0E 2σ=ε=ε

itε m likelihood estimator 
for tα  in Model 1 defined by (4) and (5) is the Carli [1764] price index: 

(6) 

titit

i.e.,  has mean 0 and variance .02
t >σ  The least squares and maximu

 i=1,2,...,N; 

,pp)N/1( 0iit1it =ˆ N∑=α  

                                                 
6  Selvanathan and Prasada Rao [1994; 15-44] provide a rather inadequate review of the test and economic 
approaches. For example on page 17, they attribute Walsh's [1901] [1921; 97] price index to Drobisch, they misspell 
Marshall and they cite an incorrect reference to Marshall [1887], the cofounder of the Edgeworth-Marshall index. 
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whi  arithmch is the unweighted etic mean of the period 0 to t price relatives, .pp 0iit  The 
variance of tα̂  is  

2
tt )N/1(ˆVar σ=α  (7) 

and Selvanathan and Prasada Rao [1994; 51] note that an unbiased estimator for the variance is 

(8) [ ] ( )[ ]2t0iit
N

1i
2
t ˆpp)1N(1 α−∑−=σ = . 

Using (7) and (8 a confidence in), terval for the Carli price index tα̂  can be calculated under the 
m lvanathan and Prasada Rao [1994; 51] note, if 

Instead of assuming that the independent errors it

assumption of nor ally distributed errors. As Se
the dispersion of the price relatives 0iit p/p  increases, then the precision of our period t fixed 
base price index tα̂  will decline. 

 ε  are additive, we could more plausibly 
e e. 7  This leads to Model 2, which is defined by the 
i T

assum ultiplicativ that the errors are m
ng equations for t=1,...,follow : 

(9) itt0iit ]pp[n ε+π=l ; i=1,...,N; 

(10) ;Var;0E 2
titit σ=ε=ε

The least squares and maximum

 i=1,...,N. 

 likelihood estimator for tπ  in Model 2 is 

(11) ]pp[]N/1[ˆ 0iit
N

1it l=∑=π . 

A variance estimator for  can be constructed in a m

n

 tπ̂ anner analogous to the use of (7) and (8) in 
l to be the exponential of t , we can exponentiate tπ̂  to obtain the Mode  1. If we define tα  π

following estimator for  tα : 

(12) .]pp[]ˆexp[ N/1
0iit

N
1it =∏=π  

The right hand side of (12) is the Jevons [1863; 53] geometric mean price index. Jevons [1869; 
157] later applied least squares theory to equation (9) and calculated a “probable error” (or 
confidence interval in modern terminology) for his estimator tπ̂ defined by (11). This appears to 
be the first relatively complete exposition of the stochastic approach to index number theory. 

 Jevons [1865; 120-122] also used the arithmetic mean index number (6) in his empirical 
work but he did not report any confidence intervals for his Carli indexes. Edgeworth [1887; 226-
246] considered both arithmetic and geometric mean (unweighted) index numbers and 
Edgeworth [1888a] was entirely devoted to the problems involved in constructing confidence 
intervals for these indexes. Bowley [1901; 203-229] [1919; 345-346] [1928; 216-222] was very 

                                                 
7 Edgeworth [1887; 237-243] argued on empirical and logical grounds that Model 2 was more plausible than Model 
1, assuming normally distributed errors. His logical argument was based on the positivity of prices; hence a price 

uld be symmetrically distributed. 
relative could have any upper bound but had a definite lower bound of zero, leading to an asymmetric distribution of 
price relatives. However, the logarithm of a price relative co
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much concerned with the problems involved in determining the precision of index numbers.8 
Bowley [1911] was concerned with the precision of weighted index numbers while Bowley 
[1926] extended his earlier work to cover the case of correlated price relatives. Finally, Bowley 
was aware that precision in official indexes was rather important, since so many government 
expenditures were indexed to official price indexes. The following quotation refers to a potential 
upward bias of 18 percentage points in the Ministry of Labour index numbers for the UK over 
the yea

“Every 4 points cost over a million pounds in the annual railw
Bowley [1919; 348] 

We turn now to an exposition of the new stochastic models. 

. The New Stochastic Approach to Index Numbers 

s (5) on the independently 
y the following assumptions: 

(13) 2 /Var; σ=ε i=1,...,N 

where the are nonrandom fixed shares to be determined later; i.e. the iw  satisfy 

 for i=1,2,...,N and .1wN =∑  

ulting least squares and maximum 
likelihood estimator for the period 0 to t inflation rate  t

rs 1914-1918: 

ay wage bill.” 

 

 

3

 

 Model 3 consists of equations (4) again but our old assumption
distributed errors itε  are now replaced b

ititit w ;  0E =ε

iw

0>

w

(14) 

Since th

w

e 

i i1i=

i  are positive, we can multiply both sides of equation i in (4) by the square root of 

iw , ,w 2/1
i  in order to obtain homoscedastic errors. T  rehe s

α  is 

(15) [ ] [ ]0iiti1in1n0iiti1i1 ===

where the sec d equality follows u

NN ppwwppwˆ ∑=∑=α   

on sing (14). Using (13), it can be seen that tα̂  is an unbiased 
estim

(16) 

N∑

ator for  tα  and its variance is 

222N ]w[wˆVar σ=σ∑=α  

where the second equality follows using (14). An unbiased estimator for 2
tσ  is 

iiii1it =

(17) ( )[ ]ˆppw)]1N/(1[ˆ 0iiti1it α−∑−≡σ = .2N2  

                                                 
 [1927; 240-247] succinctly reviewe terature and also computed standard errors for various index 

number formulae using BLS data on US wholesale prices. 
8 Mills d the above li
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itε  Under the added assumption that the residuals are normally distributed, (16) and (17) may be 
used to obtain confidence intervals for the share weighted index numbers ˆ  given by (15). α t

 Selvanathan and Prasada Rao [1994; 51-55] consider the following special cases: 

(18) ;qpqpw 0n0n
N

1n0i0ii =∑≡  i=1,...,N; 

(19) ;qpqpw nt0n
N

1nit =∑≡  i=1,...,N

In order to make the iw  fixed variables, we need to assume that base period prices and 
quantities, 0ip  and ,q 0i  and current period quantities, ,qit  are fixed. Thus in equations (4), the 
only random variables are the current period prices .pit  

0ii . 

 Substituting (18) into (15) causes tα̂  to become the fixed base Laspeyres price index, 

,qpqp 000t ⋅⋅  and substitutin s to the Paasche price index, g (19) into (15) lead .qpqp t0tt ⋅⋅  
Furthermore, substitution of (18) and (19) into (15)-(17) yields estimators for the variances of the 

 base Laspeyres and Pa e indexes. Thus the new stochastic approach of 
nathan and Prasada Rao does lead to estimates of the precision of these well known indexes 
ided that their stochastic assumptio rrect). 

  of Clements and Izan [1981]. Consider two 

fixed asche pric
Selva
(prov ns (13) are co

We turn now to the new stochastic approach
distinct periods s and t where Tts0 ≤<≤ . Let stπ  be the logarithm of the price chang  
from period s to t. The equations that define Model 4 are: 

(20) ]p/p[n iststisit ε+π=l

e going

;  i=1,...,N; 

(21) ;w;0E iistist σ=ε=ε     i=1,...,N  

n s fy s o 0) through by i
 t ces. The least squares and maximum likelihood estimator for st

2
stVar

 2/1)w(  where the weights iw  agai atis (14). Multiplying both side f (2
leads o homoscedastic varian π  
in this tr

Usi .2
st  An unbiased estimator for 2

stσ  is 

.]ˆ[ 2
stπ−l  

the expenditure share of commodity i in period t. Clements 
Prasada Rao [1994; 76-77] choose the weights 

at appear in (21) as follows:9 

ansformed model is 

(22) ]1ist = . 

ng (21), the variance of stπ̂  is σ

p/p[nwˆ isiti
N l∑=π

(23) )p/p(n isitw)]1N/(1[ˆ i
N

1i
2
st ∑−≡σ =

Let ∑ =≡ N
1n ntntititit qp/qpw  be 

and Izan [1981; 745-746] and Selvanathan and 
iw  th

(24) ;w)2/1(w)2/1(w itisi +≡  i=1,...,N; 

                                                 
9 These authors choose period s to be period t-1 but this choice is not essential to their argument. 
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i.  is chosen to be the average expenditure share on commodity i over periods s and t. 
Substituting (24) into (22) yields 

(25) 

e., iw

itis w)2/w)2N
1ist p[]ˆexp[ =∏=π . 

The right hand side of (25) is known as the Törnqvist [1936] price index.10 

1(/1(
isit ]p +

rrors, (23) can be used to form confidenc Under the assumption of normally distributed e e 
intervals for ,ˆ stπ  the logarithm of the Persons-Törnqvist price index. However, since the weights 

iw  defined by (24) depend on isp  and ,pit  it will be necessary to assume that the conditional 
( )(on iw ) distribution of isit ppnl  is normal and satisfies assum s (21). Thus the stoc

tions justifying Model 4 are more tenuous than those for Model 3 above. 

The variance assumptions (13) and (21), i
2
tit w/Var σ=ε  and 2

stistVar σ=ε
 some justification.11 The following quotation indicates how Clements and Izan 
sumptions on the variances of the log price relatives: 

“If all goods were equally im ptio

ption hastic 
assump

 i , 
require justify 
their as

portant, the assum

w/

n that ivar ε  is the same for all 
i would be acceptable. However, this is not so, since the budget share iw  varies 
with i. If we think in terms of sampling the individual prices to form Dpi for each 
commodity group, then it seems reasonable to postulate that the collection agency 
invests more resources in sampling the prices of those goods more important in 
the budget. This implies that iεvar  is inversely proportional to iw .” 

 In contra ach athan 
and Pra  being 
accurat , or in any case, they wanted their analysis to apply to this case.12 They justify 
their variance assumptions in (13) and (18) as fol

                                                

Clements and Izan [1981; 745] 

st to the explicit sampling appro of Clements and Izan [1981], Selvan
sada Rao [1994] (with the exception of their section 7.4) regarded their prices as
ely known

lows:13 

 

,)ww 2/1
itis

2/1sstssttt )qpqp/qpqp ⋅⋅⋅⋅

10 This index first appeared as formula 123 in Fisher [1922; 473]. Fisher [1922; 265] listed it as number 15 in his list 
of the 29 best formulae, but he did not otherwise distinguish it. Walsh [1921; 97] almost recommended (25), but he 
used the geometric average of the weight, (  in place of the arithmetic average. Finally, Persons [1928; 

21-22] recommended (25), the Fisher ideal index, (  and seven other indexes as being 
the best from the viewpoint of his test approach. Thus (25) should perhaps be known as the Persons-Törnqvist 
formula. 
11 The first person to make a variance specification of this form appears to have been Edgeworth [1887; 247] as the 
following quotation indicates: “Each price which enters into our formula is to be regarded as the mean of several 
prices, which vary with the differences of time, of place, and of quality; by the mere friction of the market, and, in 
the case of ‘declared values’, through errors of estimation, it is reasonable to support that this heterogeneity is 
greater the larger the volume of transactions.” Edgeworth did not make any formal use of these observations. 

12 “Even in the case where prices of all the commodities of relevance are measured, and measured without any 
errors, the question of reliability of a given index arises.” (Selvanathan and Prasada Rao [1994; 4]). 

13 The reader will deduce that, in the interests of a homogeneous presentation, I have modified the original notation 
of Clements and Izan and Selvanathan and Prasada Rao. 
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“Under this assumption we have that the variance of the price relative of i is 

0i
2
t w/λ  and is inversely proportional to .w 0i  This means that the variability of a 

price relative falls as the commodity becomes more important in the consumer’s 

 ments 
and Iza riance 
assump

e ith relative price, specification (7) implies that the 
variability of a relative price falls as the commod

 for a relative price to change as the commodity in question grows in 

out a 
eature of th bers 

a ) or (22) are invariant to the level of commodity aggregation, provided that the same 
shares that appear in the variance specifications (13) or (21) are used to do the aggregation. 

 commodities 1 and 2

ice relative: 

20t22120iit2110AAt

budget.” 
Selvanathan and Prasada Rao [1994; 52] 

In their more sophisticated stochastic model to be discussed in the next section, Cle
n [1987] no longer relied on their earlier sampling theory justification for their va
tions of the form (21). Instead, they provided the following justification: 

“As ite  is the change in th
ity becomes more important in 

the consumer’s budget. Thus the variability of a relative price of a good having a 
large budget share, such as food, will be lower than that of a commodity with a 
smaller share, such as cigarettes. This is a plausible specification, since there is 
less scope
importance in the budget.” 

Clements and Izan [1987; 341] 

 As can be seen from the above quotations, the justifications presented for the variance 
assumptions in the new stochastic approaches are rather weak.14 We will return to this point in 
section 5 below. 

 Clements and Izan [1981; 747] and Selvanathan and Prasada Rao [1994; 89] point 
positive f e new stochastic models such as Model 3 or 4: the resulting index num
such s (15

w  i
To see this, consider Model 3 represented by (4) and (13) and suppose that  
are aggregated together. Let Atp be the price of the aggregate commodity in period t. The 
weights w1 and  are used to define the following aggregate period 0 to t pr

]p/p)][ww/(w[]p/p)][ww/(w[p/p

2w

(26) +++≡ . 

Replace the first two equations in (4) by the new aggregated equation .pp Att0AAt ε+α=
wo ations in (4) as well as (26), it can be seen that the new aggregate error is 

 t

[ ] ]

 
Using the first t equ
equal o  

(27) .)ww/(w)ww/(w t2212it211At [ ε++ε+=ε  

Using (13) and (27), the expectation of 0AAp  is equal to tpt α , the expectation of Atε  is 0 and 
the variance of Atε  is 

(28) [ ] [ ] )]ww/([]w/[)ww/(w]w/[)r 21
2
t2

2
t

2
2121

2
t

2
211At +σ=σ++σε . 

                                                

ww/(wVa +=

 
14 In his new stochastic model, Balk [1980; 72] simply assumed a variance specification analogous to (13) or (21) 
without any justification other than mathematical convenience. 
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Thus the m f the same  as the means and 
ianc

ean and variance of the aggregated error are o  form
var es of the original errors, itε  and ,t2ε  see (13). It is straightforward to show that the 

aximum likelihood estimator *
1  for α̂ tα  m in the aggregated model is equal to the disaggregated 

timat

4. 
 

 hastic 
models imple 
signal e  Izan 
summa

“Thus the rate of inflation can be estimated by averaging over these n 

 relative prices.” 
Clements and Izan [1987; 339] 

an criticism 
i

ctively). In order to rectify th ir Laspeyres model, Selvanathan and 
l as follows: assume that the period t over 

es or tα̂  defined by (15). 

 We turn now to more sophisticated new stochastic approaches to price indexes. 

 

A Specific Price Trends Stochastic Approach 

The models presented in the previous section are similar to the classical stoc
 presented in section 2, except that the variance assumptions were different. These s
xtraction models were effectively criticized by Keynes [1930; 58-84]. Clements and
rize this Keynsian criticism as follows: 

observations. This approach was correctly criticized by Keynes (1930, pp. 85-88) 
on the basis that it requires the systematic component of each price change to be 
identical. In other words, all prices must change equiproportionally so that there 
can be no changes in relative prices. The objective of this article is to rehabilitate 
the stochastic approach by answering Keynes’s criticism by allowing for 
systematic changes in

 Selvanathan and Prasada Rao [1994; 61] also acknowledge that the Keynesi
applies to their Laspeyres and Paasche models (Model 3 with the w  defined by (18) and (19) 
respe is deficiency in the
Prasada Rao [1994; 61-73] generalize their mode
period 0 price ratios satisfy 

(29) itit0iit p/p ε+β+α=  i=1,...,N; t=1,...,T 

where the independently distributed residuals itε  satisfy the fo wing assumptions: 

(30) 

llo

;wVar;0E 2
titit σ=ε=ε 1,...,N  t=1,...,T. i  i= ;

are ass e ; i.e., the  satisfy (14). 
nathan and Prasa a Rao [1994; 62] interpret i

iw  um d to be shares iwAs usual, the positive variance weights 
Selva d β as the expectation of the change in the ith 
relative price in addition to general inflation; i.e., it is the systematic part of commodity i price 
change in addition to the overall period 0 to t price change tα

15 Selvanathan and Prasada Rao 

                                                 

1

15 It is immediately evident that the specification (29) is not very satisfactory. As we go from period 0 to 1, it is 
reasonable to postulate that β  is the systematic part of the commodity 1 price change 1011 p

1

p  in addition to the 
general period 0 to 1 price change α  but it is not reasonable to assume that this same β  will characterize the 
systematic part of the commodity 1 relative price changes 

1

1011 pp for later periods, t=2,3,...,T, since as t increases, 
these fixed base systematic trends will tend to increase in magnitude. 
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[1994; 62] note that the parameters tα  and iβ  are not identified. Thus they add an identifyin  
restriction of the following form: 

(31) .0wi
N

1i =β∑ =  

g

i

The restriction (31) says that a share weighted average of the specific commodity price trends iβ  
sums to zero, a very reasonable assumption since the parameter tα  contains the general period t 
trend. What is not so reasonable, however, is the assumption that the iw  which appears in (31) is 
the same as the iw  which appear in (30). 

 ists of (14) and (29)-(31
estim eters which appear

Let us ca
,ˆ,ˆ it βα

ll the model that cons ) Model 5. Maximum likelihood 
ators, fo s in this model can be obtained in a 

ihood residuals  by: 

and ,ˆ 2
tσ  r the param

manner analogous to the way Selvanathan and Prasada Rao [1994; 63-66] derived estimators for 
their specific version of this model. Define the maximum likel  itê

( ) ;ˆ iβ  i-1,...,N; t=1,...,T. ˆppê t0iitit −α−≡

m  obtained by solving 

(32) 

The m ators for the parameters of Model 5 can beaximum likelihood esti
the following system of equations, along with equations (32): 

;ppwˆ 0iiti
N

1it =∑≡α(33)      t=1,...,T; 

(34) ;êw)N/1( 2
iti

N
1i

2
t =∑=σ     t=1,...,T; 

(35) ∑ == σασ∑=β T
1i

2
tt0iit

2
t

T
1ii ]ˆ/1[/]ˆp/p][(ˆ/1[ˆ  i=1,...,N. 

Substitution of equations (33) into (35) shows that the iβ̂  satisfy the restriction (31). Eq  

(34) show that the period t variance estim or 2
tσ̂  is a weighted sum of the squares of the period t 

maximum likelihood residuals, .e2
i

−)

ons

at

uati

ˆ t  Equations (35) show that the ith commodity effect iβ̂  is a 
weighted average over T periods of the deviations of the period 0 to t price relatives 1011 pp  
from the period t general inflation rates tα , where the weights are inversely proportional to the 

period t variance estimates, .ˆ tα  Equations (33) show that the estimator for the period 0 to t 
general inflation rate tα̂  is a mple weighted average of the period 0 to t price relatives, 

2

si

0iit pp  -- an am ple result! 

 If  let the weights iw  equal the base period expenditure shares ,w 0i  we obtain the 
specific price trends stochastic model of Selvanathan and Prasada Rao [1994; 61-67] and the 
period 0 to t inflation estimate tα̂  defined by (33) collapses down to the fixed base Laspeyres 

price index, 

azingly sim

 we

.qpqp 000t ⋅ ⋅  sy to show that tIt is ea α̂  is an unbiased estimator for tα  with the 

ariancv e .2
tσ  Thus Selvanathan and Prasada Rao feel that they have justified the use of the fixed 

base Laspeyres price index (and provided measures of its variability) from the viewpoint of a 
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sophisticated stochastic approach that blunts the force of the Keynesian objection to stochastic 
index number models. 

However, a problem with M ecific commodity 
effects  in equations (29) is not very compelling. A more credible specific price trends 
 odel 5 is that its specification for the sp

iβ
stochastic model was developed by Clements and Izan [1987; 341-345] and repeated by 
Selvanathan and Prasada Rao [1994; 78-87]. The equations that characterize the model of these 
authors are: 

(36) itt1itit ]p/p[n ε+β+π=−l    i=1,...,N; t=1,...,T; i

;wVar;0E(37) i
2
iitit σ==ε    i =1,...,N; t=1,...,T; ε

As usual, the variance weights iw  that appear in (37) are assumed known and assumed to satisfy 
(14). As in the previous model, the tπ  and iβ  are not identified. Hence Clements and Izan 
[1987; 342] assume that the iβ  satisfy the following restriction: 

(38) 0iii =β∑  

e the iw  weights that appear 7). It is this 
coincid t formulae for the maximum likelihood estimators 

e 

    ; 

0) 

w1=
N

wher  in (38) are the same as those appearing in (3
ence that leads to the following elegan
parameters of Model 6, cfor th onsisting of (14) and (36)-(38): 

(39)  i=1,...N; t=1,...,T;ˆˆ]p/p[nĉ it1ititit β−π−≡ −l

(4 ];p/p[nwˆ 1ititi
N

1it −=∑=π l      t=1,...,T; 

(41) ;êw)N/1(ˆ 2
iti

N
1i

2
t =∑=σ      t=1,...,T; 

(42) ]/1[/])p/p(n][/1[ˆ T 2
st1itit

2
s

T
1ii ∑−= σπ−σ∑=β l ; i=1,...,N. 

 The interpretation of (40) to (42) is analogous to the earlier interpretation of (33)-(35). 
However, the interpretation of the sp i  commodity price trend param i  is mu e 
reasonable for Model 6 than for Model 5: the i

1=

ecif c eters ch mor

i

β
β  in the ith equation of (36) can be thought of as 

an average (multiplicative) price trend in the commodity i chain price relatives 1itp/ −itp  around 
the general period t-1 to t inflation rates, ]exp[ tπ , over all T periods in the sample; i.e., 
exponentiating both sides on the equation in (36) that corresponds to commodity i and period t 
and dropping the error term yields p/p  approximately equal to ]exp[π  times ]exp[1itit − t iβ . 
Thus the specification (36) will capture constant commodity specif c growth rates over the 

ic s (in addition to the gen

ra

i
sample period in pr e eral growth in prices). 

 Note that the logarithm of the period t-1 to t inflation te, ,tπ  is estimated by the right 
hand sid tical to the
same la. 

e of (40), which is iden  right hand side of (22) if we set s=t-1 and use the 
 weights iw  in each formu
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 Recall that ∑ =≡ N
1n ntntititit qpqpw  is the ith expenditure share in perio t. Clements 

and Izan [1987; 342] make the following specification for the iw  which appear in (37) and (38): 

(43) 

d /

);1T(ww it
T

0ii +∑≡ =  i=1,...,N; 

i.e., the iw  are the mean expenditure shares over the entire sample period. 

 Of course, since the iw  defined by (43)16 are not gene al to the  defined by rally equ iw
(24) when s=t-1, the Model 6 period t-1 to t inflation estimates tπ̂  defined by (40) will not 
coincide ecisely with the Model 4 estimates t,1tˆ −pr π  defined by (22) when s=t-1. Thus Model 6 
does not lead to a precise justification for the Törnqvist price index of Model 4, but Clements 
and Izan [1987; 343] argue that since the sh ed by (43) will not differ much from the 
shar defined by (24) when s=t-1, thei

ares defin
es r specific price trends model provides an approximate 

justification for the use of the Persons-Törnqvist price index. 

 defined by (43) 
epend he prices and hence the “fixed” weights 

 Clements and Izan [1987; 344-350] go on to show how variance estimates for the price 
defined by (40) can be derived. However, as in Model 4, the indexes 

d
tπ̂  

on t
iw

which appear in (37) and (38) are  p  it i
not really independent of the price relatives 

w  
.pp 1itit −  Hence the applicability of Model 6 when 

e 17 

es to a critical ap

ajor d
987; 

345] note explic ir 
empiric mmon 
observation that the food and energy components of the consumer price index are more volatile 

                                                

th  iw  are defined by (43) is in doubt.

 This completes our review of the new stochastic approaches to index number theory. In 
the following two sections, we subject these approach praisal. 

 

5. A Formulation of Edgeworth’s Stochastic Approach to Index Numbers 
 

 The new stochastic models presented in the previous two sections suffer from a rather 
2m efect: the variance assumptions of the type itit w/Var σ=ε  where iw  is an observed 

expenditure share of some sort are simply not supported empirically. Clements and Izan [1
itly that their variance assumptions (37) and (43) are not supported by the

al example.18 However, formal statistical tests are not required to support the co

 

iw

16 It is interesting to note that Walsh [1901; 398] almost derived the transitive multilateral system of index numbers 
defined by (40) and (43): in place of the arithmetic means of the sample expenditure shares defined by (43), Walsh 
recommended the use of the corresponding geometric means. It should also be noted that Balk's [1980; 71] 
specialization of his seasonal model is a special case of Model 6 with  defined as jsjs

T
0sitit

T
0t qpqp == ∑∑

0ii w≡ i

. 
17 Note that Model 5 when w  does not suffer from this difficulty. However, the interpretation of the β  in 
Model 5 is more problematic. 
18 “As can be seen, the variances are not inversely proportional to the budget shares as required by (16").” (Clements 
and Izan [1987; 345]). 
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than m are -- 
volatili hares. 

  dates 
back to  

raw 

steadier in price than producers’ goods, the 

summarizes his evidence on the monthly variability of commodity prices as follows: 

e 
matter of price variabili ity of specific commodities 
has changed from period to period.” 

I e above iti hrough 6, let us reconsi the classical 

commo  Thus Model 7 is defined by the following equations: 

(45) 

any of the remaining components. Food has a big share while energy has a small sh
ty of price components is not highly correlated with the corresponding expenditure s

The observation that different price components have widely differing volatility
 the origins of index number theory. For example, Edgeworth [1887; 244] observed:

“Cotton and Iron, for example, fluctuate in this sense much more than Pepper and 
Cloves.” 

Later, Edgeworth [1918; 186] commenting on Mitchell’s work observed: 

“...that the fluctuation in price from year to year is much greater for some kinds of 
commodities than for others... Thus manufactured goods are steadier than 
materials. There are characteristic differences among the price fluctuations of the 
groups consisting of mineral products, forest products, animal products, and farm 
crops. Again, consumers’ goods are 
demand for the farmer being less influenced by vicissitudes in business 
conditions.” 

For a summary of Mitchell’s evidence on the variability of different components of US 
wholesale prices over the years 1890-1913, see Mitchell [1921; 40-43]. Finally, Mills [1927; 46] 

“It is clear from Table 4 that individual commodities differ materially in th
ty and, also, that the variabil

 cr cism of Models 3 tn the light of th der 
stochastic models presented in section 2. However, instead of assuming that the period 5 
residuals have a common variance, we now assume that the log of each chain commodity price 
relative, ],p/p[nl  after adjusting for a common period t inflation factor tπ  has its own 

c variance 2σ

1itit −

dity specifi .i

(44) [ ] ;p/pn iti1itit ε+π=−l  i=1,...,N; t=1,...,T; 

;Var;0E 2
iitit σ=ε=ε   i=1,...,N; t=1,...,T. 

The parameter tπ  is the logarithm of the period t-1 to t price inde ,...,N. 

The p ratios 
[ it /pnl

 s first 
vaguely

“A third principle is that less weight should be attached to

“Or, if more weight attaches to a change of price in one ar
it is not on account of the importance of that article to 

x for t=1,...,T and for i=1

arameter 2
iσ  is the variance of the inflation adjusted logarithmic price 

] t1itp π−−  for t=1,...,T. 

It is interesting to note that a model similar to that defined by (44) and (45) wa
 suggested by Edgeworth as the following quotations indicate: 

 observations belonging 
to a class which are subject to a wider deviation from the mean.” 

Edgeworth [1887; 224]. 

ticle rather than another, 
the consumer or to the 
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shopkeeper, but on account of its importance to the calculator of probabilities, as 
affording an observation which is peculiarly likely to be correct...” 

Edgeworth [1889; 287]. 

“In combination of these values derived from observation

Edgeworth [1925; 383]. 

 rsed 
Edgew s: 

ty he suggests tha
be assigned to each commodity in inverse proportion to th

f commodities is so arbitrary and multiform, partly because of the 
difficulty of calculating any useful variability-measure for each class when 
determined. I wish Professor Edgeworth would take my 36 commodities, assign 

 ned by (44) and (45) 
e obtained. The log of the likelihood function corresponding to Model 7 is, apart from 

inessential constants, 

, less weight should be 
attached to one belonging to a class which is subject to a wider deviation from the 
mean, for which the mean square of deviation is greater.” 

Edgeworth [1923; 574]. 

“The term may include weighting according to ‘precision’ in the sense in which 
that term is attributed to errors of observation; a sense in which the price of 
pepper might deserve more weight than that of cotton, as M. Lucien March has 
the courage to maintain.” 

In the last quotation, Edgeworth is referring to March [1921; 81] who endo
orth.19 Irving Fisher summarized Edgeworth’s vague suggestions efficiently as follow

“Professor Edgeworth has made somewhat analogous, though less definite, 
proposals. He suggests that any commodity belonging to a class that is subject to 
wide scattering is a less reliable indicator than one belonging to a class not so 
subject. To take account of such differences in reliabili t weights 

e square of some 
variability-measure of the class to which it belongs. 

This idea is scarcely capable of specific application, partly because the 
classification o

each to what he believes is its proper class, estimate each class-variability-
measure, and calculate an index number accordingly.” 

Fisher [1922; 380] 

We now show how estimators for our neo-Edgeworthian model defi
can b

(46) [ ] .)nT),...,;,...,(L 2
t1iti1i1ii

N
1i

2
N

2
iT1 π−σ∑−≡σσππ −=== l  

 maximum 

ˆ/ 2
nσ

                                                

p/p(n2TN2 σ∑∑− l it

Differentiating (46) with respect to the parameters and setting the resulting partial derivatives 
equal to 0 leads to the following system of T+N simultaneous non linear equations to determine 
the likelihood estimators for Model 7 (assuming that the 2

iσ̂  are all strictly positive): 

(47) ]ˆ/1[/)p/p(n]1[ˆ 2
i

N
1i1itit

N
1nt σ∑∑=π =−= l ; t=1,...,T; 

 
19 March [1921; 81] observed that if the price of paper varied less than the price of wheat, then the former price 
should be given more weight in the index number formula. 
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(4 2
t1itit

T
1i

2
i ]ˆ)p/p(n[]T/1[ˆ π−∑=σ −= l   i=1,...,N. 

The interpretation of the specific commodity price variance estimators 2ˆ iσ  defined by (48) is 

8) 

straightforward. Equation t in (47) says that the estimator for the logarithm of the period t-1 to t 
ion rate, is a weighted average of the indivi

e essence of Edgeworth’s suggested 
stoc

solu
it exist

is the Jevons geometric mean price index for the t-1 to t price change. Once the 

inflat  ,tπ  
 

dual period t-1 to t log price changes, 
[ ],p/pn 1it−l

estimated varian
it with the weight for the ith log price change being inversely proportional to its 

ce, .ˆ 2
iσ  Thus Model 7 seems to capture th

hastic approach to index number theory. 

 There can be at most one finite tion to equations (47) and (48) that has all 2σ̂  strictly 
positive. A suggested algorithm for finding this solution if s is the following one. Begin 
iteration 1 by estimating tπ̂  as the mean of the unweighted log price changes: 

(49) );p/p(n)N/1(ˆ 1itit
N

1i
)1(

t −=∑≡π l  t=1,...,T. 

Thus ]ˆexp[ )1(π  

i

)1(
tπ̂  have been defined, define the iteration 1 variances 2)1(

i ]ˆ[σ  by (48) replacing tπ̂  by )1(
tπ̂ . At 

the first stage of iteration , define the )2( 2 tπ̂  by (47) using the iteration 1 2)1(
i ]ˆ[σ  in the right hand 

sides of (47). At the second stage of iteration 2, define the 2)2(
i ]ˆ[σ  by (48) using the )1(

tπ̂  in the 
right hand sid arry on repeating these first and second stage ite ons until the 
estimates converge. It can be shown that if the )k(

iσ̂  remain positive, then each stage of each 
iteration will lead to a strict increase in the log likelihood function (46) until convergence has 
been achieved. 

es of (48). Now c r

Unfortunately, the above algorithm may not always work in degenerate cases. For 
ere the period t prices are proportional to the base period prices for 
 explicit functions of the proportionality factors and all of the 

ny 
and define for t=1,...,T and let tend to 0 (with the other  positive and 

finite), we find that the log likelihood function approaches plus infinity. To rule out degenerate 
solutions of this type, it may be necessary to add a positive lower bound to the admissible 

odel; i.e., we may need to add to (44) and (45) the following restrictions: 

(50)  i=1,...,N 

for some 2σ  chosen a priori. 

 We now turn to a critical evaluation of these new stochastic models for price indexes. 

 

ati

 
example, consider the case wh
all t. In this case, the tπ̂  are
commodity variances defined by (48) will be 0. There are other problems as well: if we pick a

 [ ]1itt pnˆ −=π l  itp/ 2
iσ  2

jσi 

variances in our m

;022 >σ≥σi
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6. A Critical Evaluation of the New Stochastic Approaches 

 

 Our first criticism of the new stochastic models presented in sections 3 and 4 has already 
been made: the variance assumptions made in these models are not consistent with the observed 
behavior of prices. This is a very fundamental criticism that has not been addressed by the 
proponents of these new models. The assertion of Selvanathan and Prasada Rao [1994; 6] that 
their stochastic approach has provided standard errors for several well known index number 
formulae is correct only if their stochastic assumptions are correct, which seems very unlikely! 

 Our second criticism is directed towards the specific price trend models of Balk [1980], 
Clements and Izan [1987] and Selvanathan and Prasada Rao [1994; 63-66]: these models force 
the same weights  to serve two distinct purposes and it is unlikely that their choice of weights 
could be correct for both purposes. In particular, their expenditure based weights are unlikely to 
be correct for the first purpose (which is criticism 1 again). 

iw

 Our third criticism of the new stochastic approaches presented in sections 4 and 5 is that 
the resulting price indexes are not invariant to the number of periods T in the sample. Balk 
[1980; 72-73] was very concerned with this problem (since he works in a Statistical Agency and 
hence must suggest “practical” solutions to problems) and he presented some evidence on the 
stability of his estimated index numbers as T was increased. His evidence indicates that our third 
criticism is empirically important. Due to the fact that variances of price relatives can change 
considerably over time (recall Mills [1927; 46]), our neo-Edgeworthian Model 7 presented in the 
previous section will be particularly subject to this instability criticism. 

 The above invariance problem also occurs in the multilateral context and in the 
multiperiod time series context when we want our estimated index numbers to satisfy the 
circularity test; i.e., to be transitive. Walsh, after noting how multilateral transitivity can be 
achieved by using weights that pertain to all of the periods in the sample (e.g., recall equations 
(43) in Model 6), draws attention to the above invariance problem and also notes why the 
multilateral case is more difficult than the bilateral case: 

“In no case is this remedy satisfactory, for two principle reasons: (1) Because the 
present epoch is extending every year, requiring recalculations; and it does not 
appear that a later recalculation will be more correct than an earlier. Besides, how 
is a past variation between two years several years ago to be affected by present 
variations? (2) Because we really do not know how to calculate weights, or to 
determine equivalence of mass-units, or to average mass-quantities, over more 
than two periods, since the geometric average loses its virtue when applied to 
more than two figures.” 

Walsh [1901; 399] 

 Our fourth criticism of the new stochastic approaches is simply a restatement of the 
fundamental objection of Keynes: 

“The hypothetical change in the price level, which would have occurred if there 
had been no changes in relative prices, is no longer relevant if relative prices have 
in fact changed -- for the change in relative prices has in itself affected the price 
level. 
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I conclude, therefore, that the unweighted (or rather the randomly weighted) index 
number of prices -- Edgeworth’s ‘indefinite’ index number -- ...has no place 
whatever in a rightly conceived discussion of the problems of price levels.” 

Keynes [1930; 78] 

Thus if price relatives are different, then an appropriate definition of average price change cannot 
be determined independently of the economic importance of the corresponding goods. What is an 
appropriate definition of aggregate price change? Earlier in his book, Keynes [1930; 59-61] 
indicated that the price relatives in a producer or consumer price index should be weighted 
according to their relative importance as indicated by a census of production or by a consumer 
budget study. Thus the best index number formula according to Keynes is an expenditure 
weighted sum of relative prices; i.e., the price relatives must be weighted according to their 
economic importance, not according to their statistical importance, a la Edgeworth.20 Of course, 
in the approach advocated by Keynes, there is still the problem of choosing the “best” economic 
weights (base or current period expenditure shares or a mixture of them), but precise answers to 
this question simply lead back to the test or economic approaches to index number theory. 

 Criticism four can be restated as follows. The early statistical approaches of Jevons and 
Edgeworth (see section 2) treated each price relative as an equally valid signal of the general 
inflation rate: the price relative for pepper is given the same weight as the price relative for bread. 
This does not seem reasonable to “Keynesians” if the quantity of pepper consumed is negligible. 

 Another more technical way of restating the Keynesian objection to stochastic 
approaches can be accomplished by drawing on the models presented in section 5: if we make 
more reasonable variance assumptions, models of the form (36)-(38) are reasonable, except that 
the constant β ’s should be replaced by sets of period specific i itβ ’s. But then the resulting 
model has too many parameters to be identified. 

 Our conclusion at this stage is: in the present context where all prices and quantities are 
known without sampling error, signal extraction approaches to index number theory should be 
approached with some degree of caution.21 
 Of course, there is a huge role for statistical approaches when we change our terms of 
reference and assume that the given price and quantity data are samples. The founders of the test 
approach, Walsh [1924; 516-517] and Fisher [1922; 336-340], did not deny a strong role for 
statistical techniques in the sampling context. In addition to the work of Bowley [1901] [1911] 
[1919] [1926] [1928], more recent references on the sampling aspects of price indexes include 
Mudgett [1951; 51-54], Adelman [1958], McCarthy [1961], Kott [1984] and the BLS [1988]. 

 

                                                 

1

20 Keynes’ belief in the importance of economic weighting (as opposed to Edgeworth [1901; 410] and Bowley 
[1901; 219] who at times believed that weighting was unimportant) dates back at least to Keynes [1911; 46]. 
21 The dynamic factor index approach of Bryan and Cecchetti [1993; 19] is an example of a signal extraction 
approach to index numbers that we did not cover due to its complexity. Their approach is only subject to our 
criticisms 3 and 4. Their approach is also subject to a criticism that can be leveled against the specific price trend 
models of section 4: the nonstationary components of their specific price trends (their counterparts to the β  which 
appear in Models 5 and 6 above) are assumed to be constant over the sample period. 
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7. Other Approaches to the Determination of the Precision of an Index 

 

 Having rejected the new stochastic approaches to index number theory (when all prices 
and quantities are known with certainty over the sample period), we have to admit that the 
proponents of these new approaches have a point: if all of the price relatives pertaining to two 
periods are identical, it must be the case that the “precision” of the index number computation 
for those two periods is greater than when the price relatives are widely dispersed. On the other 
hand, the proponents of the test and economic approaches to index number theory use their 
favorite index number formula and thus provide a precise answer whether the price relatives are 
widely dispersed or not. Thus the test and economic approaches give a false sense of precision. 

 The early pioneers of the test approach addressed the above criticism. Their method 
works as follows: (i) decide on a list of desirable tests that an index number formula should 
satisfy; (ii) find some specific formulae that satisfy these tests (if possible); (iii) evaluate the 
chosen formulae with the data on hand and (iv) table some measure of the dispersion of the 
resulting index number computations (usually the range or standard deviation was chosen). The 
resulting measure of dispersion can be regarded as a measure of functional form error. 

 Fisher [1922; 226-229] applied the above method to address the charge that the test 
approach gave a false precision to index numbers. He found 13 index number formulae 
(including the ideal) that satisfied the commodity, time and factor reversal tests and were not 
“freakish”; i.e., descended from modes or medians (and hence discontinuous). Fisher [1922; 227] 
found that the standard deviations between his 13 best fixed base indexes increased as the two 
periods being compared grew further apart; his “probable error” reached a maximum of 
about .1% when his 13 indexes were compared between 1913 and 1918. Fisher called this 
functional form error, instrumental error. In response to outraged criticisms from Bowley, Fisher 
later summarized his results as follows: 

“What I do claim to have demonstrated is something quite different, namely, that 
the ‘instrumental’ error, i.e., that part of the total error which may be ascribed to 
any inaccuracy in the mathematical formula used, is, in the case of the ideal 
formula (and, in fact, in the case of a score of other formulae as well), usually less 
than one part in 1000.” 

Fisher [1923; 248] 

 Warren Persons [1928; 19-23] also implemented the above test approach to the 
determination of functional form error. Persons looked for index number formulae that satisfied 
the time reversal test and his new test, the absence of weight correlation bias test. He found nine 
admissible index number formulae (including the Persons-Törnqvist and the Fisher ideal) and 
used Fisher’s [1922] data to numerically evaluate these nine. Finally, Persons [1928; 23] tabled 
the range of the resulting indexes over the sample period; he found the range was a maximum in 
1917 when it slightly exceeded 1%. It turned out that indexes satisfying Fisher’s tests had a 
narrower range of dispersion than the indexes satisfying Persons’ tests for the same data set. 

 Walsh [1921; 97-107] almost recommended the above approach to functional form error. 
He chose six index number formulae on the basis of how close they came empirically to 
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satisfying his multiperiod identity test.22 Walsh [1921; 106] used a small but somewhat extreme 
data set from Bowley [1901; 226] to evaluate his six index number formulae; he found that their 
range was about 2%. However, Walsh did not stop at this point; he went on to choose a single 
best index number formula: 

“To return to theory: would anything be gained by drawing an average of the 
results yielded by several methods? Hardly, as they have different merits. All that 
we can do is choose the best, after testing all the candidates; for to average the 
others with the best, would only vitiate the result.” 

Walsh [1921; 106-107] 

What was Walsh’s [1921; 102] theoretically best index number formula? None other than Irving 
Fisher’s [1922] ideal index!23 

 It is clear that there are some problems in implementing the above test approach to the 
determination of functional form error; i.e., what tests should we use and how many index 
number formulae should be evaluated in order to calculate the measure of dispersion? However, 
it is interesting to note that virtually all of the above index number formulae suggested by Fisher, 
Persons and Walsh approximate each other to the second order around an equal price and 
quantity point.24 

 The above approach may be used to estimate the functional form error that arises from 
choosing an index number formula that is based on the economic approach. The economic 
approach recommends the use of a superlative index number formula, such as the Fisher-Walsh 
ideal formula25 or the Persons-Törnqvist formula26 or the direct and implicit quadratic mean of 
order r families of price indexes that include two indexes recommended by Walsh [1901; 105].27 
Many of these superlative indexes appear in the list of best test approach index number formulae 
recommended by Fisher, Persons and Walsh.28 As was done for the test approach, the functional 
form error involved in using any specific superlative index could be approximated by evaluating 
a number of superlative indexes and then tabling a measure of their dispersion. 

                                                 
22 Walsh [1921; 104] called his test the circular test but it is slightly different from the Westergaard-Fisher [1922; 
413] circular test; see Diewert [1993b; 39] 
23 Walsh [1901] [1921] was an originator of the test approach to index number theory and he also proposed the use 
of the ideal index either before Fisher [1921] or coincidentally. Perhaps the reason why Walsh has been forgotten 
but Fisher lives on is due to the rather opaque writing style of Walsh whereas Fisher wrote in a very clear style. 
24 Thus these indexes are either superlative or pseudo-superlative; i.e., they approximate superlative indexes to the 
second order around an equal price and quantity point; see Diewert [1978; 896-898]. 
25 See Diewert [1976; 134]. 
26 See Diewert [1976; 121]. 
27 See Diewert [1976; 134-135]. The two Walsh indexes are obtained when we set r=1. Walsh [1921; 97] listed his 
two recommended indexes as formulae (5) and (6). The right hand side of (5) needs to be multiplied by the 
expenditure ratio for the two periods under consideration, since on the previous page, Walsh [1921; 96] assumed 
that these expenditures were equal. 
28 On the basis of its consistency with revealed preference theory and its consistency with linear and Leontief 
aggregator functions, Diewert [1976; 137-138] recommended the Fisher-Walsh ideal index as the best superlative 
index number formula. Allen and Diewert [1981; 435] also endorse this index number formula as being the best 
superlative one since it is consistent with both Hicks’ [1946; 312-313] Composite Commodity Theorem and 
Leontief’s [1936; 54-57] Aggregation Theorem. 
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 A specific proposal to measure the dispersion of superlative indexes is the following one. 
Choose the following members of Diewert’s [1976; 131] quadratic mean of order r price indexes 

2r P:P  (the Fisher-Walsh ideal price index),  (Walsh),  (Persons-Törnqvist), and 1P 0P .P 2−  
Choose the following members from Diewert’s [1976; 132] implicit quadratic mean of order r 
prices indexes 2r P~:P~  (implicit Walsh), 0P~  (implicit Törnqvist) and P .~

2−
29  These formulae 

include the most frequently used superlative indexes. To measure the dispersion of these indexes, 
consider the following dispersion measure D, which is the range of the seven indexes divided by 
the minimum index: 

(51)  1
20120122012012

tsts }]P~,P~,P~,P,P,P,Pmin{/}P~,P~,P~,P,P,P,P[max{)q,q,p,p(D −
−−−−≡

where ( )tsts
ii q,q,p,pPP ≡  and ( ).q,q,p,pP~P~ tsts

jj ≡  D can be interpreted as the percentage 
difference between the highest and lowest price indexes in the set of admissible indexes. 

 Note that  Moreover, since each of the seven indexes that appear on 
the right hand side of (1) satisfy the Fisher [1911; 534] [1922; 64]-Walsh [1901; 368] 

.0)q,q,p,p(D tsts ≥
time 

reversal test: 

(52) ,  )q,q,p,p/(1)q,q,p,p(P tstststs =

it can be verified that the dispersion measures defined by (51) will satisfy the following base 
period invariance property: 

(53) ;  )q,q,p,p(D)q,q,p,p(D ststtsts =

i.e., if we interchange periods, the dispersion remains unchanged. 

 The dispersion measure defined by (51) can be adapted to the test approach: the set of 
index number formulae that would appear in (51) would be restricted to formulae that satisfied 
the appropriate set of tests. In particular, assume that the admissible P satisfy the time reversal 
test (52) and Walsh’s [1901; 385] strong proportionality test: 

(54)  for λ  λ=λ )q,q,p,p(P tsss ;0>

t ,s

st pα= st qq β=
,0,0 >β>

                                                

i.e., if the period t price vector p  is proportional to the period s price vector p  then the index 
equals the common proportional factor. Under these hypotheses on the class of admissible price 
indexes in (51), the dispersion measure defined by the appropriate version of (51) would satisfy 
the base period invariance test (53) and would equal 0 if all the price relatives were identical. 

 Returning to the economic approach to index numbers and the specific measure of 
formula error defined by (51), it can be verified that if both prices and quantities are proportional 
during the two periods under consideration, so that p  and  for some 
α  then each of the seven indexes which appears in the right hand side of (51) is equal 

 
29 Fisher’s [1922; 461-487] identification numbers for these formulae are: 353, 1153, 123, the geometric mean of 13 
and 19, 1154, 124, and the geometric mean of 14 and 20. 
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to α and hence the dispersion measure p(D s l attain its lower bound of 0. 

However, if only prices are proportional, then )q,q,p,p(D tsss α  will not necessarily equal 0. If 
we want a measure of dispersion that will equal z

)q,q,p, sss βα

ero whe

in

er to implement this a

 wil

only prices are proportional, a 

,
bility of the in

In ord
tion by 

n 

dex

different approach is required, which we now turn to. 

 A more direct approach to the reliability of a price ),q,q,p,p(P tsts  is to simply 
look at the varia dividual price relatives, isit p/p , around the index number 

“average” value, 

 

pproach, define the ith absolute ).q,q,p,p(P tsts  
devia

(55) )q,q,p,p(P)p/p()q,q,p,p(d tsts
isit

tsts
i −≡  i=1,...,N. 

A measure f relative price variabo ility, V, could be defined as an

q,q,p,p sts

 by V). Unfortunat

re of 
c deviation ie  by 

 appropriate function of the 
ti

e D ely, the V defined by (56) and 

price variability between two 
ds

devia ons  defined by (55), say: 

)]t  

 id

(56) (d,),q,q,p,p(d[M)q,q,p,p(V N
tsts

1
tsts K≡

where M is a linearly homogeneous symmetric mean.30 

 A desirable property for a price variability measure V is that it satisfy the base period 
invariance property (53) (where we replac
(55) will not generally have this property. 

 In order to obtain a base period invariant measu
perio , define the ith absolute logarithmi

p,p(nP)p/p(n)q,q,p,p(e isit
tsts

i ll −≡ ,)q,q,(57) tsts  i=1,...,N. 

Define a logarithmic price variability measure V by 

n. mula P s
nce 

roperty ( with acing D). 

Define the mean of order r of N positive numbers N1 x,...,x  for 0r

(58) )]q,q,p,p(e,),q,q,p,p(e[M)q,q,p,p(V tsts
N

tsts
1

tsts K≡   

where again M is a homogeneous symmetric mea atisfies the 
time reversal test (52), then it can be verified that )q,q,p,p(e)q,q,p,p(e ststtsts =  and he

If the index number for

ii
the V defined by (58) satisfies the base period invariance p 53) (  V repl

 ≠  by31  

(59) ( ) .]x)N/1([x,...,xM r/1t
i

N
1iN1r =∑≡  

                                                 
)x,...,x(M N1

λ=λλ ),...,( N1 )x,...,x(M N1

}x{max)x,...,x(M}x{min iiN1ii ≤≤

30 A symmetric mean  is defined to be a continuous, symmetric increasing function of N real variables 

that has the mean value property, M .  will also satisfy the following min-max 
property:  This last property and (55) imply that V will be nonnegative. 
31 See Hardy, Littlewood and Polya [1934; 12]. 
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The means of order r, ,Mr  are homogeneous symmetric means and hence can be used as M’s in 
(58). For example, if we choose r=2 and substitute  into (58), we obtain the following 
logarithmic price variability measure: 

2M

(60)  .])}q,q,p,p(nP)p/p(n{)N/1[()q,q,p,p(V 2/12N
1i

tsts
isit

tsts
2 ∑ = −≡ ll

Note that (60) bears some resemblance to the earlier stochastic measure of reliability, stσ̂  
defined by the square root of (23). It should also be noted that a monotonic transformation of the 
measure of relative price variability defined by (60),  was suggested as a 
measure of the nonproportionality of prices by Allen and Diewert [1981; 433]: the price index P 
that they used in (60) was the Jevons equally weighted geometric mean defined by the right hand 
side of (12) (with  replacing ). 

,)]q,q,p,p(V[N 2tsts
2

sp 0p

 Unfortunately, the measures of price variability defined by (58) or (60) are still not 
satisfactory in the present context. The problem is that some price relatives are completely 
unimportant and hence should not be given the same weight as items that are important in the 
budgets of the consumer or producer for the two periods under consideration: recall Edgeworth 
and March’s discussion about the relative importance of pepper versus wheat or cotton. We 
could use the budget shares of period s,  or the budget shares of period t,  as weights, 
but it seems less arbitrary to use an even handed average of these two sets of weights.

,wis ,wit

m
32 Thus we 

will weight the ith absolute logarithmic price deviation  defined by (57) by  
where m is a linearly homogeneous symmetric mean of two variables. Note that the symmetry 
property of m implies that 

ie ( ),w,w itis

(61)  i=1,...,N. ( ) ( ,w,wmw,wm isititis = )

)]q,q,p,p(e)w,w(m,),q,q,p,p(e)w,w(m[M)q,q,pV NNtNs1t1s1 K≡

i

                                                

Thus our final class of price variability measures is defined as follows: 

(62)  ,p( tstststststs

where the e  are defined by (57) and M is again a homogeneous symmetric mean. If the price 
index P satisfies the time reversal test (52) and the share aggregator function m satisfies (61), 
then it can be verified that the V defined by (62) satisfies the base period invariance test (53). 

 
32 Our reasoning is similar to that of Walsh [1921; 90], who made the case for the use of average weights in a price 
index as follows: “Commodities are to be weighted according to their importance, or their full values. But the 
problem of axiometry always involves at least two periods. There is a first period, and there is a second period that is 
compared with it. Price-variations have taken place between the two, and these are to be averaged to get the amount 
of their variation as a whole. But the weights of the commodities at the second period are apt to be different from 
their weights at the first period. Which weights, then, are the right ones -- those of the first period? or those of the 
second? or should there be a combination of the two sets? There is no reason for preferring either the first or the 
second. Then the combination of both would seem to be the proper answer. And this combination itself involves an 
averaging of the weights of the two periods.” 
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This V will also be nonnegative. 33  Moreover, if the price index P satisfies the strong 
proportionality test (54), then V will equal 0 if prices are proportional so  .0)q,q,p,p(V tsts =λ

 The most straightforward special case of (62) is obtained if we let M and m be means of 
order 1; i.e., arithmetic means. In this case, V becomes 

(63) )q,q,p,p(nP)p/p(nw)N/1( tsts
isitist

N
1

tsts ll −)q,q,p,p(V i1 ∑≡ =  

where ( )( itisist ww2/1w +≡ )  is the average expenditure share on commodity i during periods s 
and t. The measure (63) is simply the arithmetic average of the weighted absolute logarithmic 
deviations, ).q,q,p,p(ew tsts

iist λ  The only disadvantage of this measure is that it is not 
differentiable. A differentiable special case of (62) is obtained if we set  and still let m 
be the arithmetic mean: 

2

isitist1i1i2 })]q,q,p,p(nP)p/p(n[w)N/1()N/1({)q,q,p,p(V ll −∑≡ ==∑

MM =

(64) . 2/12tstsNNtsts

Note the resemblance of (64) to the square root of (23). Comparing (64) to (63), V2 gives larger 
weight to the larger weighted absolute logarithmic deviations, )q,q,p,p(ew tsts

iist λ . Both of 
the measures  and  will serve as satisfactory measures of variability or degree of 

nonproportionality of relative prices relative to the index number formula . 
1V 2V

)q,q,p,p(P tsts

0)]qpqp/qpq,p,p(V ssttststs
H ≥⋅⋅⋅

P( L

 There is another approach to the measurement of relative price variability that has the 
advantage that it is simultaneously a measure of relative quantity variability. Consider the 
following variability measure due to Robert Hill [1995; 81]34: 

(65)  qp(n)q, tst ⋅= l

(66)    )]P/ Pn[l≡

[ ])Q(67)   Q(

st pp α= α=

nl≡

ssst
L qp/qpP ⋅⋅≡

ssts
L qp/qp ⋅⋅≡

PL

tstt
P qp/qpP ⋅⋅≡

sttt
P qp/qpQ ⋅⋅≡

 

where  and  are the Laspeyres and Paasche price indexes 

and  and  are the Laspeyres and Paasche quantity 
indexes. Equation (66) shows that the variability measure defined by (65) can be written as the 
absolute value of the log of the ratio of the Laspeyres and Paasche price indexes while (67) 
shows a similar equality involving the ratio of the Laspeyres and Paasche quantity indexes. Thus 
if prices in the two periods are proportional (so that ), then 

Q

= PL PP

.0VH = st qβ=

                                                

 and using (66), 

 Similarly, if quantities in the two periods are proportional (so that q ), then 

 

)q,q,p,p(V tsts

}Q,Qmin{/}]Q,Q[max{nV PLPLH l≡

33 If P satisfies the usual homogeneity properties with respect to prices and quantities (e.g., see tests PT5-PT8 in 
Diewert [1992a; 215-216]), then it can be shown that  will be homogeneous of degree zero in each 
of its four sets of variables. 
34 Hill defined . It can be shown that this definition is equivalent to (67). 
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β== PL QQ

.1−x

 and using (67),  Hence as Hill [1995; 81] observed, if either prices are 
proportional (recall Hicks’ [1946; 312-313] Aggregation Theorem) or quantities are proportional 
(recall Leontief’s [1936; 54-57] Aggregation Theorem), then the variability measure  defined 
by (65) attains its lower bound of 0. Note also that if we interchange periods,  remains 
unchanged; i.e., it satisfies the base period invariance property (53). 

.0VH =

xln

HV

HV

 If x  is close to 1, then  can be closely approximated by the first order approximation, 
 Hence the Hill variability measure  can be approximated by the following measure: HV

(68) ]1)Q/Q[(P[()q,q,p,p(V PLL
tsts −=≡ ]1)P/ P −

PP

. 

This variability measure has the same mathematical properties that were noted for  Both 
measures are base period invariant measures of the spread between the Paasche and Laspeyres 
price (or quantity) indexes; both measures are approximately equal to the absolute value of the 
percentage difference between the Paasche and Laspeyres indexes. From the viewpoint of the 
test approach to index numbers, Bowley [1901; 227], Fisher [1922; 403] and Diewert [1992a; 
219-220] proposed that the price index P should be between the Paasche and Laspeyres price 
indexes. These bounds are also valid from the economic point of view if we have a homothetic or 
linearly homogeneous aggregator function. Thus the variability measures defined by (65) and 
(68) provide convenient methods of describing the width of these index number bounds. 

.VH

 Note that the variability or nonproportionality measures  and  do not depend on a 
particular index number formula P. However, if the index number formula P is a symmetric 
mean of the Paasche and Laspeyres indexes (e.g.,  the Fisher Walsh ideal index), 
then P will lie between  and  and  or 

HV

,2

V

( )PPP /1
PL=

LP HV V  may be used as reliability measures for P. 

 We have presented three classes of dispersion measures (see (51), (62) and (65) or (68) 
above) that could be used to measure the reliability of an index number formula. The use of (62), 
(65) or (68) as measures of dispersion would meet some of the criticisms of the test and 
economic approaches that have been made by the proponents of the stochastic approach. If all of 
the relative prices were identical, the above dispersion measures would attain their lower bounds 
of zero, but if the price relatives were dispersed, nonzero measures of dispersion or variability 
would be obtained if (51) or (62) were used. 

 It is now almost 75 years after Walsh [1921] made his comments on the diversity of 
approaches to index number theory and economists are still “at loggerheads.” However, perhaps 
this diversity is a good thing. The new stochastic approach to index numbers has at least caused 
this proponent of the test and economic approaches to think more deeply about the foundations 
of the subject. 
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Chapter 12 
ALTERNATIVE APPROACHES 
TO INDEX NUMBER THEORY 

W. Erwin Diewert and Robert J. Hill1 

 

1. Introduction 
 

 The present paper reconsiders the fundamental concepts of true and exact indexes, as 
these concepts are defined in the index number literature. These concepts form the bedrock of the 
economic approach to index number theory. A true index is the underlying target – the thing we 
are trying to measure. An empirically calculable index is exact when, under certain conditions, it 
exactly equals the true index. Also discussed briefly is the fundamental distinction between the 
axiomatic and economic approaches.  

 This paper was inspired by the 2008 American Economic Review paper of Van Veelen 
and van der Weide, henceforth VW. VW provide some interesting new perspectives on these 
issues.  

 VW have two main objectives. First, they attempt to give precise meanings to the 
concepts of exact and true indexes. A few definitions of a true index have been provided in the 
literature. VW propose some new and broader definitions that aim to include all of these as 
special cases. Some of the existing definitions, however, are more established than others. In 
particular, a broad consensus is already established in favor of the Konüs (1924) and Allen 
(1949) index definitions (which are closely related). One problem with VW’s new definitions are 
that by seeking to embrace also the less established definition associated with Afriat (1981), they 
end up with outcomes that are quite abstract and differ considerably from the consensus position. 
Hence it might have been better if VW had introduced a new terminology rather than adding to 
the existing definitions of true indexes. VW also identify some problems with the standard 
definition of exactness, most notably that for some well known index number formulae the 
exactness property does not always hold for all strictly positive prices. This is an important 
finding. However, rather than changing the definition of exactness, we argue that what is 
required is a more careful analysis of the regularity region of exact indexes. 

Second, VW reinterpret the distinction between the axiomatic and economic approaches. 
Their findings rely on the perceived limitations of the economic approach. In our opinion their 
reinterpretation is problematic. In our view, the economic approach is more flexible than the 
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analysis of VW suggests, thus potentially invalidating their demarcations between the two 
approaches.  

Nevertheless, even though we disagree with some of their conclusions, VW’s method is 
novel and raises a number of issues relating to fundamental concepts of index number theory that 
deserve closer scrutiny. The differences distinguishing the various approaches are explained in 
the present paper in the context of earlier work of others. 

 

2. Existing Definitions of True Indexes 
 

 The first concept of a true index was introduced into the literature in the price index 
context by Konüs (1924). The theory assumes that a consumer has well defined preferences over 
different combinations of N consumer commodities or items. The consumer’s preferences over 
alternative possible nonnegative consumption vectors q  are assumed to be representable by a 
nonnegative, continuous, increasing and concave utility function . It is further assumed that 

the consumer minimizes the cost of achieving the period t utility level  for periods (or 
situations) . Thus it is assumed that the observed (nonzero) period i consumption vector 

 solves the following period i cost minimization problem: 

)(U q

u )(U ii q≡
2,1i =

1q

(1)  2,1i  ;)}(Uu)(U:{min)p,u(C iiiii
q

ii ==≡=≡ qpqqqp

where the period t price vector pi is strictly positive for 2,1i =  and . ∑ =≡ N
1n

i
n

i
n

ii qpqp

 The Konüs (1924) family of true cost of living indexes, pertaining to two periods where 
the consumer faces the strictly positive price vectors  and  in periods 0 and 1 respectively, 
is defined as the ratio of the minimum costs of achieving the same utility level  where 

 is a positive reference quantity vector. Thus, the Konüs true cost of living index with reference 
quantity vector q  is defined as follows:  

0p 1p
)(Uu q≡

q

(2) . ]),(U[C/]),(U[C),,(P 1221
K pqpqqpp ≡

We say that definition (2) defines a family of true price indexes because there is one such index 
for each reference quantity vector  chosen.  q

 If the utility function U happens to be linearly homogeneous (or can be monotonically 
transformed into a linearly homogeneous function2), then definition (2) simplifies to3  

(3) , )(c/)(c]},1[C)(U/{]},1[C)(U{),,(P 121221
K pppqpqqpp ==

                                                 
2 Shephard (1953) defined a homothetic function to be a monotonic transformation of a linearly homogeneous 
function. However, if a consumer’s utility function is homothetic, we can always rescale it to be linearly 
homogeneous without changing consumer behavior. Hence in what follows, we will simply identify the homothetic 
preferences assumption with the linear homogeneity assumption. 
3 See Afriat (1972) or Pollak (1983). 
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where  is the unit cost function . Thus in the case of homothetic preferences, the 
family of true cost of living indexes collapses to a unit cost or expenditure ratio. 

)(c ip ),1(C ip

 The second concept of a true index is the Allen (1949) family of true quantity indexes, 
which also uses the consumer’s cost or expenditure function in order to define these true indexes. 
Again, it is assumed that the consumer engages in cost minimizing behavior in each period so 
that assumptions (1) hold. For each choice of a strictly positive reference price vector p , the 

Allen true quantity index,  is defined as  ),,(Q 21
A pqq

(4) . ]),(U[C/]),(U[C),,(Q 1221
A pqpqpqq ≡

 The basic idea of the Allen quantity index dates back to Hicks (1942) who observed that 
if the price vector p were held fixed and the quantity vector q  is free to vary, then  is 
a perfectly valid cardinal measure of utility.

]),(U[C pq
4  

 As with the true Konüs cost of living, the Allen definition simplifies considerably if the 
utility function happens to be linearly homogeneous. In this case, (4) simplifies to:5 

(5) . )(U/)(U]},1[C)(U/{]},1[C)(U{),(Q 121221
A qqpqpqpq,q ==

Thus in the case of homothetic preferences (where preferences can be represented by a linearly 
homogeneous utility function), the family of Allen quantity indexes collapses to the utility ratio 
between the two situations.  

 Note that in the homothetic preferences case, the Allen quantity aggregate for the vector 
 is simply the utility level  and the Konüs price aggregate for the price vector p  is the 

unit cost or expenditure .
q )(U q

)(c p 6  

 A third concept for a true index that appears frequently in the literature is the Malmquist 
(1953) quantity index. This index can be defined using only the consumer’s utility function 

 but we will not study this index in any detail)(U q 7 since we will use the Allen quantity index 
concept to distinguish VW’s concept of a true quantity index from true quantity indexes that 
have been defined in the literature. 

 A fourth and somewhat  different concept for a true index is associated with Afriat (1981) 
and Dowrick and Quiggin (1997). If for each bilateral comparison subsumed within a broader 
multilateral comparison, the maximum of all the chained Paasche paths between the two periods 
or regions is less than the minimum of all the chained Laspeyres paths, then any index that for all 
pairs of bilateral comparisons lies between these so-called Afriat bounds is defined as true. The 
resulting index is true in the sense that there exists a nonparametric utility function that 
rationalizes the data and generates Konüs indexes that are identically equal to it. In our opinion, 
however, this alternative usage of the word “true” is misleading because it is at odds with a large 
literature that uses this term differently. VW seem to have been influenced by this fourth concept. 

                                                 
4 Samuelson (1974) called this a money metric measure of utility. 
5 See Diewert (1981) for references to the literature. 
6 Shephard (1953) was an early pioneer in developing this theory of aggregation. 
7 See Diewert (1981) and Caves, Christensen and Diewert (1982) for additional material on this index concept. 
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 Note that the concepts of a Konüs true price index and an Allen true quantity index are 
not immediately “practical” concepts since they assume that the functional form for the 
consumer’s utility function (or its dual cost function) is known.8 Note also that definition (2) for 
a true Konüs price index is defined for any given utility function U satisfying the regularity 
conditions listed above (with dual cost function C) for all strictly positive price vectors  and 

 and for all strictly positive reference quantity vectors q . Similarly, definition (4) for a true 
Allen quantity index is defined for any given utility function U satisfying the regularity 
conditions listed above (again with dual cost function C), for all strictly positive quantity vectors 

 and  and for all strictly positive reference price vectors p . 

1p
2p

1q 2q

 

3. The VW System of True Quantity Indexes 
 

 Having reviewed the literature on bilateral true indexes, we are now ready to consider 
van Veelen and van der Weide’s (VW’s) (2008) multilateral concepts for a system of true 
quantity indexes. They assume that price and quantity data,  and  for  are 
available for say M countries. Denote the N by M matrix of country price data by 

 and the N by M matrix of country quantity data by . A 
system of VW multilateral quantity indexes is a set of M functions, 

 where F is a vector valued function whose 
components are the country relative quantity aggregates, the 

mp

,(

mq

Q

M,,1m K=

],,, M21 qq K],,,[ M21 pppP K≡

),,(F),,(F[ 21 QPQP K

[q≡

),(F)],(F, M QPQP ≡
)Fm QP .  

 VW (2008; 1724-1725) provide three alternative definitions for the concept of a true 
quantity index in the multilateral context. These definitions are of interest, but none of their 
definitions coincide with the definitions for a true index that already exist in the literature. Their 
third definition of a true multilateral system is closest to what we think is the definition in the 
literature on true indexes and so we will repeat it here: 

 VW’s Third Definition: The vector valued function  is a true system of 
multilateral quantity indexes for the utility function U if for all data sets  that U 
rationalizes, the following inequalities hold: 

),(F QP
),( QP

(6) . Mk j,1 allfor    )(U)(U),(F),(F kj
kj ≤≤>↔> qqQPQP

 

                                                 
8 However, if preferences have been estimated econometrically, then these true index number concepts do become 
“practical”. Moreover, one can construct observable nonparametric bounds to these indexes and under certain 
conditions, these bounds again become practical; see Pollak (1983) and Diewert (1981) for expositions of this 
bounds approach to true indexes. The working paper version of Pollak (1983) was issued in (1971).  
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4. An Allen True Multilateral System of Quantity Indexes 
 

 Now we consider alternative definitions for a true multilateral system of quantity indexes 
based on the existing literature on true indexes. In the case where preferences are nonhomothetic, 
the system of true Allen multilateral quantity indexes consists of the following M functions 
where the positive price vector p  is an arbitrarily chosen reference price vector: 

(7)  )),(U(C,),),(U(C),),(U(C M21 pqpqpq K

where as usual, C is the cost or expenditure function that is dual to the utility function U. In the 
case where preferences are linearly homogeneous, then it is not necessary to specify a reference 
price vector and the system of true multilateral quantity indexes in this case becomes just the 
vector of country utilities: 

(8) . )(U,),(U),(U M21 qqq K

 Comparing (6), (7) and (8), it can be seen that (8) could be regarded as a special case of 
the VW definition; i.e., if we set  equal to , then it can be seen that the VW 
definition of a true multilateral index is equivalent to the definition of a true index that is in the 
traditional literature but of course, we need the homothetic preferences assumption in order to 
get this equivalence. In the general case where preferences are not homothetic, then it can be 
seen that the “traditional” definition of a true set of multilateral indexes (7) cannot be put into the 
VW form (6). Using the VW definition of a true system, their functions  depend on two 
matrices of observed price and quantity data, P  and Q . In contrast, using the Allen definition of 
a true system, the counterpart functions to the  depend only on the observed country j quantity 

vector  and the reference price vector . Thus, the definition that VW suggest differs from the 
literature’s existing definition of a true index.

),(Fj QP

p

)(U jq

jF

jF
jq

9  

 

5. Traditional Definitions for Exact Indexes 
 

 We now turn our attention to the concept of an exact index as it exists in the index 
number literature. We will first look at the concept of an exact index in the bilateral context; i.e., 
where we are comparing only two price quantity situations.   

 The concept of an exact index number formula dates back to the pioneering contributions 
of Konüs and Byushgens (1926) in the context of bilateral index number theory.10 In the price 
index context, the theory starts with a given bilateral index number formula for an axiomatic 
price index P which is a function of the price and quantity vectors pertaining to two situations 

                                                 
9 Of course, VW are entitled to make whatever definitions they find convenient. Our point is that they should 
carefully note that they are changing a well established definition of a true index. 
10 For additional material on the contributions of Konüs and Byushgens, see Afriat (1972) and Diewert (1976). 
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(time periods or countries) where the prices are positive, say . The function P is 
supposed to reflect the price level in, say, country 2 relative to the price level in country 1.  

),,,(P 2121 qqpp

 Now assume that the data  pertaining to the two countries is generated by 
utility maximizing behavior on the part of an economic agent, where the utility function  is 
defined over the nonnegative orthant, and is nonnegative, linearly homogeneous, increasing (if 
all components of q  increase) and concave. The unit cost function that is dual to  is . 

 The existing literature defines  to be an exact price index for  and 
its dual unit cost function  if  

2121 ,,, qqpp

,,(P 21 qpp

)(U q

(c q

)(U q

)(U q )

), 21 q
)(c p

(9) . )c/)(c),,,(P 122121 (ppqqpp =

The equality (9) is supposed to hold for all strictly positive price vectors  and  (and, of 

course, the corresponding  and  are assumed to be solutions to the cost minimization 
problems defined by (1). 

1p 2p
1q 2q

 There is an analogous theory for exact quantity indexes, . Under the 
homothetic (actually linearly homogeneous) preference assumptions made in the previous 
paragraph and under the assumption that the data are consistent with cost minimizing behavior 
(1), the existing literature says that  is an exact quantity index for  if  

),,,(Q 2121 qqpp

(U),,,(Q 2121 qqpp )q

(10) . )(U/)(U),,,(Q 122121 qqqqpp =

 Many examples of exact bilateral price and quantity indexes are presented in Konüs and 
Byushgens (1926), Afriat (1972), Pollak (1983) and Diewert (1976). 

 Note that the above theory of exact quantity indexes does not guarantee that a given set of 
bilateral price and quantity vectors, , are actually consistent with utility maximizing 
(or cost minimizing) behavior. The theory only says that given a particular functional form for U, 
given arbitrary strictly positive price vectors  and , and given that  solves the cost 

minimization problem (1) for , then a given function of 4N variables  is 
an exact quantity index for the preferences defined by U if (10) holds. The problem that VW 
have uncovered with this definition has to do with the assumption that (10) holds for all strictly 
positive price vectors  and : this is not always the case for many of the commonly used 
exact index number formulae. We will return to this important point later.   

2121 ,,, qqpp

p

2

1 2p iq

(Q,1i =

2p

),,, 2121 qqpp

1p

 The theory of exact quantity indexes in the multilateral situation is not as well developed 
as in the bilateral context. Note that in the bilateral context, an exact index number formula is 
exact for a utility ratio; i.e., the exact index number literature does not attempt to determine 
utility up to a cardinal scale but rather it only attempts to determine the utility ratio between the 
two situations. In the multilateral context, we could attempt to determine utility ratios relative to 
a numeraire country but then one country would be asymmetrically singled out to play the role of 
the numeraire country. Thus Diewert (1988) developed an axiomatic approach to multilateral 
quantity indexes that is based on a system of country share functions, 
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),(S)],(S,),,(S),,(S[ M21 QPQPQPQP ≡K  where S is a vector valued function whose 
ntity aggregates, the ),(Scomponents are the country relative qua m QP , where each mS  

represents the share of country m in world output (or consumption)  practical purpos  
Diewert’s system of share functions, ),(S QP , is equivalent to VW’s system of multilateral 
indexes, ),(F QP .  

 Diewert (19

.11 For all es,

99; 20-23) developed a theory of exact indexes in the multilateral context and 

wert’s economic approach to multilateral indexes is that the 

(11) 

 where  is the utility level for country m,  is the vector of 

we will explain his theory below.12 

 The basic assumption in Die
country m quantity vector mq  is a solution to the following country m utility maximization 
problem: 

mmmm u} :)(U{max == qpqpqq , 

for M,,1m K=
tly positive 

)(Uu mm q≡
r outputs tha

 mp
stric prices fo t prevail in country m for M,,1m K= , an

o 
d U is a linearly 

homogeneous, increasing and concave utility function that is a be the same across 
countries.

ssumed t
13 As usual, the utility function has a dual unit cost or expenditure function )(c p  which 

is defined as the minimum cost or expenditure required to achieve a unit utility level if the 
consumer faces the positive commodity price vector p.14 Since consumers in country m are 
assumed to face the positive prices mp , we have the following equalities:  

mmm(12) ;    

where Pm is the (unobserved) minimum expenditure that is required for country m to achieve a 

;     M

In order to make further progr function  is once 

(14) ;       M . 

                                                

P}1)(U :{min)(c ≡≥≡ qqpp q M,,1m K= , 

unit utility level when it faces its prices mp , which can also be interpreted as country m’s PPP, 
or Purchasing Power Parity. Under the above assumptions, it can be shown that the country data 
satisfy the following equations: 

(13) mmmm mmuP)(U)(c == qpqp ,,1m K= . 

 ess, we assume that the unit cost )(c p
continuously differentiable with respect to the components of p . Then Shephard’s Lemma 

implies the following equations which relate the country m quantity vectors mq  to the country m 

price vectors mp  and utility levels mu : 

mmm u)(c pq ∇= ,,1m K=

 

)(c p

11 This multilateral axiomatic approach was further refined by Balk (1996) and Diewert (1999). 
12 See also Diewert (2008). 
13 Note that in Diewert’s multilateral approach to exact indexes (1999) (2008), he did not consider the case of 
nonhomothetic preferences whereas in the bilateral case, Diewert (1976) did consider the nonhomothetic case. 
14 The unit cost function  is an increasing, linearly homogeneous and concave function in p  for .  N0p >>
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 y to define the concept of exactness for a multilate yst
say that l system of share functions, ),(S QP , is exact

Now we are read ral share s em. We 
the multilatera  for the linearly 

omogh eneous utility function U and its differentiable dual unit cost function c if the following 
system of equations is satisfied for all strictly positive country price vectors ],,[ M1 ppP K≡  and 

all positive utility levels M1 u,,u K : 

(15) j

i

MM2211
j

MM2211
i ,u)(c,P(S ∇∇ p

u
u

u)(c,,u)(c,u)(c,P(S
u)(c,,u)(c

=
∇∇∇

∇

ppp
pp

K

K ;   

Thus an exact multilateral share system gives us exactly the underlying utilities up to an 
arbitrary positive scaling factor. Diewert (1999, 2008) gives many examples of exact multilateral 

stem

s for all strictly 
ositiv

ir 
finiti

 these theoretical concepts (as they exist in the index number literature) with a 

. The Problems Associated with Finding the Regularity Region for Exact Indexes 

In the previous section, we noted that there can be a problem with some well known 
xact index number formulae in that the exactness property does not always hold for all strictly 
ositive

                                                

M,,1j,i K= . 

 

sy s. Diewert also goes on to define a superlative multilateral system to be an exact system 
where the underlying utility function U or dual unit cost function can approximate an arbitrary 
linearly homogeneous function to the second order around any given data point. 

 As in the bilateral case, VW have uncovered a problem with our definition (15) above for 
an exact multilateral system. The problem is that it is assumed that (15) hold
p e price vector matrices P : this is not always the case for many of the commonly used 
exact index number formulae. We will return to this important point in the following section.   

 Van Veelen and van der Weide (2008; 1723) also give their definition of an exact 
multilateral system (which we will not reproduce here due to its complexity). However, the
de on is rather far from the above definition of multilateral exactness that is out there in the 
literature.15   

 In our view, the “problem” with the VW definitions of true and exact indexes is that they 
are mixing up
related but different question: namely, is a given set of, say, M price and quantity vectors 
consistent with utility maximizing behavior under various assumptions? This latter question is an 
interesting one and there is certainly room for more research in this area. However, some care 
should be taken to not redefine well established concepts as this research takes place. 

 

6
 

 
e
p  prices. We will explain the problem by giving two examples of exact index number 
formulae: one where there is no problem, and a second where there could be a problem.  

 

 
15 A major problem with their definition is this: the VW definition is conditional on a set of admissible price and 
quantity vectors D but this admissible set is not well specified. If we take the set D to be a single price quantity point 
for each country where the country price vectors are all equal to the same p and the country quantity vectors are all 
equal to the same q, and the function F treated countries in a symmetric manner, then F would be exact for any 
utility function.   
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Example 1: The Jevons Price Index 
 cost function c has the following Cobb-Douglas functional 

rm:

, 

e the are positive constants which sum to one and 

 Suppose each consumer’s unit
16fo  

(16) ∏ =
αβ≡ N

1n n np)(c p

wher nα  β  is a positive constant. If we are 

(17) 

where the unit cost function c is defined by (16) and the nth expenditure share for country 1,  

(18) 

 Thus under our assumptions on consumer behavior, (18) tells us that the true Allen 

Thus the theory of exact indexes works well under the assumption of Cobb Douglas 

                                                

comparing the level of prices in country 2 relative to country 1, then the Jevons (1865) price 
index, JP  is defined as the first line in (17): 

s1N 22121 1
n

),(c/)(c

)p/p(),,,(P
12

n1n nJ

pp

qqpp

=

≡∏ =  

1
ns ,

is defined as 111
n

1
n /qp qp  for N,,1n K= . Thus under the assumption that consumers in the two 

countries have obb references )(U q  that are dual to the unit cost function c 
defined by (16) and assuming cost minimizing behavior on the part of consumers in both 
countries, then (17) tells us that the true Konüs price index between the two countries is exactly 
equal to the observable Jevons price index ),,,(P 2121

J qqpp  and that this equality will hold for 

all strictly positive price vectors 1p  and 2p untries. The corresponding Jevons 

quantity index ),,,(Q 2121
J qqpp  is defined as the expenditure ratio divided by the Jevons price 

index and we ha equalities: 

,p(Pqp/qp)q,q,p,p(Q 1
J

11222121
J ≡

 identical C

ve the fol

 Douglas p

ing 

 for t  cohe two

low

).q(U/)q(U

)q,q,p
12

212

=
 

quantity index between the two countries is exactly equal to the observable Jevons quantity index 
),,,(Q 2121

J qqpp  and again, this equality will hold for all strictly positive price vectors 1p  and 

 countries (with the corresponding quantity vectors 1q  and 2q eing 
genously determined). If we want to put the above results into the format at VW , then 

the VW system of country quantity indexes could be defined as follows: 

(19) ),,,(Q),,,(F  ;1),,,(F 2121
J

2121
2

2121
1 qqppqqppqqpp ≡≡ . 

2p  for the two
endo

 b
se th  u

 
preferences. However, note that the theory does not investigate whether consumers in the two 
countries actually minimize their costs of achieving their utility targets and whether they actually 

 
16 The Cobb Douglas case is treated in some detail by Afriat (1972) and Pollak (1983). 
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have Cobb Douglas preferences.17 The theory is a conditional one: if consumers have certain 
preferences and if they engage in cost minimizing behavior, then their true price (or quantity) 
index will be exactly equal to a certain index number formula which in turn is a function of the 
observable price and quantity data pertaining to the two countries.  

 We turn to our second example of an exact index. 

 

Example 2: The Fisher Price Index 
 Suppose each consumer has preferences that are dual to the following unit cost 
function:18 

(20) ; , 2/1T )()(c Bppp ≡ TBB =

where  is an N by N symmetric matrix which has one positive eigenvalue (with a strictly 
positive eigenvector) and the remaining N−1 eigenvalues are negative or zero. The vector of first 
order partial derivatives of this unit cost function, 

B

)(c p∇ , and the matrix of second order partials, 

, are equal to the following expressions: )(c2 p∇

(21) ; 2/1T )/()(c BppBpp =∇

(22) . })({)()(c T1T2/1T2 BpBppBpBBppp −− −=∇

 At this point, we encounter the problem which we believe bothered VW; namely, that the 
unit cost function defined by (20) will generally not provide a representation of well behaved 
consumer preferences for all strictly positive price vectors p . In order for a unit cost function to 
provide a valid global representation of homothetic preferences, it must be a nondecreasing, 
linearly homogeneous and concave function over the positive orthant. However, in order for c to 
provide a valid local representation of preferences, we need only require that  be positive, 
nondecreasing, linearly homogeneous and concave over a convex subset of prices, say S, where 
S has a nonempty interior.

)(c p

19 It is obvious that  defined by (20) is linearly homogeneous. The 
nondecreasing property will hold over S if the gradient vector 

)(c p
)(c p∇  defined by (21) is strictly 

positive for  and the concavity property will hold if ∇  defined by (22) is a negative 
semidefinite matrix for . We will show how the regularity region S can be determined 
shortly but first, we will indicate why the c  defined by (20) is a flexible functional form

Sp∈ )(pc2

Sp∈
)(p 20 

since this explanation will help us to define an appropriate region of regularity. 
                                                 

2
n

1
n s= N,,1n L

17 An implication of the Cobb Douglas preferences model is that the expenditure shares in the two countries should 
be equal; i.e., we should have s  for = . Of course, in the real world, these restrictions are unlikely to be 
satisfied. 
18 This is a special case of a functional form due to Denny (1974), which Diewert (1976; 131) called the quadratic 
mean of order r unit cost function, with 2= . r
19 See Blackorby and Diewert (1979) for more details on local representations of preferences using duality theory. 
20 A flexible functional form is one that is capable of providing a second order approximation to an arbitrary 
function in the class of functions under consideration; see Diewert (1976; 115) who introduced the term into the 
economics literature. 
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 Let  be a strictly positive reference price vector and suppose that we are given 

an arbitrary unit cost function  that is twice continuously differentiable in a neighborhood 

around .

N
* 0>>p

q

)(c ** p

)(c* p

)(p >>
2Σ ∇≡

*p 21  Let  be the strictly positive vector of first order partial 

derivatives of  and let  be the negative semidefinite symmetric matrix of 

second order partial derivatives of  evaluated at . Euler’s Theorem on homogeneous 
functions implies that Σ  satisfies the following matrix equation: 

N
** c 0∇≡

(c*

*c

)*p
*p

(23) . N
* 0Σp =

 In order to establish the flexibility of the c defined by (20), we need only show that there 
are enough free parameters in the B  matrix so that the following equations are satisfied: 

(24) ; **)(c qp =∇

(25)  Σp =∇ )(c *2

 In order to prove the flexibility of c defined by (20), it is convenient to reparameterize the 
B matrix. Thus we now set B equal to: 

(26) , AbbB += T

where  is a positive vector and A  is a negative semidefinite matrix which has rank 
equal to at most  and it satisfies the following restrictions: 

N0b >>
1N −

(27) . N
* 0Ap =

 Note that  in (26) is a rank one positive semidefinite matrix with 
 and A is a negative semidefinite matrix and satisfies . 

Thus it can be seen that B  is a matrix with one positive eigenvalue and the other eigenvalues are 
negative or zero. 

Tbb
0)2 >( *T*TT* = pbpbbp 0App =*T*

 Substitute (21) into (24) in order to obtain the following equation: 

(28)  2/1*T*** )/( −= BppBpq

         using (26) 2/1*TT**T )][/(][ −++= pAbbppAbb

                                                 
*

*

*p * )*(*cT*p)(* p*p ∇=

N)(c ***2 0pp =∇ *p=

*

21 Of course, in addition, we assume that c  satisfies the appropriate regularity conditions for a unit cost function. 

Using Euler’s Theorem on homogeneous functions, the fact that c  is linearly homogeneous and differentiable at 

 means that the derivatives of c  satisfy the following restrictions: c  and 

. The unit cost function c defined by (20) satisfies analogous restrictions at p . These 

restrictions simplify the proof of the flexibility of c at the point p .   
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           using (27) 2/1*TT**T )/( pbbppbb=

     . b=

 Thus if we choose b equal to , equation (24) will be satisfied. Now substitute (22) into 
(23) and obtain the following equation: 

*q

(29)  })({)( T*1*T**2/1*T* BpBppBpBBppΣ −− −=

      using (26) and (27) TT*1*TT**TT2/1*TT* )({)( bbppbbppbbAbbpbbp −− −+=

            using . Apb 1*T )( −= 0pb *T >

Thus if we choose A equal to , equation (25) will be satisfied and the flexibility of c 
defined by (20) is established.

Σpb )( *T
22 

 Now we can define the region of regularity for c defined by (20). 23  Consider the 
following set of prices: 

(30) . }0 ;:{S NN >>>>≡ Bp0pp

 If , then it can be seen that  and using (21), . 
However, it is much more difficult to establish the concavity of  over the set S. We first 
consider the case where the matrix B  has full rank so that it has one positive eigenvalue and 

 negative eigenvalues. Let  and using equation (22), we see that ∇  will be 
negative semidefinite if and only if the matrix M  defined as: 

S∈p 0)()(c 2/1T >= Bppp N)(c 0p >>∇

)(c2 p

)(c p

1N − S∈p

(31)  BpBppBpBM T1T )( −−≡

is negative semidefinite. Note that M  is equal to the matrix B  plus the rank 1 negative 
semidefinite matrix − .  has one positive eigenvalue and the remaining 
eigenvalues are 0 or negative. Since M  is  plus a negative semidefinite matrix, the 
eigenvalues of  cannot be greater than the eigenvalues of B . Now consider two cases; the first 
case where B  has one positive and 

BpT

1

BppBp 1T )( −

N

B
B

M
−  negative eigenvalues and the second case where B  has 

 negative or zero eigenvalues in addition to its positive eigenvalue. Consider case 1, let 
 and calculate Mp : 

1N −
S∈p

(32) . N
T1T ])([ 0pBpBppBpBMp =−= −

 The above equation shows that p ≠ 0N is an eigenvector of M  that corresponds to a 0 
eigenvalue. Now the addition of a negative semidefinite matrix to B  can only make the 1N −  
negative eigenvalues of B  more negative (or leave them unchanged) so we conclude that the 

                                                 

Σ

22 We need to check that A is negative semidefinite (which it is since it is a positive multiple of the negative 
semidefinite substitution matrix Σ ) and that A satisfies the restrictions in (27), since we used these restrictions to 
derive (28) and the second line in (29). But A does satisfy (27) since  satisfies (23).  
23 The region of regularity can sometimes be extended to the closure of the set S. 
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addition of the negative semidefinite matrix −  to  has converted the positive 
eigenvalue of B  into a zero eigenvalue and hence M  is negative semidefinite. Case 2 follows 
using a perturbation argument. 

BpBppBp T1T )( −

2/12]q

)(U q

1p

),, 212 qqp

B

(F p
2

 We are now in a position to exhibit an index number formula that is consistent with the 
preferences that are dual to c defined by (20). Thus we again consider the two country case and 
define the Fisher (1922) ideal price index PF as follows:  

(33) . 1112212211
F /[),(F pqpqpqpqqp ≡2,,p

,, 2p

,2p

, 2p

 Assume that  is defined by (20) and S defined by (30) is nonempty. Suppose that 
consumers in the two countries have preferences  that are locally dual to  and that the 

country price vectors,  and , both belong to S. Finally, assume that consumers in both 
countries engage in cost minimizing behavior. Then, under all these hypotheses, we have the 
following equality:

)(c p

1p

)(c p
2p

24 

(34) . )(c/)(c),(F 12211
F ppqqp =

 Thus under our hypotheses, (34) tells us that the true Konüs price index between the two 
countries is exactly equal to the observable Fisher price index  and that this 

equality will hold for all strictly positive price vectors  and  for the two countries that 
belong to the set S. As was the case for the Jevons index, the corresponding Fisher quantity 
index  can be defined as the expenditure ratio divided by the Fisher price 
index and we have the following equalities: 

),,,P 2121 qqp

p

),,(Q 211
F qqp

(35)  
),(U/)(U

,(P/),,(Q
12

1
F

1122211
F

qq

pqpqpqqp

=

≡

where U is the utility function that is locally dual to c. 

 What are we to make of the above results in the light of the criticisms of VW? We think 
that VW are justified in noting the limitations of the above theory of exact index numbers. Some 
of these limitations are: 

• All consumers in all countries in the comparison are generally assumed to have the same 
homothetic preferences;  

• There are no checks done on the data to see if consumers really are maximizing a 
common linearly homogeneous utility function and finally, 

• The exact result (for example (34)) may not hold for all positive price vectors pertaining 
to the countries in the comparison but may only hold for a subset S  of prices and it will usually 
be difficult to figure out exactly what this set is. 

 

                                                 
224 See Diewert (1976; 134) and specialize his result to the case where = . r
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 Our response to these valid criticisms is the following one. We regard exact superlative 
indexes (indexes which are exact for flexible functional forms) as a useful screening device. 
There are an infinite number of index number formulae out there and it is useful to distinguish 
formulae that have “good” economic properties under at least some conditions.25 However, it is 
always useful to consider other noneconomic approaches to index number theory and it is 
perhaps “ideal” if the different approaches lead to the same index number formulae. Thus North 
American price statisticians tend to favor the use of the Fisher or Törnqvist Theil (1967) bilateral 
formula because of the connection of these indexes with the economic approach to index number 
theory whereas European statisticians tend to favor the axiomatic approach or the stochastic 
approach26 to index number theory. However, strong axiomatic justifications for the use of the 
Fisher index can be given27 and a strong axiomatic for the Törnqvist Theil formula can also be 
given.28 Furthermore, the Törnqvist Theil formula also does well from the viewpoint of the 
stochastic approach. Thus at the current state of index number theory, it appears that the Fisher 
and the Törnqvist Theil indexes are pretty good choices from multiple points of view.29     

 

7. The Distinction Between the Axiomatic and Economic Approaches 
 

 Although VW make many good points in their note, they make some points which we 
find are problematical. Consider the following quotation: 

“In the literature, two approaches to index numbers are distinguished: the axiomatic 
approach and the economic approach. ... In Neary’s paper the difference is described as 
one between an approach that does and an approach that does not assume that quantities 
arise from optimizing behavior. ... We will argue that a more accurate description is that 
the difference lies in whether or not optimizing agents, or representative consumers, are 
assumed to optimize the same utility function.” Matthijs van Veelen and Roy van der 
Weide (2008; 1722). 

 We do not agree with the above assertions: it seems to us that the economic approach 
definitely takes prices as exogenous variables and treats quantities as being endogenous, whereas 
the axiomatic approach treats both prices and quantities as being exogenous. That is, we agree 
with the consensus view, as stated in Neary (2004) and Balk (2008), which can be traced back at 
least to Frisch (1936). We do not think it is particularly helpful to try and blend the two 
approaches (although in the end, they may lead to the same index number formulae).  

VW argue that an advantage of the axiomatic approach is that it allows for heterogeneity 
in preferences. We take issue with this claim. The economic approach allows for heterogeneity 

                                                 
25 There are even an infinite number of superlative formulae as indicated by Diewert (1976) but Hill (2006) noted 
that not all of these formulae are really that super. 
26 See Theil (1967), Selvanathan and Rao (1994) and Clements, Izan and Selvanathan (2006) on the stochastic 
approach to index numbers. 
27 See Diewert (1992) and Balk (1995). 
28 See Diewert (2004). 
29 This argument follows along similar arguments made by Diewert (1997). Also Diewert (1978) showed that the 
Fisher and Törnqvist Theil indexes will numerically approximate each other to the second order around an equal 
price and quantity point. Thus, in the time series context, it will often not matter which of these indexes is used. 
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too, across households in each period and in tastes across periods. Pollak (1980, 1981, 1983) and 
Diewert (1984, 2001) extend the Konüs true index to the case of heterogeneous agents. For 
example, a plutocratic Konüs true index is defined as follows: 

(36) , ]),(U[C/]),(U[C),,,,(P 1
hh

H
1h h

2
hh

H
1h hH1

21
K pqpqqqpp ∑∑ ==≡K

where h indexes the households.30 A plutocratic Konüs true index measures the change in the 
minimum cost of each household h achieving its reference utility level  from period 1 to 
period 2. The plutocratic Konüs true index as formulated in (36) therefore explicitly allows 
preferences to differ across households. Similarly, true indexes that allow preferences to change 
over time are derived by Caves, Christensen and Diewert (1982) and Balk (1989). In short, the 
economic approach is more flexible than VW’s analysis suggests. 

)(U hh q

 

8. Conclusion 
 

 Van Veelen and van der Weide (2008) have raised a number of contentious issues that 
deserve closer scrutiny. While we take issue with some of their findings, we commend them for 
providing a fresh perspective on an old topic. 
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Chapter 13 
CHAIN PRICE AND VOLUME AGGREGATES FOR THE 

SYSTEM OF NATIONAL ACCOUNTS 
Andrew Baldwin1 

 

1. Summary and Introduction 
 

 This paper constitutes a critique of the recommendations for changing the System of 
National Accounts 1968 (SNA68) contained in the Systems of National Accounts 1993 (SNA93) 
on volume measures of gross domestic product (GDP). These recommendations are contained in 
Chapter XVI of the SNA93, authored by the distinguished English economist Peter Hill. 
Basically, this paper endorses the SNA93 recommendation for annual chain linking, but not its 
support for chain Fisher aggregates, nor, as a second-best solution, chain Laspeyres aggregates. I 
argue it is both feasible and desirable to calculate chain fixed-price aggregates that do not have 
the dangerous propensity to chain drift exhibited by chain Laspeyres aggregates. And these 
fixed-price aggregates can be calculated as direct series for the most recent period and so be 
additive over commodities, industries or regions, unlike their chain Fisher counterparts. 

 Perhaps the best way to summarize the present paper is to list Hill’s five 
recommendations (H1-H5), followed, one by one, by my proposed amendments (B1-B5): 

(H1) Original: The preferred measure of year-to-year movements of GDP volume is a Fisher 
volume index; changes over longer periods being obtained by chaining; i.e., by cumulating the 
year-to-year movements. 

(B1) Amended: The preferred measure of year-to-year movements of GDP volume is an 
Edgeworth-Marshall2 volume aggregate (see formula (4-1) below) changes over longer periods 
being obtained by chaining; i.e., by cumulating the year-to-year movements. 

 
1 The author is with Statistics Canada and can be reached at Andy.Baldwin@statcan.ca. The author acknowledges  
and thanks Ludwig von Auer of the University of Magdeburg, Bert Balk of Statistics Netherlands, Michel Chevalier 
of Statistics Canada, Christopher Ehemann and Marshall Reinsdorf of the U.S. BEA, and Amanda Tuke of the 
U.K.’s Office of National Statistics for helpful information and other input. Special thanks go to Jörgen Dalén, 
formerly with Statistics Sweden and Manfred Krtscha of the University of Karlsruhe for their papers, which have 
had such an influence on this one. 
2 I have referred to index formulae by their inventors. For formulae with multiple inventors, they are listed in 
alphabetical order without any attempt to assign a primacy among them. Thus, Edgeworth-Marshall instead of 
Edgeworth or Marshall-Edgeworth, Montgomery-Vartia instead of VartiaI, Sato-Vartia instead of VartiaII, and 
Bowley-Sidgwick instead of Sidgwick. Bowley was actually a propogandist rather than a discoverer of the Bowley-
Sidgwick formula, but he should share the credit since Sidgwick did little more than note the possibility of an 

mailto:Andy.Baldwin@statcan.ca
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(H2) Original: The preferred measure of year-to-year inflation for GDP is, therefore, a Fisher 
price index; price changes over longer periods being obtained by chaining the year-to-year price 
movements: the measurement of inflation is accorded equal priority with the volume movements. 

(B2) Amended: The preferred measure of year-to-year inflation for GDP is an Edgeworth-
Marshall price index (see formula (7-1) below). 

However, as the Edgeworth-Marshall formula does not satisfy the strong factor reversal test, 
direct and chain implicit price indexes should also be calculated and published. The direct 
implicit price index should be based on the ratio of the expenditure series at current prices to the 
expenditure series at constant prices (i.e., the weighted average of prices over two years).  

For highly cyclical commodities, a modification of the Edgeworth-Marshall formula will be 
required for the inflation indicator, and the basket reference period can span three to five years as 
required. (This may also be necessary for the cyclical components of the GDP volume measure.) 
To accommodate seasonal commodities, the price index could incorporate a seasonal weighting 
pattern, preferably using the Rothwell or Balk formula.  

(H3) Original: Chain indexes that use Laspeyres volume indices to measure year-to-year 
movements in the volume of GDP and Paasche price indices to measure year-to-year inflation 
provide acceptable alternatives to Fisher indices. 

(B3) Amended: Countries too small or too poor to implement annual-link chain measures 
should calculate chain Laspeyres volume aggregates, with rebasing of these every five years, the 
base year of each five-year span being its central year. In addition to the chain Paasche price 
indexes that would be the counterpart of these chain volume aggregates, they should also 
calculate chain Laspeyres price indexes which would also be rebased every five years, with the 
central year of the five-year span serving as the basket reference year.  

(H4) Original: The chain indices for total final expenditures, imports and GDP cannot be 
additively consistent whichever formula is used, but this need not prevent time series of values 
being compiled by extrapolating base year values by the appropriate chain indices. 
(B4) Amended: The chain volume aggregates for total final expenditures, imports and GDP 
will continue to be additive because they will be linked backward and not forward.  

(H5) Original: Chain indices should only be used to measure year-to-year movements and not 
quarter to quarter movements. 

(B5) Amended: Chain volume aggregates should be calculated both annually and quarterly (or 
monthly). The fixed-price structure of the volume aggregates (i.e., using average prices over two 
years) will apply to both annual and quarterly (or monthly) series, ensuring that meaningful 
measures of quarterly (or monthly) volume change can be derived for all consecutive quarters (or 
months) for the direct series, and for all but the Q4-to-Q1 movements (December-to-January 
movements) of the chain series. Similarly, chain volume price indexes should be calculated both 
annually and quarterly (or monthly). The fixed-basket structure of the price indexes (i.e. using a 
two-year basket) will apply to both annual and quarterly (or monthly) series, ensuring that 

                                                                                                                                                             
arithmetic cross between the Laspeyres and Paasche formulae, whereas Bowley somewhat advocated it. Auer (2004) 
and others refer to the Bowley-Sidgwick formula as the Drobisch formula, but I follow Diewert (1993) in attributing 
it to these two English-speaking economists. However, the Fisher formula remains the Fisher formula out of 
deference to established custom, even though others, including Bowley, wrote about it before he did. 
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meaningful measures of quarterly (or monthly) price change can be derived for all consecutive 
quarters (or months) for the direct series, and for all but the Q4-to-Q1 movements (December-to-
January movements) of the chain series. 

However direct volume aggregates (fixed-basket price indexes) would also be calculated over 
longer periods of up to 10-11 years, and linked backward to form chain series whose base prices 
(basket) would change every five years, with the base period (basket) always representing the 
central years of the five-year span. These series would provide meaningful measures of quarterly 
or month change when the chain measures failed to do so. 

 The most controversial of the proposed amendments may well be (A1) and (A2). Some 
economists would reject the Edgeworth-Marshall formula because it is not exact for any 
aggregator function, i.e. it is not a “superlative” formula, like the Fisher formula. If the choice of 
a formula must be limited to those defined as “superlative”, then (A1) and (A2) should be 
rewritten to replace the Edgeworth-Marshall formula with the linear Walsh formula3. The Walsh 
formula is exact for the Generalized Linear aggregator function. Because of its matrix 
consistency properties, it would still be a better choice than the Fisher formula. This has been 
suggested by Diewert (1996) in his critique of Hill’s paper. 

 However, the Edgeworth-Marshall formula would seem to be the better choice as, unlike 
the Walsh formula (or the Fisher formula), it respects the property of transactions equality (i.e., 
the importance of a transaction in the formula does not depend on the period in which it occurs.) 
Also, unlike the Walsh formula, it does not discard commodities from a volume aggregate if the 
price goes to zero from a positive price or vice-versa, nor does it discard commodities from a 
price index if the quantity goes to zero from a positive quantity or vice-versa. 

 

2. The SNA68 Volume Measures 
 

 In the 1968 System of National Accounts (SNA68) the prescribed volume measures are 
Laspeyres volume aggregates. These are direct measures over the recent period, but linked 
backward prior to the base year. Thus additive consistency is preserved for the most recent 
history of the series, but not prior to the base year. 

 Eight features of the direct Laspeyres volume aggregates are worthy of note. 

 First, they are expenditure totals and not index numbers, with the formula: 

 . t0qp∑
Thus, they are Laspeyres volume aggregates, rather than Laspeyres volume indexes. (Here and 
elsewhere, summation is assumed to be over commodities unless otherwise indicated.) 

 The Laspeyres volume aggregates can be defined as measuring period t expenditures at 
base year 0 prices. When these aggregates are indexed to base year expenditures, the result is a 
Laspeyres volume index given by 

                                                 
3 Hereafter this is referred to simply as the Walsh formula; there is also a logarithmic Walsh formula, but it is not 
discussed in this paper. 
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In actual statistical practice, it is more common to publish expenditure series at constant prices 
than Laspeyres volume index values.4 

 Second, for each commodity, the base year price is defined as a unit value ( 0p ) so that 
when multiplied by the corresponding quarterly quantities for the base year and aggregated over 
quarters ( ), the total will equal base year expenditure; i.e., 4,,1q K=

 q0
q
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Thus, the base price is calculated as the unit value of all base year transactions, which is a 
weighted arithmetic mean of quarterly prices with quarterly quantities used as the weights. This 
is the uniquely optimal estimate of the average price for any homogeneous commodity, a point 
that should be underlined.5  

 It can be seen that if the production of a commodity were completely inelastic with 
respect to price, all of the quantities in (2.0) would be equal and the unit value would reduce to 
an arithmetic mean of prices, which always exceeds the geometric mean of prices. 

 As a mean of quarterly base prices weighted by quantities, the base year unit value can 
also be interpreted as a harmonic mean of prices weighted by expenditures; that is: 

(2.1) )p/1(w/1p
q

q0q00 ∑= , where ∑∑ ==
q

q0
q

q0q0q0q0q0j0 v/vqp/qpw . 

In (2.1),  denotes the transactions value. It can be seen that if production of the 
commodity were unit-elastic with respect to price, so that whatever the change in price, the same 
revenues were generated, the base year unit value would reduce to a simple harmonic mean of 
quarterly base prices, which is always less than the geometric mean of base prices. Note, in 
particular, that the unit value is not consistently higher or lower than the geometric mean; it is 

q0q0q0 qpv =

higher for commodities with higher price elasticities and lower for commodities with lower price 
elasticities. 

                                                 
4 Until recently, the only important volume index that used to be published by the Canadian System of National 
Accounts (CSNA) was the index of industrial production. Even for this series, a chain volume aggregate, rather than 
a volume index, is now published instead. 
5 Suppose that exactly the same transactions occurred two years in a row at the same set of prices. The same amount 
of money would be required for these expenditures in both years. Suppose further that the budget for year 1 is 
established as the number of units purchased multiplied by the average price in year 0. If one chose an average price 
less than the unit value, the budget would be inadequate to make all the transactions required. If one chose a price 
greater than the unit value, then the budgeted funds would be more than needed. The resulting surplus would be 
greater the larger the discrepancy between the unit value and the overestimated annual price. The same would be 
true if there were an increase in the volume of transactions but the seasonal profile of volumes and prices remained 
constant. 
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 In actual national accounting practice, one would rarely have actual price and quantity 
data to work with. Usually one would be dealing with value series and independently derived 

 is the price index for a given quarter of year 0 with base year 0. Generally, the 
identity in (2.2) does not hold and it must be forced; i.e., the quarterly values for the base year 

. 

 speaking, the adjustm t factor f should be applied to all quarterly values, but in 
practice it is usually applied only to the base year quarterly values, creating a discontinuity 

price indexes that serve as deflators. In this case, what would replace (2.1) is: 

(2.2) 0/q0
q

q0
q

q0 P/vv ∑∑ = , 

where 0/q0P

must be prorated so that the value for quarter q is given by 

(2.3) 0/00 / qq Pvf ×  

where )//( 0/000 ∑∑=
q

qq
q

q Pvvf

(Strictly en

between the base year estimates and the estimates to follow that is presumed to be slight.) 

 Third, the ratio of the expenditures at current prices to the expenditures at constant prices 
provides an implicit price index that has the Paasche formula: 

 t0tt
P

0/t qp/qpP ∑∑= .  

This can serve as a price indicator f
st cul

or GDP. In production, Paasche price indexes offer official 
atisticians the choice of cal ating volume aggregates directly or by deflating using the 

indexes should not be exaggerated. A Paasche price index is a poor indicator of 

Paasche deflator. More specifically, volume aggregates have usually been calculated indirectly 
as seasonally adjusted series at current prices deflated by raw or seasonally adjusted Paasche 
price indexes. 

 However, the importance of this association of Laspeyres volume aggregates with 
Paasche price 
price change except for binary or two-period comparisons since quarterly price changes are 
always distorted by changes from one basket to another. In Canada, dissatisfaction with the 
Paasche deflators led to the development of Laspeyres price measures, and then to the use of 
chain Laspeyres series, years before the current chain volume measures were introduced. 

 Fourth, there is additivity of the components of GDP in the volume aggregates, as one 
would expect, since they are simply the expenditures of each quarter at a common set of prices. 

 the same applies for all major components of GDP. 

s imposed. Hence, 

That is, expenditures on consumer goods and services sum to total consumer expenditure, 
construction expenditures and investment in machinery and equipment sum to gross fixed capital 
formation, and so forth. 

 There is also additivity of the monthly or quarterly GDP estimates, which sum to equal 
the annual estimates, and

 Finally, there is at least the possibility with this kind of structure of having additivity of 
provincial or regional GDP estimates to the national total. In Canada, this wa
the provincial GDP estimates by industry at 1997 prices sum to the all-Canada totals. This multi-
dimensional additivity over commodities, industries, months or quarters, and regions can be 
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characterized as matrix consistency. Thus, a desirable feature of GDP volume aggregates is 
additivity  along any dimension of a matrix of values at constant prices. 

 Fifth, the change between any two quarters or any two years of the volume aggregates 
satisfies the proportionality test: i.e., if all of the quantities in a given period are k times the 
corresponding quantities in the comparison period, then the volume aggregate shows a k-fold 
increase between the two periods. As a special case of this, the volume aggregates satisfy the 
identity test. Hence, if all the quantities in a given period are identical with the corresponding 
quantities in the comparison period, then the level of the volume aggregate will be the same in 
the given period as in the comparison period. (The identity test is just the proportionality test for 
k=1.) This is a consequence of all expenditures for all periods being converted to the same set of 
fixed prices. 

 Sixth, the Laspeyres volume aggregates are strictly or strongly consistent in aggregation; 
that is, they can be equally well calculated in a single stage from basic components, or in two 
stages by first using the basic components and then using higher level subaggregates, with the 
same formula applied at both stages (see also the appendix). 

 Seventh, the Laspeyres volume aggregates have the new commodity property alluded to 
by Irving Fisher in The Making of Index Numbers:  

“The introduction of a new commodity ought, evidently, to change, in some 
degree, any price index which pretends to be a sensitive expression of the data 

 olume 
movem e. Although this 

ems 

 the 
me m

                                                

from which it is computed (unless, of course, the new commodity happens to have 
a price relative exactly equal to the index number)” [emphasis added].6 

If a new commodity is added to the volume aggregate with the identical v
ents as the aggregate, the movement of the aggregate will not chang

se like a banal property, it is quite useful in actual statistical work since frequently one may 
have weighting information of some kind for a new commodity for a reference year, but lack 
detailed price or quantity data. It is possible to create a volume series for a new commodity, 
explicitly or implicitly by imputing the group movement in a straightforward way. Of course, 
given detailed data for a new commodity, one would immediately know if it would push the 
aggregate series up or drag it down. This is quite important for agencies concerned with making 
their GDP by industry and GDP by expenditure estimates mesh, where the implementation of a 
methodology change in a given revision cycle could depend on whether it tended to increase or 
decrease an aggregate growth rate, and decisions are often made under severe time pressure. 

 Eighth, SNA68 recommended rebasing of the volume aggregates every five or ten years. 
Although the manual is vague about the mechanics involved, it clearly favoured retaining
sa ovements of historical series when the relative price structure was updated. It also 
favoured, if not quite so clearly, calculating volume aggregates at new base year prices starting 
from the base year itself, which became the Canadian practice for all rebasings that followed the 
publication of the SNA68 manual until the CSNA moved to chain Fisher estimates in 2001. For 
example, the 1961 base year was introduced for the period 1961 and after in the second quarter 
of 1969. Note that although quarterly estimates for the base year would be at base year prices, 
the annual benchmark estimates would reflect the previous base year. In terms of the previous 

 
6 Quoted by Krtscha (1984, p.136). 
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example, while CSNA calculated a quarterly series at 1961 prices from 1961 forward, the 
movement of the annual volume series for 1961 was based on 1957 prices. It should be noted 
that until the publication of the SNA68 manual, the CSNA had always applied the new base 
earlier than the base year itself, the 1949 base being applied starting in 1947 and the 1957 base 
starting in 1956. 

 Introducing a new base year only in the following year, in terms of the annual movement, 
certainly reduces the magnitude of the revisions of the volume aggregate series, but generally at 

r each series as follows: 

a heavy price in terms of representativeness. Even with updatings of the base year every five 
years, the finalized estimates for the last year of a span will be five years removed from their 
reference year,.  

 The historical volume aggregates would be linked to the new volume aggregates using a 
rebasing factor fo

 t05055 qp)qp/qp( ∑∑∑ × ;   4,,1,0t K= . 

H
w s carried out f

ence expenditures at year 0 prices are linked to the new series at year 5 prices. Typically, there 
ould be a loss of additivity when this rebasing wa or the historical period (e.g., the 

. Major Weaknesses of the SNA68 Measures 

The principal weakness

sum of expenditures on consumer services and consumer goods would no longer equal total 
consumer expenditure). In Canada, this was handled with an elaborate set of adjusting entries 
that re-establish additivity between the sum of components and their aggregate, although it 
would probably have been simpler just to publish a note of warning that due to chain linking, 
additivity did not hold.7 

 

3
 

  of the SNA68 methodology was obvious to its framers even at 
e time it was promulgated. In a rapidly changing world, a set of constant prices can get out of 

 the new base year and the old base year, but this was probably 

                                                

th
date even after a five-year interval, and will be unrepresentative of the economy whose output it 
is supposed to measure. Thus, SNA68-type estimates frequently lack the quality of 
representativeness. Also, given a negative correlation between prices and quantities, there will 
tend to be a positive bias in direct Laspeyres volume measures, and this bias will be more serious 
the longer a single set of constant prices is retained. For this reason, those who decided on the 
procedures for the SNA68 considered the possibility of chaining volume series every year 
instead of every five or ten years, but finally rejected the idea for general application because of 
its onerous data requirements. 

 The SNA68 manual did give lukewarm support to the idea of calculating Fisher index 
numbers for the years between
never done in any country and certainly not in Canada. The problem was that, for example, 
between 1961 and 1971, two successive base years of the CSNA, one could only calculate one 
true Fisher volume index number, for 1971 as compared to 1961. One could of course, calculate 
index numbers for the intervening years from 1962 to 1970, that would also reflect a geometric 

 
7 This was the practice for the quarterly estimates of GDP by expenditure category. There were never any adjusting 
entries published for the monthly estimates of GDP by industry. 
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mean of indexes at 1961 prices and indexes at 1971 prices, but it didn’t make any sense to give 
1961 prices and 1971 prices the same influence on volume movements in 1962 as compared to 
1961, when the price structure in 1962 was so much more like that of 1961. 

 A second major weakness of SNA68 is that the Laspeyres formula does not pass the time 
reversal test; i.e., the Laspeyres quantity index for year t with base year 0 is not equal to the 

ciprore cal of the Laspeyres quantity index for year t with base year t as required by the time 
reversal test; i.e., 
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In fact, the reciprocal of the Laspeyres quantity index is th e index, which 
shows the dual nature of the two formulae, one being the complement of the other. Suppose that 
 e Paasche volum

prices and quantities, after changing in year 1, revert to their previous year 0 values in year 2. A 
chain Laspeyres volume index with a link at year 1 would show: 
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 Generally one would expect prices and qua tities to be negatively correlated. The import 
of this is that a chain Laspeyres volume index may be subject to chain index drift, tending to drift 

e, but for statisticians who are more interested 

 relative importance of each transaction 

ated a 20-year output series with base prices equal to the 

                                                

 

n

upward due to a negative correlation between prices and quantities even if the overall level of 
output between two years at the same point in the business cycle is identical. More frequent 
chaining will not help this situation, but only worsen it, by strengthening the negative correlation 
between the index weights and quantity relatives. 

 The time reversal test has been dismissed as a useful criterion for index number formulae 
because in our world time never does run in revers
in producing reliable indexes than in clever word play, the failure of the Laspeyres formula to 
pass the time reversal test constitutes a serious problem. 

 A third weakness of the SNA68 is that the recommended volume estimates would not 
pass the transactions equality test, which states that, “the
is dependent only on its magnitude.”8 This is quite obvious, since the relative importance of all 
commodities in the Laspeyres volume estimates would be based only on the expenditures of base 
year 0. Base year transactions would consequently have a considerably greater influence on the 
estimates than those of other years. 

 This is similar to the property of representativeness already discussed but is not identical 
with it. For example, if one calcul
average annual prices over the entire 20-year period, such estimates would pass the transactions 
equality test (with transactions from every month of every year determining the base prices). 
However, by taking them from all years, the base prices would be poorly representative of any 
particular year, especially (if relative prices were strongly trending) the initial and final years. 

 
8 See Dikhanov (1994, p.3). 
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 This particular weakness has not bothered most national accountants. The emphasis has 
been on finding a base year that was a normal year with a representative price structure. For 
example, in a comparison between output levels in 1913 and 1918, 1913 constant prices would 
be preferred over 1918 constant prices, since 1913 was a normal peacetime year and 1918 was a 
war year.9 However, experience has shown that it is not that easy to find a “normal” year to 
serve as base. In the Canadian System of National Accounts (CSNA), some of the recent base 
years have proven less than optimal, including 1981 and 1992 which were both recession years. 
The year 1981 was especially poor as it was also a year when relative prices of important 
commodities were much higher than usual, as were nominal interest rates..  

 The use of a single year’s base prices is especially problematical for industries such as 
agriculture where relative prices are persistently volatile. (It was to avoid the difficulty in finding 
a single representative base year that 1935-1939 base prices were adopted by the CSNA for its 
initial set of output estimates at constant prices, but subsequently base prices were always taken 
from a single year.) 

 

4. The Natural Remedies for These Weaknesses 
 

 In summary, the SNA68 measures had three major weaknesses: lack of 
representativeness, an upward bias due to the use of the Laspeyres formula, and failure to pass 
the transactions equality test. All of these weaknesses can be corrected by calculating annually-
linked volume series, where each year’s expenditures are evaluated at the average of a given and 
the previous year’s prices. Technically speaking, this would involve calculating a chain 
Edgeworth-Marshall volume series rather than a direct Laspeyres volume series. To make it clear 
how the proposed measures would differ from the SNA68 measures as well as the Hill SNA93 
proposals, Hill’s eight points will be rewritten in detail to reflect my proposals. 

 First, the Laspeyres volume aggregates would be replaced with expenditures at constant 
prices for years 0 and 1 combined, denoted hereafter by 

 t01qp∑  

 The annual index for year 1 for the above series is an Edgeworth-Marshall volume index, 
given as: 

(4-1) ∑∑= 001101
EM

0/1 qp/qpQ . 

 It can be readily seen that such an index, in contrast with the Laspeyres volume index, 
passes the time reversal test; i.e., 
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9 See Bowley (1924, p.92) where this argument is made in the context of a price index, with the Laspeyres formula 
favoured over the Fisher. 
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Therefore, chain Edgeworth-Marshall indexes will be less subject to chain drift than chain 
Laspeyres indexes. 

 Second, the use of base period prices defined over two years rather than one provides a 
more stable reference than a single year’s prices would. Commodity by commodity, the base 
period price is defined so that the following equality holds: 

 yq
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For this to be true, it must also be so that: 
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that is, the base price must be calculated as the unit value for the two years 0 and 1, which is the 
mean of the quarterly prices using quantities as weights. As discussed in section 2, this is the 
only appropriate way to calculate the average price for a homogeneous product. This base price 
can also be interpreted as a harmonic mean of the quarterly prices, with the weighting based on 
expenditures; i.e., 
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 As in the SNA68 case, if one were working with value series and independently derived 
price indexes rather than prices and quantities, the requirement would be somewhat different. For 
base prices defined over years 0 and 1, one would require that: 
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where  is the price index for a given quarter with a two-year base period covering years 0 
and 1. Generally, the identity in (4-3) does not hold. Instead, the quarterly values for the base 
period must be prorated so that the value for quarter q of year y at constant prices for years 0 and 
1 will be equal to the following: 
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 As will be seen in the seventh point, the official chain volume estimates are to be based 
on annual links, so for the finalized estimates there is no issue of whether the adjustment factor 
should be applied to years 0 and following, or only to years 0 and 1. 

 Close inspection will show that this calculation of base prices for a two-year base period 
is completely analogous with the calculation of base prices for a one-year base period in the 
SNA68. Thus, it is somewhat surprising that this option seems to have been ignored in the 
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literature on chain volume measures. The principle of Ockham’s razor would suggest that the 
problems that plagued the SNA68 world should be solved with the least possible deviation from 
it. Instead the proposed solutions have usually related to different formulae than the fixed-price 
volume formula, notably the SNA93 recommendation in favour of the Fisher formula. When 
interest has been expressed in a fixed price formula, it usually relates to base prices defined as 
another average of the prices of years 0 and 1. In particular, the Walsh volume index, defined as: 
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has received favourable attention, notably from Erwin Diewert (1996). Note that in the Walsh 
volume index, the base prices represent geometric means of the average annual prices for years 0 
and 1, but since these are calculated as in the SNA68 system, the Walsh base prices represent an 
odd hybrid: the unweighted geometric means of weighted harmonic means. 

 Formula (4-5) does not satisfy the property of transactions equality between the two years 
0 and1 because both years have about the same impact on the calculation of the average base 
prices even if the volume of transactions was much greater in one year than the other. (This is a 
real possibility for new commodities, outmoded commodities or highly cyclical ones, as 
discussed in section 8.)  

 If the price of a commodity were zero in either year using (4-5), the Walsh base price 
would be zero, and the commodity would have no influence on the estimate of volume change 
for the year. If there are no sales of the commodity in a given year one must impute a price for it 
anyway; it does not simply disappear from the calculation. The Edgeworth-Marshall base prices 
are much better behaved in this respect. At the limit, if all transactions were in year 0 and none in 
year 1, the unit value for years 0 and 1 would reduce to the unit value for year 0 only. 

 Third, the ratio of the expenditures at current prices to the expenditures at constant prices 
provides an implicit price index: 
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This is the Edgeworth-Marshall counterpart to the Paasche price index and would serve much the 
same purpose. Operationally, one can choose between calculating volume aggregates directly or 
by deflating value observations using implicit price indexes. However, like the Paasche price 
indexes, these Edgeworth-Marshall implicit price indexes would be poor indicators of price 
change in and of themselves, since all quarterly changes would be distorted by changes in the 
index basket from one quarter to the next.  

 Note that the first term after the first equal sign in (4-6) represents, not an index of values 
at current prices, as in a formula for a Paasche price index, but rather the index of values for the 
current year t to the base year values re-expressed in terms of average prices for years 0 and 1. 
Although this may look a little strange to someone used to the standard formulas, it is quite 

 289



Andrew Baldwin  

logical. If one rejects a single year’s prices for making volume comparisons why would one wish 
to index current expenditures to base year expenditures at their own prices, rather than at a more 
normal set of prices? 

 Note also that while the counterpart of a Laspeyres volume index number with base year 
0 is a Paasche price index number with the same base, the counterpart of an Edgeworth-Marshall 
volume index number with base year 0 is an implicit price index with a multi-year base covering 
years 0 and 1. 

 Fourth, as with the Laspeyres volume aggregates, these volume series would be additive 
across all important dimensions, and so would satisfy the property of matrix consistency. This 
point cannot be stressed enough, since the biggest drawback of SNA93’s proposed Fisher 
aggregates is that they are not additive or matrix consistent. 

 Fifth, the change between any two quarters, or between the base year and the following 
year, of the Edgeworth-Marshall volume aggregates satisfies the proportionality test. This is 
because, like the Laspeyres aggregates, all expenditures for all periods are converted to the same 
set of fixed prices. 

 Sixth, the Edgeworth-Marshall volume aggregates are weakly consistent in aggregation; 
i.e., they can be equally well calculated in a single stage from basic components or in two stages, 
by first calculating subaggregates from basic components using the Edgeworth-Marshall 
formula, and then adding up the volume subaggregates to get the aggregate series. The 
Edgeworth-Marshall formula is weakly consistent in aggregation. At the second stage of 
aggregation the Edgeworth-Marshall formula would not be used to calculate the aggregate from 
the subaggregates; that would yield an incorrect result. In this respect, Edgeworth-Marshall 
aggregates differ from SNA68’s Laspeyres volume measures, which were strongly consistent in 
aggregation. However, the Edgeworth-Marshall aggregates are superior to their Fisher 
aggregates which are not even weakly consistent in aggregation.10  

 Seventh, the Edgeworth-Marshall formula also has the new good property possessed by 
the Laspeyres formula. This is logical, since any formula that can be expressed as a weighted 
average of its component indexes will satisfy the new good property. It is one of the weaknesses 
of the Fisher formula that, being a geometric mean of the Laspeyres and Paasche indexes, it does 
not satisfy the new good property. This is obvious if one thinks of a new good being added for 
year 2004, with an imputed growth ratio equal to the Fisher volume index number for 2004 that 
was calculated without it. Since this Fisher index number will differ from its Laspeyres or 
Paasche components, both of these components will change when the new good is included, and 
so will the Fisher aggregate. To include the new good without it making a difference to the 
overall index, it would be necessary to treat the same new good as having two distinct 
movements: a movement equal to that of the Laspeyres measure for the Laspeyres calculation, 
and a movement equal to that of the Paasche measure for the Paasche calculation, so that, 
overall, the Fisher measure would remain unchanged. This would be possible, but would also be 
messy and error-prone. 

                                                 
10 The failure of the Fisher formula to be even weakly consistent in aggregation, is not, as is sometimes alleged, 
empirically insignificant; the erroneous calculation of a Fisher aggregate in two or more stages instead of in a single 
stage can even reverse the direction of measured growth of an aggregate. 

 290



Andrew Baldwin  

 Eighth, Edgeworth-Marshall volume aggregates would be calculated as a chain volume 
series whose base would change every year. This would also be true of the Edgeworth-Marshall 
price aggregate. For the current year the estimate would be given by: 

(4-7) tt1t qp∑ − . 

Earlier years would follow the recursion: 

(4-8) 1t1t2t
t1t2t

tt1t qp
qp

qp
−−−

−−

− ∑∑
∑ × . 

That is, the volume aggregate would always be linked backwards, so that the additivity of the 
most recent periods would be preserved. This is different from what is recommended in the 
SNA93 where chaining is forward and additivity is not preserved for the most recent volume 
estimates even if a Laspeyres formula rather than a Fisher formula is used to calculate them. 

 In an era of electronic publications, there is no great difficulty in changing the base of 
volume estimates every year as this proposal would require. This has been proven by the 
Australian and British National Accounts programs that have adopted backward linking for their 
annually-linked chain volume measures based on the Laspeyres formula. For the Statistics 
Canada monthly GDP by industry estimates on which the present author worked, this proposal 
would entail the publication of from 43 to 54 months of data that were additive over an annual 
production cycle with backward linking in place. The time span is so long due to delays in the 
updating of annual benchmark price and volume estimates. 

 These estimates would be representative in a way that the old volume estimates were not, 
since the base prices would be updated every year. They would also satisfy the requirement of 
transactions equality, since every year y would be used to calculate the base prices for two 
annual comparisons: y-1 to y and y to y+1, and the importance of year y in the pooled set of base 
prices would depend on the volume of transactions associated with year y. 

 This is in contrast with the Fisher case recommended by SNA93 where the principle of 
transactions equality is violated. Instead, each year’s transactions have about the same influence 
on the measure of base prices regardless of their volume. As can be seen from (4-1), if the 
volume of transactions in year 0 is very small compared to year 1, the base prices for years 0-1 
will essentially be year 1 base prices. In the Fisher case, by contrast, one would have: 
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and prices for both years would have essentially the same influence on the measured volume 
movement even though the volume of transactions in year 0 is far less than what it is in year 1. 
Given a negative correlation between prices and quantities, this would imply much higher 
measured rates of growth using the Fisher measure than using the Edgeworth-Marshall measure. 
This is illustrated with an example in section 8. 

 Note also that another index number formula often associated with the Edgeworth-
Marshall formula, the Bowley-Sidgwick formula, does not satisfy the transactions equality 
principle either. It is the arithmetic equivalent of the Fisher formula, defined as the arithmetic 
mean of the Laspeyres and Paasche indexes: 
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 Again, it can be seen that even if the volume of transactions is much larger in period 1 
than in period 0, with this kind of a case, prices of period 0 and period 1 have about the same 
impact on the index. (In fact, the Bowley-Sidgwick formula would give an even worse result in 
this respect than the Fisher formula. Since the geometric mean is always less than the arithmetic 
mean of two estimates, the higher estimate based on the period 0 prices would have a greater 
influence on the Bowley-Sidgwick estimate than on the Fisher one.) 

 Moreover, like the Laspeyres formula, the Bowley-Sidgwick formula is also biased. It 
does not pass the time reversal test, so that we have: 
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and so, like the Laspeyres formula, although much less so, it is subject to chain index drift. 

The SNA93 manual recommends (see 16.76) that a set of fixed-price estimates be calculated in 
addition to the chain Fisher estimates, which would be rebased and (backward) linked about 
every five years. This is an excellent recommendation, which recognizes the limitations of 
annual-linked chain measures for certain kinds of analysis. 

 The SNA93 manual says nothing on where the base year should be in the finalized 
estimates for a five-year span in such a chain volume measure, although a seminal study by 
Szulc (1998) indicated that this is a matter of considerable importance. Comparisons using 
Canadian data on gross domestic expenditures showed that price indexes calculated according to 
an annual-link chain Fisher formula were poorly approximated by chain Laspeyres indexes with 
five-year or ten-year links, but were quite well approximated by chain fixed-basket indexes with 
the same linking frequency if these employed a mid-year basket. It is reasonable to assume that a 
similar relationship would hold for volume comparisons, favouring the choice of mid-period 
base prices for constant-price volume aggregates. 

 In fact, such was the practice of the Office of National Statistics in the United Kingdom 
in compiling their volume estimates until they moved to an annual-link chain Laspeyres 
format.11 Expenditures for 1983 to 1987 were at 1985 prices, expenditures for 1988 to 1992 at 
1990 prices and so on. Because a given year was never more than two years removed from the 
base year, the base year prices were more likely to be representative of that year, than they would 
have been if the base year were the initial year of a five-year span, and the given year were the 
final year or penultimate year of the span. 

                                                

 In their analysis of the differences between annual-linked and published estimates for 
both expenditure categories and industry estimates Tuke and Brown (2003) note that from 1995 
to 2001 these are never larger than 0.2% in absolute terms. These remarkably small differences 
provide a good indication of the extent to which the choice of a central base year secures a lot of 
the benefits that can be derived from annual linking. It is likely that the differences would have 

 
11 See Lynch (2003). 
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been considerably greater had the Office of National Statistics followed SNA68 conventions and 
made the base year of their volume estimates the initial year of each span. 

 Given that the official chain measures should be Edgeworth-Marshall measures, the 
fixed-price volume measures should not be Laspeyres aggregates, but should be extensions of the 
series used to calculate the Edgeworth-Marshall links, i.e. for the most recent period they would 
have the formula: 

(4-10)  ...2,1,0,2,1,2y;qp y01 −−=∑
These estimates would have to be calculated up to year 6, and possibly to year 10, before they 
were replaced by new volume series with base prices of years 5 and 6. For the five preceding 
years, the chained volume estimates would have the formula: 

(4-11) 3,4,5,6,7y;qp)qp/qp(qpf y45245201y45 −−−−−=×=× ∑ ∑∑∑ −−−=−−−−  

where the series are at constant prices of the years -5 and -4. Extension to earlier five year spans 
is obvious. Note that with these links the annual movement for the year -2 is based on base prices 
for the years -5 and -4, and not those of years 0 and 1. 

 Generally speaking, calculating fixed-price volume aggregates using base prices over two 
years rather than a single year would tend to create smoother volume estimates with reduced 
amplitude, any anomalies in a single year base being smoothed out in a two-year base period. So 
in two respects, the centrality of the base period, and the fact that a double year base is used, 
these fixed-price aggregates would be superior to the old SNA68 Laspeyres volume aggregates. 

 Although the ultimate length of any fixed-price span would only be five years, due to the 
inevitable lags in rebasing the length of the current span would be much longer. For example, in 
Canada the monthly GDP estimates could probably only have been switched to 1997-8 prices 
with the July 2001 update, replacing 1992-93 prices that would have been taken back to January 
1992. So the series at 1992-93 prices would have been calculated for January 1990 to June 2001, 
a period of 11 years and six months. (If the fixed-price series were a Laspeyres series with a 
1992 base, it would be a year shorter, ending in June 2000.)  

 

5. Subannual Values of Annually Linked Chain Aggregates 
 

 Most countries publish GDP estimates at constant prices both quarterly or monthly, and 
these subannual estimates are of at least as great interest to users as the annual estimates. 
Unfortunately, papers on chain volume aggregates written by interested economists or even by 
official statisticians have tended to ignore the difficulties in creating quarterly series with annual 
links. Most papers on the subject deal with the characteristics of different formulae -- Fisher, 
Montgomery-Vartia and so forth -- for individual (read annual) links and one is left with the 
impression that these same properties of the annual links also exist for the quarterly growth 
ratios. As a general rule, this is not so, and some formulae which look good in terms of annual 
links nevertheless look much worse if one considers what kind of quarterly estimates they will 
generate. 
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 One of the few works that does recognize this problem is chapter XVI of SNA93. 
Unfortunately, its conclusion, that “chain indices should only be used to measure year-to-year 
movements and not quarter to quarter movements” is unduly defeatist. This conclusion seems to 
be based on its observation “that if it is desired to measure the change in prices or volumes 
between a given month, or quarter, and the same month, or quarter, in the following year, the 
change should be measured directly and not through a chain index linking the data over all the 
intervening months, or quarters” (SNA93, section 16.49). 

 However, annually linked volume aggregates whose constant price structure changes 
every year are not much different from the old SNA68 volume measures. The growth rates 
measured between consecutive quarters would all be comparable (i.e., they would satisfy the 
proportionality test) except for the first quarter. Over a 15-year span covering 59 quarterly 
changes, the SNA68 aggregates would provide 57 comparable quarterly changes, which is 95% 
of the total (the first quarter changes for the years following link years being non-comparable). 
Chain volume aggregates would provide 45 comparable quarterly changes, or 75% of the total. 
For monthly GDP series, only January monthly changes would be non-comparable, so 
comparable monthly changes would be 91.7% of the total. 

 And for that matter, if Edgeworth-Marshall volume aggregates were calculated, the only 
distortion in a fourth quarter to first quarter comparison would be in the replacement of one set 
of base prices by another, with both sets being very current and sharing half of their prices in 
common. In many cases the impact of the change in price structure would be negligible. This 
would also be true of four-quarter comparisons, which would have to contend with  a single link 
at the year and not on four quarterly links as SNA93 postulates. 

 Users of SNA data want to have one official set of quarterly and annual estimates, and 
not go to one series for annual growth rates and another, possibly with quite different annual 
movements, for quarterly growth rates. Surely users should be provided with overlapping sets of 
direct volume aggregates that provide meaningful quarterly growth rates where the chain volume 
aggregates do not do so. In many cases, these alternative series would likely only provide 
assurance that the quarterly growth rates generated by the chain volume aggregates are not very 
different from those provided by measures of pure volume change. As was noted in the previous 
section fixed-price volume aggregates with base prices defined over two years even if finally 
defined for a five-year span could be initially calculated over a span of 10 to 11 years, so there 
would be a lot of overlap between fixed-price volume aggregates, ensuring some kind of a fixed-
price measure for all quarterly and four-quarter comparisons. 

 The quarterly volume index estimates equivalent to the Fisher annual estimates would 
have the following formula: 
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 This is the same formula as (4-9) except that all period 1 quantities and the Paasche 
index’s period 1 prices are now for a specific quarter rather than for a year. As far as this 
particular index comparison goes, proportionality is still satisfied, since what we have is still the 
geometric mean of two fixed-price volume indexes. Factor reversal is also satisfied since: 
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 However, since there is also annual rather than quarterly linking, the quarterly growth 
ratios of this index do not satisfy proportionality. What we have is 
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and even in the absence of quarterly price change by any commodity, the growth rate will 
generally be different from one due to price movements between the base year and the quarters 
of the current year. The problem stems from the Paasche component of the Fisher index, and not 
from the Laspeyres component; a direct Paasche index, because its relative price structure 
changes every period, does not satisfy the proportionality axiom for multi-period comparisons; 
therefore, neither does the direct Fisher index. 

 Formula (5-1) can be simplified by replacing its Paasche component with a fixed-price 
index reflecting the price structure of year 1: 
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where the superscript GMFP indicates a geometric mean of fixed-price volume indexes. 
Following the second equality sign, the superscripts of the volume indexes indicate what year 
they take their fixed price structure from. Thus,  is identical to , the Laspeyres 

index. In some cases, in the absence of quarterly price data, such a formula might be used to 
represent a Fisher volume index, although strictly speaking it is not one. A GMFP index does 
satisfy proportionality for its quarterly growth rates: 
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as one would expect of the geometric mean of the growth rates of two fixed-price volume 
indexes. However, the GMFP index does not satisfy the factor reversal test when multiplied by 
its equivalent geometric mean fixed basket (GMFB) index: 
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 These geometric mean indexes are the quarterly indexes that are closest to Fisher indexes 
while retaining the proportionality property. Rather than leaving it to the different national 
statistical agencies to decide what to do, this is what SNA 1993 should have prescribed for 
quarterly measures when it advised the adoption of the Fisher formula for annual measures. 

nd the 

ity is concerned, between chain fixed-price 
lume

ks and the chain Paasche quarterly series for the 

sentially meaningless. It would have been 

that adopting the Fisher formula would have for the additivity of their estimates, and this has 

However, so far these measures have not been adopted by either the United States or Canada, the 
only countries, so far, that have adopted the Fisher formula for their chain volume measures. 

 Often there is a greater level of detail available for both price indexes and value series at 
the annual level than at the quarterly level, so there is a need to adjust a quarterly volume 
indicator to annual benchmarks. For a geometric mean volume index, it would be inappropriate 
to directly adjust it so that it averaged to a Fisher volume index. Instead, one would want to 
benchmark the quarterly chain Laspeyres volume index to its annual benchmarks, a
quarterly chain fixed-basket index compatible with a chain Paasche volume index to its annual 
chain Paasche benchmarks, and then calculate the geometric mean of the adjusted series. 

 Since the additivity problem is usually discussed in a general sense, many people may be 
unaware of the crucial distinction between additivity of quarters to years and other types of 
additivity (over commodities, industries or regions) in calculating annually-linked chain volume 
indexes. Generally speaking, chaining destroys all types of additivity except the addditivity of 
quarterly values to annuals, where that additivity exists to begin with. Therefore it is simply not 
true that there is not much difference, as far as additiv
vo  measures such as the Edgeworth-Marshall series and other measures such as Fisher or 
Sato-Vartia that do not have this additivity property. 

 Unfortunately, the implementation of chain Fisher volume measures by both the U.S. 
Bureau of Economic Analysis (BEA) in the U.S. National Accounts and by Statistics Canada in 
the CSNA has muddied these distinctions. Both have imposed additivity on their quarterly chain 
Fisher measures, although it is illogical to do so. The BEA calculates quarterly-linked chain 
Fisher indexes and benchmarks them to annually-linked chain Fisher benchmarks. The CSNA 
has also calculated quarterly-linked chain Fisher indexes, but has not benchmarked these 
estimates to anything at all; the annual estimate is the arithmetic mean of the quarterly estimates. 

 Formula (5-1) is a better way to decompose an annually-linked index than using a 
quarterly-linked distributor, if deflation occurs at the same level of detail for the annual and the 
quarterly levels. If this is not the case, the appropriate thing to do would be to adjust a quarterly 
distributor of chain Laspeyres annual benchmarks and another distributor to chain Paasche 
annual benchmarks, and then month by month calculate the geometric mean of the two series. 
(Assuming that it were appropriate to have a quarterly-linked chain Fisher distributor, it should 
be adjusted to the chain Fisher benchmarks by using the chain Laspeyres quarterly series as the 
distributor for the chain Laspeyres benchmar
chain Paasche benchmarks.) Whatever distributors were used, the quarterly index numbers 
would not average to the annual benchmarks. 

 As for the CSNA measure, given that the quarterly index numbers are based on quite 
different price structures, their arithmetic average is es
more appropriate to calculate their annuals as a geometric mean since the chain series is nothing 
but a strand of quarterly growth ratios linked together. 

 Both the BEA and Statistics Canada seem to have had misgivings about the consequences 
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kept both of them from calculating annuals and quarterlies in a way that is logical and consistent. 
This is especially surprising for the BEA because they have been publicly dismissive of the value 

arshall measures that would legitimize this additivity? And the same goes 
r Sta

ading the quality of growth estimates, so it merits further comment. As 

d quantities are intermediate between those in the first and last periods” 

er formula has the time reversal property, but this in no way 

one must calculate output relatives 
12

parability with the 
official seasonal adjusted series is compromised, has little to recommend it. 

                                                

of additivity in national accounting (see, for example, the 2000 paper by Ehemann et al.). 

 Why doesn’t the BEA practice what it preaches? Or, to turn the question around, why 
doesn’t it preach what it practices? Given that it is so unwilling to give up additivity of quarterly 
estimates to annuals that it will impose this property, against all logic, on its chain Fisher 
estimates, why doesn’t the BEA advocate and implement chain fixed-price volume aggregates 
like the Edgeworth-M
fo tistics Canada. 

 The use of quarterly-linked chain estimates by both the United States and Canada has a 
serious potential for degr
Hill remarks in SNA93: 

“[A] chain index should be used when the relative prices in the first and last periods are very 
different from each other and chaining involves linking through intervening periods in which the 
relative prices an
(SNA93, p.388). 

If, for example, one wants to know the difference in output between the first quarter of 2001 and 
the first quarter of 2003, linking eight times through different quarters will hardly give us in each 
and every case a relative price structure that departs smoothly from that of the initial quarter in 
the direction of the terminal relative prices in the next quarter and that will inevitably be 
intermediate between those of the first and last quarters. Suppose, for example, one were 
measuring gross output of the air transport sector. Does it really make sense to link through the 
prices of third quarter and fourth quarter 2001, given the highly abnormal pricing situation in the 
wake of the September 11th terrorist atrocities? The consequences of linking where one shouldn’t 
be are reduced because the Fish
justifies linking inappropriately. 

 Some commodities are seasonally disappearing and this is especially a problem for 
northern countries like Canada. Prices may well be missing for one or both quarters of a 
quarterly comparison. More seriously if quantities go to zero, 
with a zero base, which makes the index number undefined.  

 This problem is only partially resolved by the seasonal adjustment of economic time 
series. First, even if a statistical agency only publishes GDP at constant prices as a seasonally 
adjusted series, it is sound statistical practice to calculate the same aggregate unadjusted for 
seasonal variation. Any chain linking procedure that makes the calculation of such raw estimates 
impossible, or requires so much tinkering to calculate them that their com

 
12 In principle, for a formula like the Fisher, if the volume relative of one of its components is undefined due to zero 
production in the base quarter, the calculation can be redefined as an aggregative formula in which the production 
value for that commodity simply disappears from the sum for the base quarter. This is the advantage of an 
aggregative formula like Fisher (or Edgeworth-Marshall) over a log-change formula like Törnqvist, since there is no 
way the latter can be defined, except as a function of volume relatives. However, in a production context, it might be 
inconvenient to calculate the estimates using an aggregative formula rather than a sum of weighted averages 
formula. 
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 Second, one is necessarily resorting to highly artificial base prices. Certainly seasonal 
adjustment procedures can arrive at a first quarter price for field-grown corn one way or another, 
but it is not and can never be a solid number, unlike its annual unit price. 

 Although both BEA and Statistics Canada procedures involve quarterly linking, the BEA 
procedures are better, because at least the quarterly-linked estimates are adjusted to good annual 
benchmarks. The Canadian estimates are not, which leaves open the possibility of substantial 
chain index drift in one direction or another. 

 Another danger with the CSNA procedure is that more than anything else, the quality of 
output estimates at constant prices depends on the level of disaggregation at which the estimation 
takes place.13 More disaggregated information on prices, revenues or production volumes is, and 
always will be available at the annual than at the quarterly level. Creating a methodology that 
requires quarterly estimates encourages the calculation of production estimates to occur at too 
gross a level of detail. 

 One of the properties of the Fisher formula is proportionality; i.e., if all quantities of all 
commodities increase by the same percentage, that will also be the rate of increase of the Fisher 
volume index: 
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Note that the geometric mean index shown in (5-1) also has the proportionality property for 
quarterly changes. On the other hand, the BEA measures only approximately have this property 
for quarterly changes. The quarterly changes of their quarterly-linked series would have this 
property prior to benchmark adjustment, but not afterwards. In other words, the quarterly data 
may show no quantity change from one quarter to another in any commodity, but due to 
benchmark adjustment an increase or decrease in output will nonetheless be indicated. And this 
could happen even if the quarterly distributor and the annual benchmarks were based on the 
same data for the same commodities. The BEA documents on their chain measures have not paid 
any attention to this important caveat. 

 Nonetheless, the BEA measures do satisfy proportionality for annual changes. This is not 
true of the Statistics Canada measures. Calculated as the average of the quarterly Fisher 
estimates, different years are not compared based on the same sets of relative prices, so the 
annual estimates could show an increase or a decrease even if all outputs were unchanged. In 
other words, the BEA has chosen to give priority to their annual growth rates; Statistics Canada 
to their quarterly growth rates. Obviously, the BEA has made the better choice. The quality of 
quarterly estimates will never be up to the standard of the annual estimates. 

 However else the Statistics Canada changes its methodology for calculating chain volume 
estimates for the CSNA, the agency should switch to chaining annually regardless of the choice 
of formula. Chaining quarterly with no annual benchmarks is contrary to SNA93, contrary to 
BEA practice, contrary to Eurostat practice, and contrary to common sense. 

                                                 
13 On this topic, see the paper by Horner (1971). 
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 Quarterly- or monthly-linked indexes do have their uses. For example, they are a required 
adjunct if one is calculating seasonal-basket price indexes and wishes to make some sense of 
quarterly or monthly price movements. However, they are only useful as adjuncts to official 
series, rather than as official series. 

 Besides the Fisher formula, a number of log change formulae have been recommended 
for measuring volume indexes, including the Törnqvist, Montgomery-Vartia, and Vartia-Sato 
ones. All conform to the following general formula: 

 , ( ) ))qln()q(ln(w)q/qQ 01
w

01
LC

0/1 −== ∑∏
whence the name log-change indexes. 

 The Törnqvist index is mentioned as an alternative to the Fisher index in SNA93. The 
Montgomery-Vartia formula was recommended as the best technical formula by consultants to 
Eurostat for its good properties, despite the fact that it does not meet the proportionality test. By 
the way, this report dismissed the Fisher formula from consideration because it is not even 
weakly consistent in aggregation.14 The closely related Sato-Vartia formula has also attracted 
considerable interest. Like the Fisher formula, it passes both the factor reversal and the time 
reversal test, and it is exact with respect to a CES aggregator function.15 

 However, the Törnqvist formula has a serious problem when production goes to zero for 
a commodity. Technically the index becomes undefined, since the logarithm of zero does not 
exist. This is a real problem for calculating quarterly and especially monthly GDP. Production of 
some commodities does go to zero for seasonal and other reasons. Vartia states in his paper that 
the Sato-Vartia formula will properly handle quantities or prices going to zero. However, this is 
only true if the index weights and component index numbers are changing at the same time. If 
one is linking annually but calculating quarterly or monthly index estimates, and output does not 
go to zero in all quarters of the year, the Sato-Vartia index will also be undefined. For calculating 
subannual series then, it is not more robust than the Törnqvist formula, since it is much more 
likely that production will drop to zero for a few months than for an entire year. 

 So the Sato-Vartia index is exact for the CES aggregator function yet becomes undefined 
for situations that frequently occur in calculating quarterly economic accounts. This is why one 
should put quotes around the word “superlative” when applied to an index that is exact for an 
aggregator function; it may be anything but superlative in terms of its index properties. 

6. Analysis of Changes for Quarterly Chain Volume Aggregates 
 

 Any annually-linked chain volume aggregate will have a problem of non-comparability 
for quarterly changes for the first quarter due to the switch from one relative price structure to 
another. However, it is possible to precisely measure the distortion due to this switch. The 
quarterly percent change in the volume aggregate if there were no change in the relative price 
structure would be: 

                                                 
14 See Al et al. (1986, p.354) for dismissal of the Fisher formula and p.355-56 in this same reference for their 
endorsement of the Montgomery-Vartia formula, which they call the Vartia-I formula. 
15 See the articles by Vartia (1976) and by Reinsdorf and Dorfman (1999) for more on this fascinating formula. 
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(6-1) ∑∑ −−−−−− −× 4,1t1t2t4,1t1,t1t2t qp/)qq(p100 . 

 The difference between this quarterly percent change and the actual change in the official 
index is the measure of the interaction between the change in the relative price structure and 
output change. In most cases, this difference would not be great. Annual prices are less volatile 
than quarterly prices to begin with, and a two-year moving average of annual prices would help 
iron out the fluctuations in annual movements. However, where the difference was considerable 
for an official aggregate, a publication release could draw attention to the pure volume change 
measure, and deemphasize the official quarterly estimate of volume change. 

 The same principle would apply in the case of four-quarter percent changes. The percent 
change in the chain volume aggregate from the fourth quarter of year t-1 to the fourth quarter of 
year t, if there were no change in the relative price structure, would be: 

(6-2) ∑∑ −−−−−− −× 4,1t1t2t4,1t4,t1t2t qp/)qq(p100 , 

and the difference between this percent change and the official estimate would show the 
distortion of the measured growth rates due to annual linking. 

 It should be noted that if the Edgeworth-Marshall aggregates were linked at the fourth 
quarter and not at the year, then the four-quarter percent change of the official estimates would 
be a measure of pure volume change: 

(6-3) ∑∑ −−−− −× 4,1tt1t4,1t4,tt1t qp/)qq(p100 , 

and there would be no distortion due to changes in relative price structure. However in this case 
the annual price movements would be compromised. 

 In Statistics Canada, linking at the fourth quarter is the practice for some, but not all, 
price indexes whose baskets are updated once a year.16 Regardless of whether this is the best 
practice for those price indexes, it should be observed that the context is different here. There are 
no annual benchmarks for the price indexes that are linked at the fourth quarter. Their annual 
data are derived from their quarterly data. For SNA volume aggregates, there are annual 
benchmark estimates for many series and in some cases sub-annual estimates are non-existent. 
Hence, linking at the fourth quarter would be inadvisable; it would be better to link at the year. 

 A couple of recent papers by Rossiter (2000) and Whelan (2000), American economists 
who work outside of the BEA have outlined quite arcane calculations to derive the contributions 
of components to growth for the US chained volume measures.17 Neither seems to give sufficient 
attention to the fact that when comparing chained volume estimates across link periods, strictly 
speaking, no precise calculation of contribution shares to growth is possible. Rossiter does 
acknowledge a residual component, reflecting the difference between the sum of component 
contributions and the actual change in GDP. Over the 1991Q1 to 1998Q1 this residual, reflecting 
interaction between volume change and shifts in price structure accounts for 7.6% of the 

                                                 
16 The non-residential building construction price index and the apartment building construction price index are 
linked at the fourth quarter; the air fares index is linked at the year. 
17 The Rossiter paper also shows contributions to change summing to 100, rather than to the percent change of total 
GDP over the period, a formulation that can break down completely if overall GDP growth is zero or nearly so. 
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measured growth in GDP. It seems to be an abuse of language to call such estimates 
contributions to change, when they are at best partial contributions to change. 

 For longer time periods, say the segment of 1991Q1 to 1998Q1 that Rossiter considers in 
his paper, output comparisons based on a single set of constant prices, while problematic, are 
possible. Indeed, it would seem from the discussion in section 4 that even a quarterly Laspeyres 
series at 1992 prices (1992 being a base year for the BEA and the CSNA both) would likely be 
calculated from 1990Q1 to 2000Q2, more than covering the segment at issue. Component 
contributions to the percent change in the aggregate could be simply calculated and would be 
true contributions, not having a residual component. Their principal drawback is that they relate 
to an analytical series and not to the official chain measure of volume change. 

 Such fixed-price series would also be useful for the dating of business cycles. This is a 
delicate task at best, and it would become largely impossible if one had only chained volume 
estimates to work with. The fixed-price series would be useful to monitor the changes in volume 
shares of components of GDP from one period to another where chain volume estimates are non-
additive. (As discussed above, for the most recent year or years, the Edgeworth-Marshall 
estimates would be additive, so one could compare, say, the share of ICT products in current 
quarter GDP with the share in the previous quarter cleanly and correctly.) In his paper, Whelan 
acknowledges that chain measures are not particularly useful for this task and argues instead that 
one should base comparisons of component shares on expenditures at current prices, ignoring the 
inflationary distortions inevitable in such a procedure. This is simply ridiculous, and would mean 
a big step backward for analysis of economic statistics if it ever became commonplace. 

 Yet BEA economists Ehemann et al (2000) agree with Whelan and argue that shares of 
volume series are inherently meaningless because investment in computer equipment exceeds 
investment in software with a 1996 base but not with a 1992 base. I fail to see the point of this 
argument. Not all bases are created equal, which is precisely why there has been a move to 
annual chain measures. Anyone who wanted to know if software’s share in the volume of 
investment between 1996 and 1999 was growing would prefer estimates at 1996 prices; 
estimates at 1992 prices would be rejected given a choice. The two base years are not on an 
equal footing. But estimates at one set of prices or the other would inevitably be preferred to 
comparing investment shares between the two years each at their own set of prices. What is to be 
gained by such an apples and oranges comparison? 

 

7. An Aside on Price Indexes for GDP 
 

 The implicit price indexes for GDP that are derived from the Edgeworth-Marshall 
volume aggregates would not be the most suitable price measures for the components of GDP. In 
order to be consistent with the calculation of the volume measures, it would make sense to also 
calculate annually-linked chain Edgeworth-Marshall price indexes. The index would be 
calculated as: 

(7-1)  ∏
=

−=
y

1t

EM
1t/t

)Ch(EM
0/y PP

where 

 301



Andrew Baldwin  

  )qq(p/))qq(p(2/)qq(p/)2/)qq(p(P 100101100101
EM

0/1 ++=++= ∑∑∑∑
 

This may be contrasted with the similar formula for a Walsh chain price index: 
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and where the prices are weighted by the geometric mean of the quantities in years 0 and 1. 

 Note that the calculation of average quantities over the two years for the Edgeworth-
Marshall price index is based on a simple arithmetic mean whereas the calculation of average 
prices over the two years is based on a weighted harmonic mean. There is no inconsistency here. 
As can be seen, there is no difference in terms of result between weighting by the mean of 
quantities or the sum of quantities. The most natural way of combining the two periods’ 
quantities is to add them together, just as the most natural way of calculating their average price 
for a homogeneous product is to take the unit value. It is not more natural to take the geometric 
mean of quantities in years 0 and 1-- that is, it is not more natural to calculate a Walsh price 
index -- than to take their sum. Moreover, the Walsh index will ignore any commodity that is 
available in only one of the two periods since the geometric mean of a positive value and a zero 
value is zero. (On the other hand, this does mean that a commodity will simply fall out of the 
index basket for a Walsh price index where an Edgeworth-Marshall index must impute for a 
missing price.) 

 In some cases, for commodities with highly volatile production profiles, a two-year 
basket may not be adequate to generate a stable weighting pattern.18 For such commodity groups 
or industries, the chain Edgeworth-Marshall series could be replaced with similar indexes based 
on three- to five-year baskets. At higher levels of aggregation, the chain Edgeworth-Marshall 
formula could continue to be employed.  

 Such an adaptation of the Edgeworth-Marshall formula would not pass the time reversal 
test as defined above. However, that is not a big problem; it would still break the association 
between basket change and price change that makes the use of the Laspeyres formula a hazard in 
chain computations. Unlike the chain Laspeyres series, an Edgeworth-Marshall series would not 
be much subject to chain index drift. 

 Also, the Edgeworth-Marshall formula would have to be adapted to accommodate 
monthly baskets for seasonal commodity groups, using the Rothwell (1958) formula or the Balk 
(1980a) formula or both. These formulae will not be shown or discussed here beyond saying that 
there would be more reason to use the Balk formula the more irregular the seasonal pattern of the 
commodity group in question, since the Rothwell formula postulates a constant seasonal pattern. 
Also, while the long revision period required to properly calculate a Balk price index has kept it 

                                                 
18 Within Statistics Canada, the new housing price index, non-residential building construction price index and 
apartment building construction price index all have three-year baskets; the farm product price index has a five-year 
basket. 
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from being employed in consumer price indexes, and for the most part in industry price indexes, 
the much greater tolerance of national accounts estimates for revisions should not keep it from 
being used in price indexes for national accounting aggregates. 

 Although there is a dichotomy between price and volume indexes with the same formulas 
being used for both, there is no reason to believe that the best price index formula for a 
commodity group is also necessarily the best volume index formula, and still less reason to 
believe that this formula will satisfy the strong factor reversal property. 

 Prices have their cyclical and irregular movements as do production flows, and this is one 
reason for favouring fixed-price series with a two-year base period, but it is less likely that a 
volume series will require a three- to five-year base period than it is that a price index will 
require a three- or five-year basket. As for seasonal commodities, the Rothwell and Balk 
formulas are strictly price index formulas; no-one has ever used them to measure the volume 
change for seasonal commodities and no-one ever will. There is really no place for special 
treatment of seasonal commodities in volume indexes, except in the special case where a good 
can be usefully considered to be a different commodity in every month or quarter of the year. 
Although such cases do arise, they are rare, and at the level of aggregation at which national 
accountants operate, probably non-existent. 

 Therefore, it is really quite immaterial that the Fisher formula satisfies the strong factor 
reversal test and the Edgeworth-Marshall doesn’t, since if one wanted to calculate the best price 
index for national accounting aggregates, one would necessarily be adjusting the Fisher price 
index to handle cyclical or seasonal commodities in a special way, and factor reversal would no 
longer apply. 

 These chain Edgeworth-Marshall price series should have their fixed-basket counterpart 
in a price index defined as: 
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Earlier spans would be linked along the same lines. Arguably, if the price index were quarterly or 
monthly in frequency, the chain price index might be linked at the terminal quarter or terminal 
month, rather than the terminal year. 

 These would not be chain Edgeworth-Marshall price indexes; they would be chain Lowe 
indexes, but they would be based on baskets used in the chain Edgeworth-Marshall price 
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indexes, and they would benefit from the use of two-year baskets, which would tend to give them 
a smaller amplitude than their chain Laspeyres counterparts. 

 

8. Examples of Volume Measures for Declining and Rapidly Expanding Industries 

 

 To get a feel for the importance of the transactions equality principle, it is useful to 
illustrate this with a pair of examples. Table 1 lists data for a declining industry with four goods. 
Output and prices are decreasing for all of the goods in this industry, and there is the expected 
negative correlation between price changes and output. As can be seen, the volume of production 
in year 0 is only about five eighths its level in base year 0, evaluated at base year prices. 
Particularly significant is the decline in output of good 3, accompanied by a doubling in its price. 

 

Table 1. Hypothetical Prices and Quantities for a Declining Industry 

 p0 q0 p0q0 p1 q1 Q1/0 p0q1 

Good 1 1.0 3,000 3,000 0.5 1,940 0.647 1,940 

Good 2 1.0 2,000 2,000 0.4 1,600 0.800 1,600 

Good 3 1.0 1,000 1,000 2.0 180 0.180 180 

Good 4 1.0 1,000 1,000 0.5 650 0.650 650 

All 
goods   7,000    4,370 

 Source: Ehemann et al. (2000, p.6). 

 

 Table 2 shows the relative shares of the four commodities for Laspeyres, Paasche, 
Edgeworth-Marshall and Fisher volume indexes.19 Note particularly the much stronger relative 
share of good 3 for the Paasche index, a consequence of good 3 doubling in price. While good 3 
(along with good 4) is the least important commodity for the Laspeyres index, it is the dominant 
commodity for its Paasche counterpart. The Fisher shares are a weighted average of the 
Laspeyres and Paasche shares, but they differ very little from a simple average of these shares. 
For good three, for example, there is a 28.9% share, which is slightly larger than the 28.0% share 
if one takes the mean of the Laspeyres and Paasche shares. In contrast, because the Edgeworth-
Marshall shares are based on average prices for years 0 and 1 that are calculated as unit values, 
they give more importance to year 0 than year 1, and are much closer to the Laspeyres shares 
than the Paasche shares. The share for good 3 in particular is much lower, at 19.8%, which is 
only about three eighths more than the Laspeyres share. 

                                                 
19 The relative shares for the Fisher index were calculated using the formula shown in Balk (2004; p.109) with the 
appropriate substitution of price indexes for volume indexes and vice versa. 
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Table 2. Relative Importance of Goods for Different Volume Indexes 
for the Declining Industry Example 

 Laspeyres Paasche 
Edgeworth-
Marshall Fisher 

Good 1 0.429 0.313 0.413 0.367 

Good 2 0.286 0.167 0.251 0.222 

Good 3 0.143 0.417 0.198 0.289 

Good 4 0.143 0.104 0.138 0.122 

 

 Table 3 shows the volume indexes generated in terms of this example. Given the negative 
correlation between prices and quantities, the Paasche index is lowest and the Laspeyres index is 
the highest. Note that the Fisher index is only slightly less than the Bowley-Sidgwick one (as it 
must be, since the geometric mean of any two numbers will always be less than the arithmetic 
mean), but the Edgeworth-Marshall index is much greater than either, being considerably closer 
to the Laspeyres measure than the Paasche one. The Walsh index is also larger than either of the 
crosses of Laspeyres and Paasche indexes, but less than the Edgeworth-Marshall index. In 
relative terms, lying closer to the Fisher index than to the Edgeworth-Marshall one. 

 The Edgeworth-Marshall measure gives a fairer measure of the decline in output in year 1 
for this declining industry. The Fisher measure gives excessive importance to the price structure 
of year 1, since that production is much lower by any measure for this declining industry in the 
second year. In particular, it gives too high a share to good 3, whose production in year 1 had 
essentially collapsed. 

 
Table 3. Comparison of Volume Indexes for the Declining Industry Example 

Paasche 0.478 

Fisher 0.546 

Bowley-Sidgwick 0.551 

Walsh 0.562 

Edgeworth-Marshall 0.593 

Laspeyres 0.624 

 

 If one simply inverts the previous situation, so that the prices and quantities of period 0 
are those of period 1 and vice-versa, one gets the case of an expanding industry. Now there is 
expansion for all four goods in the industry, but particularly for good 3 whose output more than 
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quintuples going from year 0 to year 1. Again there is the expected negative correlation between 
price change and volume change: the good with the largest price increase, good 2, also has the 
smallest increase in output. Notice that at prices of base year 0, the output of the industry in year 
1 is more than double what it was in the previous year 0. 

 

Table 4. Hypothetical Prices and Quantities for a New Expanding Industry 

 p0 q0 p0q0 p1 q1 Q1/0 p0q1 

Good 1 0.5 1,940 970 1.0 3,000 1.546 1,500 

Good 2 0.4 1,600 640 1.0 2,000 1.250 800 

Good 3 2.0 180 360 1.0 1,000 5.556 2,000 

Good 4 0.5 650 325 1.0 1,000 1.538 500 

   2,295    4,800 

 

 Table 5 shows the shares of the different goods using different index formulae. Again, the 
most important change is for good 3, which is much less important using the Paasche index due 
to the halving of its price in year 1. Once more the Fisher shares, although representing a 
weighted average of the Laspeyres and Paasche shares, differ little from their simple average. 
But the Edgeworth-Marshall index, given the much greater volume of activity in year 1, has 
shares that more nearly reflect those of the Paasche measure. Also note that its shares for goods 1 
and 4 fall outside the bounds defined by the shares of the Laspeyres and Paasche indexes, being 
slightly higher than the Paasche shares in both cases. The hybrid expenditures on which these 
shares are based must always lie between the bounds defined by the actual expenditures that 
determine the Laspeyres shares and the hybrid expenditures that determine the Paasche shares, 
but this is not true of the expenditure shares themselves. 

 

Table 5. Relative Importance of Goods for Different Volume Indexes 
for the New Expanding Industry Example 

 Laspeyres Paasche 
Edgeworth-
Marshall Fisher 

Good 1 0.423 0.444 0.450 0.434 

Good 2 0.279 0.366 0.339 0.325 

Good 3 0.157 0.041 0.060 0.095 

Good 4 0.142 0.149 0.151 0.145 
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 Table 6 shows the rankings of the volume indexes calculated for the expanding industry 
case. Again, given the negative correlation between prices and quantities the Laspeyres index 
shows the highest growth and the Paasche index the lowest. The Fisher index is right between 
them, showing only a little less growth than the Bowley-Sidgwick index (as it must, given that a 
geometric mean will always be less than an arithmetic mean). In this case, the Edgeworth-
Marshall index is inferior to most of the other indexes, exceeding only the Paasche index. The 
Walsh index is greater than the Edgeworth-Marshall index but less than the Fisher index; in 
relative terms, it lies closer to the Fisher index. 

 

Table 6. Comparison of Volume Indexes for the New Expanding Industry Example 

Paasche 1.602 

Edgeworth-Marshall 1.685 

Walsh 1.778 

Fisher 1.830 

Bowley-Sidgwick 1.847 

Laspeyres 2.092 

 

 More than the previous example, this one illustrates the dangers of employing the Fisher 
formula due to its failure to satisfy the property of transactions equality. Although the volume of 
output in the comparison (i.e., current) period is much more important than in the base period, 
the Fisher formula essentially treats the two periods on equal terms, and so assigns undue 
importance to good 3. The small share for good 3 in the Fisher volume index belies its important 
contribution to change. It alone accounts for 43% of the measured 83% growth for this industry, 
which is surely excessive given that its production really only took off when its prices were cut 
in half. In the Edgeworth-Marshall index, good 3 is still the most important contributor to 
growth, but it only accounts for 27% of aggregate industry growth, barely exceeding good 1 
which is responsible for 25% of aggregate growth. 

 Much has been written in recent years about the new economy, and indeed annual 
chaining of volume measures was introduced in many countries in hopes of achieving more 
accurate measurement in the new economy. However, the use of the chain Fisher formula in 
measuring growth of output for the new economy only reduces rather than eliminates the 
possibility of upward bias in measured growth rates. For this sector, the replacement of chain 
Fisher measures by their Edgeworth-Marshall equivalents would likely give lower and more 
meaningful estimates of growth in output. 

 Besides the consideration of the transaction equality principle, there is also the 
consideration that in a rapidly growing industry, new products may be introduced at 
concessionary prices that are not true market prices. There is also the problem of introducing 
prices for new goods in price index programs, with prices of new goods often proxied rather than 
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priced for some time after their introduction. (These problems are discussed in more detail in 
Baldwin et al (1997).) If these factors don’t create an obvious upward or downward bias in 
measuring prices for new goods, they certainly reduce the reliability of such measures. This is 
another reason why, if the volume of activity in two consecutive years is much greater in the 
second year reflecting an increasing maturity in the industry, it makes more sense to give greater 
weight to the price structure of the second year (as the Edgeworth-Marshall formula does) than 
to treat the two years on an equal footing (as the Fisher formula or the Walsh formula does). 

 The author received comments on an earlier version of this paper concerning realistic 
situations in which a Fisher price or volume index would allegedly perform better than its 
Edgeworth-Marshall counterpart. One was when a small open economy suffered a major 
devaluation of its currency, precipitating a contraction. In this situation there would be a 
dramatic increase in the price of imported goods, and a big decline in their purchases. Here the 
Edgeworth-Marshall price index would allegedly be inferior to the Fisher price index because it 
would closely approximate a Laspeyres price index, its basket being much more like the basket 
of the base year than of the subsequent year. 

  

Table 6. Comparison of Price Indexes for the Example of a Declining Industry /  
Open Economy in a Devaluation 

Paasche 0.525 

Walsh 0.584 

Fisher 0.600 

Bowley-Sidgwick 0.605 

Edgeworth-Marshall 0.624 

Laspeyres 0.686 

 

 In a sense the declining industry example shown earlier can be reinterpreted in this way, 
with good 3, whose prices double in a year, representing imported goods. And using its data to 
construct price indexes rather than volume indexes it can be seen that the Edgeworth-Marshall 
index does come closer to the Laspeyres index than do any of the others.(See Table 6 above.) 
Interestingly, the Walsh index, which in terms of its formula would seem to be so similar to the 
Edgeworth-Marshall index, actually comes the closest to the Paasche index; both the crosses of 
Laspeyres and Paasche indexes are closer to the Edgeworth-Marshall index than the Walsh 
index. In fact, it can be easily shown that if one assumes a doubling of prices is sufficient to 
choke off imports altogether so that good 3 disappears from the basket in year 1, the Walsh index 
would be virtually identical with the Paasche index, exceeding it by only 0.5%, since in this case 
good 3 would disappear from its basket just as it does from the year 1 basket. 

 Note that the Fisher index is only very slightly lower than the Bowley-Sidgwick index, 
which is just the mean of the Paasche and Laspeyres price indexes. 
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 So which of these index numbers is more reasonable? At year 0 prices, good 3, the 
imported good has a 10.4% basket share for years 0 and 1 combined, a 14.3% basket share for 
year 0 only but only a 4.1% share for year 1. The Fisher and Bowley-Sidgwick indexes are lower 
than the Edgeworth-Marshall index in large part because they treat the two basket shares as 
being equally valid, which means that the doubling of prices for the import good does not have 
nearly the same impact on them that it does on the Edgeworth-Marshall index. But it is surely 
unreasonable to treat the two baskets as having equal validity when at year 0 prices the volume 
of expenditures in year 1 is only 60% of those of year 0. Thus the Edgeworth-Marshall index 
produces the most reasonable result. 

 Nor is there any reason to believe that the use of the Edgeworth-Marshall formula would 
seriously overweight imports were the year 1 situation to become the depressing new normal. 
What is being calculated is not a direct Lowe price index with a year 0 and year 1 basket, but a 
chain Edgeworth-Marshall price index with annual links. If year 2 saw no change in basket 
shares from year 1, all index links would show the same price increases, whatever their formulas. 

 The other situation mentioned was the case of high rates of inflation, which would tend to 
make the Marshall-Edgeworth volume measures more closely resemble Paasche measures, since 
the more highly inflated values in year 1 would, other things being equal, have a greater impact 
on the determination of base prices. 

 There are two points to make about this. First, the assumption that an Edgeworth-
Marshall volume index would necessarily be closer to a Paasche volume index in a high 
inflationary situation needs to be greatly qualified. It can easily be shown that if one doubles 
every price in year 2 for the declining industry case shown in Table 1, the Edgeworth-Marshall 
index would still have the highest value except for the Laspeyres index and the Fisher index 
would still have the lowest value except for the Paasche index. When the relative importance of 
year 0 compared to year 1 in volume terms is such as to make the Edgeworth-Marshall base 
prices look more like Laspeyres base prices, even a very high rate of inflation isn’t going to 
change this. 

 High rates of inflation combined with a sharply declining volume of output is by no 
means an unrealistic scenario. This was the situation in virtually every country in the former 
Soviet Union for several years or more after 1991. 

 Second, the Laspeyres and Paasche base prices from which the Fisher volume measures 
are built are constructed like the Edgeworth-Marshall base prices, only for a single year instead 
of two. So if a high inflation rate is deemed to distort the weighting pattern of an Edgeworth-
Marshall volume aggregate in favour of year 1 over year 0, by the same token it distorts the 
weighting pattern away from commodities that are purchased more in the first quarter and in 
favour of commodities that are purchased more in the fourth quarter. Therefore, in a Fisher 
aggregate under high inflation, Christmas trees and turkeys will tend to be overweighted, 
package holiday trips to winter sun spots underweighted. 

 Logically, if the Edgeworth-Marshall formula is considered inferior to the Fisher formula 
on this basis, the Fisher formula would be inferior to the formula: 
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i.e. the geometric mean of the volume ratios for year 1 compared to base year 0 as weighted by 
each set of quarterly prices for the two year period. One could also envision a monthly version of 
the same formula. 

 However, it seems unproductive to let a high inflation rate dictate the choice of formula 
when Peter Hill (1996) has already proposed a workable solution in terms of constant price level 
(CPL) accounts, of dealing with the same problem, whatever index formula is used for volume 
series. It would involve the deflation of all value weights by the same general price index for the 
overall economy before being used in the index formula. Although the exact mechanics of his 
solution are open to debate, for certain some such method could be applied, and would be 
applicable to a volume index based on any formula. 

 It should be noted that where such a method was applied to a Fisher volume index, 
because it would use adjusted value weights, it would no longer satisfy the factor reversal 
property. Hill (1996; p.49) notes that “under high inflation, it is not possible to partition changes 
in the aggregate values in the current accounts into price and quantity changes both of which are 
acceptable as index numbers in their own right.” 

 So while a high inflation environment would not strip the Edgeworth-Marshall formula of 
its superior representativeness compared to the Fisher formula, it would certainly strip the Fisher 
formula of its claim to satisfy the factor reversal property since with CPL accounts this would no 
longer be true.20 

 

9. What Are the Remedies for Small or Developing Countries? 
 

 The SNA93 recommendations for price and volume measures do impose onerous 
statistical requirements on the agencies that would implement them, and the modifications to 
them suggested in this paper do not greatly reduce this burden. The SNA93 manual itself 
recognized that its preferred methodology, its A-level methodology, annual-link chain Fisher 
volume measures, was perhaps too costly to implement for many countries. It therefore also 
suggested a B-level methodology, annual-link chain Laspeyres volume measures, as an 
acceptable alternative. 

 The SNA93 A-level methodology has been poorly received by the international 
community; only the United States and Canada at the time of writing have implemented annual-
link chain Fisher volume measures, and Canada only for its industry estimates. The SNA93 B-
level methodology has been much better received. Eurostat has gone on to recommend annual-
link chain Laspeyres countries for the European Community, and all its members have either 

                                                 
20 The claim is inflated in any case, since due to the complications involved in deflating the value of physical change 
in inventories, factor reversal is not satisfied for such series in the Fisher world, nor for any aggregate containing 
VPC series, including total GDP itself. 
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converted to this methodology or are in the process of doing so. Other developed countries like 
Australia have also implemented SNA93’s B-level methodology.  

 However, a number of countries, and not all of them in the developing world, essentially 
remain in the SNA68 universe, seeming to have neither the resources for chain Fisher or for 
chain Laspeyres estimates. I suspect they would not be persuaded to summon up the resources to 
calculate chain Edgeworth-Marshall estimates either. 

 For these countries there is probably no immediate escape from chain Laspeyres volume 
measures and their corresponding Paasche price indexes. But the SNA93 standards has left them 
with an all-or-nothing choice between annual chain linking and continuing as they are. So they 
will likely continue as they are, with Laspeyres volume series using constant prices for a base 
year 10 or 15 or more years in the past. 

 However, as discussed in section 4, such estimates could be greatly improved simply by 
replacing a ten-year rebasing cycle with a five-year rebasing cycle and making the base year the 
third or central year of the five-year span) rather than the initial year. In fact, in one important 
respect such estimates would be superior to those of many countries that have adopted annual-
linked chain Laspeyres measures, since with less frequent links the series would be less prone to 
chain index drift. 

 And in addition to the corresponding Paasche price indexes, developing countries should 
be encouraged to calculate Laspeyres price indexes, which like the volume series would follow a 
five-year rebasing cycle with the basket reference year the central year of the five-year span. 

 While such a program would be considerably inferior to the system of annual-link chain 
Edgeworth-Marshall price and volume series outlined above, it would still mark a considerable 
advance over the SNA68 standards, and the index number procedures of most national 
accounting agencies in the developed world for most of the 20th century. 

 These volume measures might be comparable with direct Laspeyres volume aggregates 
calculated by developed countries, since according to SNA93 they are supposed to calculate 
these as analytical adjuncts to their annual-link chain measures. 

 

10. Conclusion 

 

 The recommendations of this paper regarding chain indexes are fairly conventional as 
regards linking. I agree with the idea of chaining at the annual level and that is also what the 
SNA93 recommends and what most countries that calculate experimental or official chain 
volume series have done. 

 I also support the calculation of fixed-price volume aggregates rather than Fisher volume 
indexes. This conclusion, although at variance with SNA93 and with BEA and Statistics Canada 
practice, is in keeping with the decisions made by Eurostat and by the Australian Bureau of 
Statistics, and with the advice of a number of economists who have studied the subject. 

 However, most economists who have favoured chaining using fixed-price volume series 
have opted for Laspeyres aggregates, with only Erwin Diewert (1996), so far as I know, 
favouring the Walsh formula. No-one, to the best of my knowledge, has ever recommended the 
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Edgeworth-Marshall formula for use in the SNA. Statistics Sweden planned to revamp their 
consumer price index as a chain Edgeworth-Marshall index but finally they opted for the quite 
similar Walsh formula instead. 

 In recent years, the German economist Claude Hillinger has recommended using 
Edgeworth-Marshall price indexes as deflators to calculate volume aggregates.21 It is not within 
the scope of this paper to comment on Professor Hillinger’s work in detail, but it should be 
underlined that his proposal is quite different from the one in this paper. However, Professor 
Hillinger did a good thing at least in bringing renewed interest to the Edgeworth-Marshall 
formula. 

 This formula has always had its defenders, from Knibbs in the 1920’s to Krtscha in the 
contemporary period, but it has never had as strong backing as other formulae. In my view this is 
due to an undue emphasis on whether formulae pass the factor reversal test and on whether they 
are exact for an aggregator function, neither of which the Edgeworth-Marshall formula does.22 
However, time reversal, matrix consistency (or additivity), the new good property and the 
property of transactions equality are important considerations too -- in my judgement, more 
important considerations -- for choosing a chain index formula, and the Edgeworth-Marshall 
formula is unique in possessing all of these properties. 

 The Walsh formula, which is exact for a utility function, is just as good with respect to 
time reversal, matrix consistency and the new good property, but fails the transactions equality 
property. 

 If I had only a 90-second TV slot to deliver my message, this would be it: 

Chain price and volume aggregates with annual links hold the promise of improved measures of 
growth. It is most unfortunate that discussion has centred on two formulae, the Laspeyres and the 
Fisher, neither of which is well-suited for the calculation of chain aggregates. The Laspeyres 
formula doesn’t pass the time reversal test, and a healthy fear of chain drift should lead us to 
reject it. The Fisher formula passes the time reversal test, but it fails the matrix consistency test, 
is not even weakly consistent in aggregation and fails the new good test, all of which make it an 
awkward and unsatisfying formula for both producers and consumers of National Accounts 
estimates. None of these criticisms hold for the Edgeworth-Marshall formula and only the 
Edgeworth-Marshall formula has the property of transactions equality that has very important 
implications for growth measurement in the new economy. So far as any one formula will be the 
formula for price and volume measurement in the National Accounts in the 21st century, it should 
be the Edgeworth-Marshall formula. However, we should cease to try to make all industries or 
commodities fit into the Procrustean bed of one formula and, where required, we should change 
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21 See Hillinger (2000). A number of papers have been written that comment on his methodology, one of which -- 
Ehemann et al. (2000) -- is listed in the references to this paper. 
22 The true factorial price index that is consistent with a Leontief, fixed-coefficients utility function is the ratio of an 
expenditure index to an Edgeworth-Marshall quantity index as shown by Balk (1983). This is not the Edgeworth-
Marshall implicit price index defined by (4.6): its formula would be: 

. 

But the Edgeworth-Marshall price index itself is not consistent with this or any other utility function, and in any 
case, a “superlative” index that is only consistent with a fixed-coefficients utility function is of very limited interest. 
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our formulae for price and volume measures to take account of cyclical and seasonal 
commodities. Finally, matrix consistency is dependent not only on formula choice but on linking 
policy. We must follow the good example of Australia and the United Kingdom, and change our 
reference year annually, linking our chain-volume estimates backward rather than forward. 

 

Appendix: Weak, Specific and Strong Consistency in Aggregation 

 

 So far in the literature on index numbers, the discussion of consistency in aggregation has 
revolved around price rather than volume indexes. For now, let us then stick to definitions of 
consistency in aggregation in the domain of price indexes. 

 Balk (1996) 23defines the following properties for an index to be consistent in 
aggregation: 

1. the index for the aggregate, which is defined as a single-stage index, can also be 
computed in two stages, namely by first computing the indexes for the subaggregates and from 
these the index for the aggregate; 

2. the indexes used in the single-stage computation and those used in the first stage 
computation have the same functional form, 

3. the formula used in the second stage computation has the same functional form as the 
indexes used in the single and in the first stage after the following transformation has been 
applied: elemental indexes are replaced by subaggregate indexes and the values of the elemental 
indexes are replaced by subaggregate values. 

 Balk takes an all-or-nothing approach to consistency in aggregation, and would not 
consider a formula that satisfies the first two properties to be consistent in aggregation, although 
he notes that Blackorby and Primont (1980) ignored the third property altogether in their 
definition of consistency in aggregation. It probably makes better sense to consider an index 
formula that meets all three criteria as being strongly consistent in aggregation, and one that 
meets only the first two criteria as being weakly consistent in aggregation. 

 Balk notes that the Walsh formula, which is very similar to the Edgeworth-Marshall one, 
satisfies the first two criteria for a price index but not the third. This is also true of the 
Edgeworth-Marshall price index.  

 Auer (2004) writes of weak and specific consistency in aggregation; specific consistency 
in aggregation, as he defines it, is identical with Balk’s criteria.24 However, he notes that the 
Edgeworth-Marshall price index can be defined in terms of base and comparison period values, 
but also in two alternative ways involving values at constant prices, and for these definitions, 
single-stage and two-stage solutions are identical. It therefore passes the weak consistency test. 

                                                 
23 See Balk (1990, p. 358-359). I have largely adopted Balk’s phrasing. 
24 Auer (2004) also discusses strict consistency in aggregation, which would imply that consistency in aggregation 
holds whichever variant of the index formula is used to define it. Although the Stuvel and Montgomery-Vartia price 
formulae are specifically consistent in aggregation, neither is strictly consistent in aggregation. 

 313



Andrew Baldwin  

 Although there is a difference between weak consistency as defined by Balk’s first two 
properties and weak consistency in Auer’s sense, the Edgeworth-Marshall formula is weakly 
consistent by either definition, as is the Walsh formula. 

 The Fisher formula is not even weakly consistent in aggregation, and one cannot (or at 
least should not) calculate a Fisher of Fishers. At any stage of aggregation one must have a set of 
Laspeyres and Paasche indexes and the Fisher index should be calculated as their geometric 
mean. Auer also shows that if one erroneously does treat the Fisher formula as being consistent 
in aggregation, the empirical implications of the error can be far from trivial. In his example, 
calculating a Fisher of Fishers changes a correctly estimated 1.6% price increase into a 
misestimated price decrease of 0.5%.25 

 He is also surely right in believing that the important distinction is between formulae that 
are weakly consistent in aggregation (like Edgeworth-Marshall) and not consistent at all (like 
Fisher). Strong consistency (or specific consistency), by contrast, is not particularly important.  

 All of the formulae that are strongly consistent in aggregation without exception have one 
or more very bad properties that would seem to more than offset any advantage this might incur 
over their weakly consistent rivals. Neither the Laspeyres formula nor the Paasche formula 
satisfies the time reversal property; neither the Montgomery-Vartia nor the Stuvel formula 
satisfies proportionality. 

 Expressed in terms of value series and price deflators, the Edgeworth-Marshall volume 
index can be calculated as: 
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 Using the formulation on the rightmost side of either (A1) or (A2), the Edgeworth-
Marshall volume index gives the same result for Auer’s example of a three-commodity economy 
whether calculated in two steps or in a single step. 

 For statistical agencies themselves, the failure of a formula to satisfy either weak or 
strong consistency in aggregation is probably more of a nuisance issue than a real issue. The 
problem is more what users who are not well-versed in index number properties will do with data 
series. In this respect, data users are more likely to go seriously wrong working with Fisher 
aggregates than they are with Edgeworth-Marshall ones. 

 

                                                 
25 See Auer (2004), pp.385-386. 
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Chapter 14 
INEXACT INDEX NUMBERS AND ECONOMIC 

MONOTONICITY VIOLATIONS: 
THE GDP IMPLICIT PRICE DEFLATOR 

Ulrich Kohli1 

 

1. Introduction 
 

 Several countries have recently switched – or are about to do so – to chained price and 
quantity indexes in the framework for their national accounts. Thus, the United States and 
Canada have adopted the chained Fisher indexes, whereas the United Kingdom, Switzerland, 
Australia and New Zealand have opted for chained Laspeyres indexes for real GDP, and chained 
Paasche for the implicit price deflator. Nonetheless, the vast majority of countries, including 
most OECD members, have not yet embraced chaining. In these countries the GDP implicit price 
deflator is still computed as a direct (or fixed-base) Paasche price index. Time series data on the 
deflator are obtained by taking runs (or sequences) of these direct indexes. Changes in the price 
level over consecutive periods are measured by the change in the direct Paasche index, a use for 
which it is ill suited.  

 Indeed, using the economic approach to index numbers in the context of supply theory, 
we show that runs of direct Paasche indexes fail an economic monotonicity test if the number of 
periods exceeds two.2 That is, the price index can register a drop between consecutive periods 
even though none of the disaggregate prices has fallen, and some have actually increased.  

 The purpose of this paper is thus to draw attention to some of the undesirable properties 
of the direct Paasche price index, and, more generally, to the problems that the absence of 
chaining can raise. Examples based on a constant elasticity of substitution or constant elasticity 
of transformation (CES or CET) aggregator function are provided. A similar result holds for runs 
of direct Fisher indexes. This provides a powerful argument in favor of chaining. It should also 
serve as a warning against the use of unit values as elementary price indexes at the most 
disaggregate level.  

 
1 When this paper was written, the author was the chief economist, Swiss National Bank. He is now with the 
University of Geneva and can be reached at Ulrich.Kohli@unige.ch. He is grateful to W. Erwin Diewert, Andreas 
Fischer, Kevin J. Fox, Alice Nakamura, and Ludwig von Auer for their comments on earlier drafts of this paper, but 
they are not responsible for any errors or omissions. 
2 This problem also arises in the context of demand theory; see Kohli (1986). However, Paasche index numbers are 
probably most prevalent in supply theory, since they are widely used in the national accounts. 
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 Our analysis is based on the economic approach to index numbers. Much of this literature 
focuses on exact index numbers, to use the terminology introduced by Diewert (1976). That is, 
knowing the precise form of the aggregator function (e.g. the production possibilities frontier), 
one seeks to find an index number formula that is exact for it. Alternatively, starting from an 
arbitrary index number formula, one looks for the aggregator function for which this index 
number would be exact.3 For instance, it turns out that the Paasche price index is exact as long as 
the transformation function is either linear or Leontief.  

 The strategy followed in this paper is somewhat different. We investigate the properties 
of a given, commonly used index number formula when we know in advance that this index is 
not exact for the underlying aggregator function, which itself is assumed to be fairly general and 
well behaved. Specifically, we will look at the direct Paasche price index (the Laspeyres and the 
Fisher indexes will be briefly examined as well), while assuming that the production possibilities 
frontier is strictly concave.  

 The case of the CET aggregator function can be thought of as an example of a well-
behaved production possibilities frontier. Clearly, one could argue that if the aggregator function 
is CET, then it would be a simple matter to use a CET price index, which would then be exact. 
The point, though, is that analysts and commentators often have no choice in this matter, 
statistical agencies typically supplying Paasche, Laspeyres and Fisher indexes only. In any case, 
the selection of the CET is only meant as an illustration. Any other functional form that allows 
the production possibilities frontier to be strictly concave would yield similar results. 

 

2. Runs of Direct Paasche Price Indexes 
 

 The direct Paasche price index ( P ) makes a direct comparison between the cost of a 
basket of goods in the current period (period t) and the cost of the same basket at base period 
(period 0) prices. Period t quantities are used for this comparison. Formally, the direct Paasche 
price index can be defined as follows: 

P
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3 Much emphasis has been devoted to superlative indexes; i.e., index numbers that are exact for flexible functional 
forms. A functional form is flexible if it can provide a second-order approximation to an arbitrary aggregator 
function. The terms “flexible,” “superlative,” and “aggregator function” were coined by Diewert (1974, 1976). 
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or, in more compact form: 
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It is common practice to use elements of this sequence to make comparisons between arbitrary 
pairs of periods. For instance, if one wanted to compare period t with period t-1, one would 
calculate  defined as follows: 1−Π t,t
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 It is important to note that, although Π t,t

−

 rests on the comparison between two Paasche 
indexes, it is not itself a Paasche index, unless period t-1 happens to be the base period.4 
Although its properties are little known, 1Π t,t  is routinely used in economic analysis. 
Consecutive changes in the GDP price deflator, in particular, are often used as a broad measure 
of inflation. If  turns out to be greater than one, one might be inclined to conclude that, on 
average, prices have gone up between period t-1 and period t. As we shall see below, this 
conclusion could be diametrically wrong. 
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3. Profit Maximization and the Economic Approach to Index Numbers 
 

 The economic approach to index numbers assumes that the observed quantities ( q ) are 
not random, but rather that they are the outcome of economic decisions. In particular, they reflect 
prices, technology, and optimizing behavior.  

 Assume for simplicity that national production involves just one input (e.g., an aggregate 
of labor and capital), the quantity of which we denote by , and two outputs (i = 1, 2). We 
assume constant returns to scale, nondecreasing marginal rates of transformation, and profit 
maximization. Let the country’s production possibilities frontier be given by the following 
transformation (or factor requirements) function: 

(5)  . 

 Constant returns to scale imply that ⋅h
)(

 is linearly homogeneous, and the assumption of 
nondecreasing marginal rates of transformation means that ⋅h

                                                          

 is convex. Profit maximization 
implies that the marginal rate of transformation is equal to the output price ratio: 

 
4 This is also pointed out by Afriat (1977). It is interesting to note that 1−Π t,t

−

can be viewed as the value index 
divided by a Lowe quantity index, and as such it could be termed an implicit Lowe price index; see Kohli (2004b). 
Moreover, as pointed out to me by Bert Balk, it can be seen from (4) that 1Π t,t violates the Proportionality and 
Identity tests, which bodes ill for its other properties. 
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 The economic approach to index numbers then amounts to introducing expressions such 
as (7) into index number formulas such as (1). In the two-good case, the direct Paasche price 
index becomes: 
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It is customary to normalize base period (period 0) prices to unity ( ). Thus, 
expression (9) can be rewritten as: 
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4. Economic Monotonicity Test 
 

 It seems reasonable to expect a well-behaved measure of the general price level to be 
monotonically increasing – or at least nondecreasing – in its arguments.5 That is, if one 
disaggregate price were to rise, while all other prices are held constant, one would like to see the 
aggregate price index increase, or at least not fall, after having allowed for the endogenous 
adjustment in quantities.  

 To investigate the slope properties of the direct Paasche price index, it suffices to 
differentiate (10) with respect to a disaggregate price, say the first one: 

 
5 See Kohli (1986) for an examination of the monotonicity properties of index numbers in the context of demand 
theory. 
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where 0lnln ,1,1,11 ≥∂∂≡ ttt pyε  and 0lnln ,1,2,21 ≤∂∂≡ ttt pyε  are the price elasticities of 
output supply with respect to  at time t; and tp ,1 [ ] 0)()()()( 2112,12 ≤⋅⋅⋅⋅≡ hhhhtθ , where 

)()()( ,2,1
2

12 tt qqhh ∂∂⋅∂≡⋅ , is the elasticity of transformation between the two outputs. Note 
that ttt s ,2,12,11 θε −=  and ttt s ,1,21 ,12θε =

0
, with  being the revenue share of output i at time 

t,
tis ,

6 so that ,12 ≥t,21,11 − tt −= θεε .7  

 It is apparent from the last line of (11) that t
P

t pP ,10, ∂∂  can be negative if the ratio 

tt pp ,1,2  is sufficiently large, i.e. if  is small enough relative to , unless tp ,1 tp ,2 t,12θ  happens 
to be nil.8 If the production possibilities frontier is strictly concave, on the other hand, and if 
production is diversified, t,12θ  is strictly negative. In that case, which can be viewed as the 
normal case, the Paasche price index (10) fails to be globally monotonically increasing in its 
components. That is, it may register a fall as  increases and  is held constant.  tp ,1 tp ,2

 Since the price ratio is unity in the base period, economic monotonicity violations can 
only occur at a point away from the base period; that is, if one compares two situations that do 
not encompass the base period. 

 

                                                           
6 See Kohli (1991), for instance.  
7 Note that it follows from (8) that 0,11 ≥tε  and 0,22,21 ≤−= tt εε . 
8 This would be the case if the factor requirements function were linear or Leontief, in which case the Paasche price 
index would be exact and thus necessarily well behaved. 
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5. Numerical Illustration 

 

 A simple numerical example might help to show how economic monotonicity violations 
might occur. Assume three periods: periods 0, 1, and 2. Table 1 shows the given values of  
and  for the three periods, together with the optimizing values of  and , assuming that 

the factor requirements function is given by , a quarter circle in the first quadrant.

1p

2p 1q 2q
2
,2

2
,12 tt qq += 9 

 
Table 1. 

Economic monotonicity violations: Numerical illustration 
 

t t,1 t,2 t,1 t,2 t 0,
p  p q q  PP

0 1.0000 1.0000 1.0000 1.0000 1.0000

1 0.2000 1.0000 0.2774 1.3868 0.8667

2 0.4000 1.0000 0.5252 1.3131 0.8286

 

It is then straightforward to compute the direct Paasche price index. It is shown in the last 
column, and it can be seen that between periods 0 and 1, as  falls from 1 to 0.2 while  

remains unchanged, 
1p 2p

PP  drops from 1 to 0.8667. Between periods 1 and 2,  recovers and 

increases from 0.2 to 0.4, while  is still being held constant, but 
1p

2p PP  keeps dropping, from 
0.8667 to 0.8286. That is, the GDP price deflator registers a fall, thus suggesting deflation (at a 
rate of 4.4%), even though one disaggregate price has doubled and the other one has remained 
unchanged. 

 

6. The CET Aggregator Function 

 

 The behavior of the direct Paasche price index can be further investigated with the help 
of some simulations. Let the country's factor requirements function (5) have the following CET 
form:10 

(12)  ,   ρρρ /1
,2,1 )( ttt qqx += 1>ρ  . 

                                                           
9 The supply of output i is then given by )(2 2

,2
2
,1,, tttiti pppq += ; see expression (13) below. 

10 The name CET stands for constant elasticity of transformation. The elasticity of transformation implied by (12) 
can be calculated as )1(112 ρθ −= . 
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 Under profit maximization, the output supply functions are: 

(13)  
[ ] t

tt

ti
ti x

pp

p
q

ρρρρρ

ρ

/1)1/(
,2

)1/(
,1

)1/(1
,

,
−−

−

+
= ,   i = 1,2 . 

The GDP function can then be written as:11 

(14)   , [ ] ttttttttt xpprxppxpp ),(),,( ,2,1
/)1()1/(

,2
)1/(

,1,2,1 =+=
−−− ρρρρρρπ

where  

(15)    [ ] ρρρρρρ /)1()1/(
,2

)1/(
,1,2,1 ),(

−−− +≡ tttt ppppr

is the unit revenue function. The following CET price index will then be exact in the sense of 
Diewert (1976): 

(16)  
[ ]

ρ/)1
,2

−
t

ρ

ρρρρρρ

(

/)1()1/()1/(
,1

0,20,1

,2,1
0,

2),
),(

−−− +
= ttt

t
pp

pp
ppr

P

0,2q

,2,1 (
),( =tt r

pp  . 

 Given that , it follows from (13) that 10,20,1 == pp 0,1q = . The direct Laspeyres 
price index can thus be written as: 

(17)  )(
2

),( ,2,1
0,20,1

,2,10, ttttt pp
qq

ppP +=
+

10,2,20,1,1 ttL qpqp +
≡  . 

It is obvious from (17) that the direct Laspeyres price index is monotonically increasing in 
prices.  

 Next, making use of (13), we can derive the direct Paasche price index. It is as follows: 

(18)  )1/(1
,2

)1/(1
,1

)1/(
,2

)1/(
,1

,2,1

,2,2,1
,2,10, ),(

−−
,1

−−

+

+
=

+
≡

ρρ
+

ρ ρ ρ ρ

tt

tt

tt

ttt
tt

P
t

pp

pp

qq
qpp

ppP tq
 . 

As indicated by (11), and given that 12θ  is strictly negative in the CET case, the direct Paasche 
price index (18) is not globally monotonically increasing in prices. 

 The direct Fisher index, finally, can be obtained as: 

(19)  

)/(
,

)/(
,

)/(
,

)/(
,

,, )(
11

2
11

1

1
2

1
1

212
1

−ρ−ρ

−ρρ−ρρ

+

+
+=

tt

tt
tt

pp

pp
pp

                                                          

,,,,,,,,, ),(),(),( 210210210 ≡ tt
P

ttt
L

ttt
F

t ppPppPppP

 . 

 
11 See Kohli (1978, 1991) and Woodland (1982) for details. 
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Note that when 2=ρ , ; i.e., the direct Fisher index is exact for 

aggregator function (12). This is because in that case the CET factor requirements function 
becomes a special case of a quadratic mean of order 2 (the square rooted quadratic function), 
and, as shown by Diewert (1976), the Fisher index is exact for that functional form. In this case, 
the direct Fisher price index is necessarily monotonically increasing in prices. However, for 
other values of 

),(),( ,2,10,,2,10, ttttt
F

t ppPppP =

ρ  this may no longer be true, since it might well be that the adverse behavior of 
the Paasche component dominates that of its Laspeyres counterpart. 

 Our results can easily be illustrated with the help of some simulations. We show in Figure 
1  as a function of  for alternative values of ),( 210, ppP P

t 1p ρ , after having set 12 =p

1p

. It is 

apparent that  is not monotonically increasing in  for low values of . That is, as 
 increases, the GDP price deflator will actually fall, even though  is held constant by 

assumption. 

),( 210, ppP
tP

1

1p
p 2p

 
Figure 1 

Direct Paasche price index for alternative values of ρ 
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 Next, in Figure 2, we show , , and  as functions of 

 for 

),( 210, ppP P
t )p,p(P F

,t 210 ),( 210, ppP L
t

1p 4=ρ . It can be seen that, although  as 

expected, there are ranges for  where 
, and where, moreover,  and 

 are decreasing in . 

)p,p(P L
,t

F
,t 2100≥

),( 210, ppP P
t

P)p,p( 21 ≥

1p

)p,p(P P
,t 210

12 /) pp ∂10,1 ,( pP L
t∂<210,110 /),(( pppPpp F

t
P ∂∂<

,( 1p 1p
2 /), p ∂

)2p
,Pt∂

0,P F
t

 
Figure 2 

Direct Paasche, Fisher and Laspeyres indexes for ρ = 4 
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Finally, it can be seen from Figures 1 and 2 that for ,  if and only if 
. The same is true for the direct Fisher index. That is, relative to the base period, both 

indexes are monotonically increasing in prices. This provides a strong argument in favor of 
chaining. 

01 >p )1,1()1,( 0,10,
P

t
P

t PpP ≥

11 ≥p
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7. Unit Values 

 

 Economic monotonicity violations are likely to plague unit values even more so than they 
do direct Paasche indexes. Yet unit values are routinely used at the elementary level to aggregate 
goods seemingly belonging to a same category. The average price of an apparently homogeneous 
product that is nevertheless sold at different times, different places, and under different 
conditions is often calculated by simply dividing total revenues by the number of items sold. The 
use of unit values is particularly prevalent in the area of foreign trade, where differences in 
quality and specification are not always taken into account when calculating the average price of 
exported cars, cameras, or watches. Thus, import and export price deflators are often computed 
on the basis of unit values.  

 Unit values can be thought of as a special (and rather perverse) case of direct Paasche 
price indexes, for it is defined relative to an arbitrary (and often imaginary) base period. The unit 
value index can be defined as follows: 

(20)  
tt

ttt qq ,2,1
,2,1 +

ttttU qpqp
ppP ,2,2,1,1),(

+
≡  . 

Comparing (20) with (18), it can be seen that is equivalent to  if we interpret  as being 

defined relative to a base period for which 

P
tP 0,

U
tP

0,20,1 pp = .  

 Naturally, when we aggregate different types of goods, such as luxury automobiles and 
compact cars, there may well never have been such a time. Since direct indexes only make sense 
relative to the base period, one must conclude that they are meaningless if that base period has 
never existed. Economic monotonicity violations are likely to be particularly important in the 
case of unit values since relative prices will tend to differ greatly from unity. As an example, 
high performance automobiles can easily cost 20 times a much as compact cars, top-of-the-line 
cameras can cost 50 times more than more basic ones, luxury watches can be worth 1,000 times 
more than low-end ones, and so on. 

 

8. Conclusions 

 

 It is well known that, in the context of supply theory, the Paasche price index tends to lie 
above the true price level, and the Laspeyres index underneath it. This is often understood to 
mean that the Paasche price index overstates price increases, and that the Laspeyres index 
underestimates them. This is clearly does not need to be true if the reference period is not the 
base period, i.e. the period for which the data are normalized. Note also that relative to the base 
period, the direct Paasche price index will understate price falls, whereas the Laspeyres index 
will exaggerate them. At a time when several countries have been flirting with deflation, this 
might be something to keep in mind. 

 The fact that the direct Paasche GDP deflator is not monotonically increasing in prices 
makes it a poor indicator of inflation, since it might point at a price increase when prices are 
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actually falling, and vice-versa. Yet it is widely used in the literature, including in the areas of 
monetary economics and macroeconomics. For instance, Taylor (1993) has used it as a measure 
of inflation in his famous rule for monetary policy, and this well before chaining was introduced 
in the United States. 

 Naturally, the criticism applying to the GDP deflator can also be addressed to the other 
implicit price deflators in the context of the national accounts. These deflators typically have the 
direct Paasche form as well, and thus they fail to be globally monotonically increasing in their 
price components. Yet, some of these indexes are closely scrutinized. The deflator of 
consumption expenditures, for instance, is often used as a yardstick of inflation. In view of its 
failure of the economic monotonicity test, this would seem rather inappropriate. 

 There are other reasons why the use of the direct Paasche GDP deflator as a measure of 
the price level should be avoided, independently of whether chaining takes place or not. Thus, 
the Paasche functional form is unduly restrictive. As already noted, it is exact for very restrictive 
aggregator functions only (linear and Leontief). Superlative indexes, which are exact for flexible 
aggregator functions, are therefore to be preferred. Second, GDP price deflators incorporate 
terms-of-trade changes, which are fundamentally a real – not a price – phenomenon (this point 
also applies when the GDP deflator is measured by a superlative index and when it is chained). 
The problem with the standard procedure becomes apparent if import prices fall, for instance. 
This will increase the GDP price deflator (since import prices enter the calculation of the GDP 
deflator with a negative weight), even though this shock is clearly not inflationary, quite the 
contrary.12 
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Chapter 15 
Economic Monotonicity of Price Index Formulas 

Ludwig von Auer1 

 

1. Preliminary Remarks  
 The strict monotonicity test is probably one of the most widely accepted axioms in 
axiomatic index theory. In a paper included in this volume, Kohli (2010) implements the idea of 
monotonicity in an economic framework where quantities depend on prices. I show how the 
notion of strict monotonicity, as defined in the traditional axiomatic index theory approach, is 
somewhat different from Kohli’s notion of economic monotonicity. Specifically, in the 
traditional approach, it is assumed that quantities and prices are independently determined.  

 Kohli convincingly demonstrates that, embedded in an economic framework, both the 
Paasche and Fisher index formulas violate monotonicity. Since the Fisher formula is often 
advocated as the most appropriate price index and the Paasche formula is widely used for the 
GDP implicit price deflator, Kohli’s findings challenge the “general wisdom of index theory.” 

 The present paper relates Kohli’s approach to traditional axiomatic index theory. 
Building on the notion of monotonicity as defined in axiomatic index theory, I show how the 
notion of economic monotonicity can be defined in a precise manner.  

 

2. Monotonicity in Axiomatic Index Theory  
 A price index formula P is a positive function that maps all of the prices and quantities in 
the base and comparison periods into a single positive number; i.e., 

   P :    ,   (p0, q0, p1, q1)  P(p0, q0, p1, q1) nR4
++ ++R

where pt  and 1, ,( ,..., )T
t N tp p= ,i tp  > 0 denotes the unit price of commodity i (i=1,2,...,N) in 

period t, qt  and  > 0 is the quantity of commodity i in period t, and where t =0  
is the base period and t =1  is the comparison period. 

1, ,( ,..., )T
t N tq q= ,i tq

 The traditional axiomatic approach embodies the assumption that there is no causal 
relationship between prices and quantities. What follows are two monotonicity tests −  a weak 
test and a strict test − set out in the usual context for the axiomatic approach regarding the 
independence of changes in prices and quantities. 
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Weak Monotonicity Test (Olt, 1996): Suppose that for all commodities we have 
,1 ,0i ip p≥  and for at least one i the inequality is strict. Then  

   P(p0, q0, p1, q1) > P(p0, q0, p0, q1). 

Strict Monotonicity Test (Eichhorn and Voeller, 1976): Consider two different 
scenarios for the comparison period (t =1 and t =1*) and the base period (t =0 
and t =0*). Suppose that for all commodities we have , and suppose that 
for at least one i the inequality is strict. Then  

* ,1,1 ii
p p≥

(1)   P(p0, q0, p1*, q1) > P(p0, q0, p1, q1). 

Or suppose for all commodities we have , and suppose that for at least 
one i this inequality is strict. Then  

* ,0,0 ii
p p≥

(2)   P(p0*, q0, p1, q1) < P(p0, q0, p1, q1). 

For the special case where p1 = p0, inequality (1) simplifies to the weak monotonicity test case. 

 

3. Monotonicity in Economic Approaches to Index Theory  
 Kohli’s (2010) concept of economic monotonicity relates to the strict monotonicity test. 
Moreover, it relates only to postulate (1) of the strict monotonicity test and not to the postulate 
expressed by inequality (2). Postulate (1) considers alternative scenarios for the comparison 
period. In contrast, postulate (2) considers alternative scenarios for the base period. I recommend 
taking a more symmetric approach − that is, also considering postulate (2) as a necessary 
condition for monotonicity. I suggest this change as a “friendly” amendment to Kohli’s concept 
of economic monotonicity; i.e., I suggest this is a change that is consistent with and would 
improve Kohli’s contribution. 

 There is a second important difference between Kohli’s notion of economic monotonicity 
and the strict monotonicity test. In Kohli’s economic framework, quantities are functions of 
prices; i.e., we have q0 = q(p0) and q1 = q(p1). Thus we have qi,t = qi(pt) with either 

(3a)   ( i = 1,2,…,N; t = 0, 1), or , ,/i t i tq p∂ ∂ ≥ 0

0(3b)   (i = 1,2,…,N; t = 0, 1). , ,/i t i tq p∂ ∂ ≤

 A formal definition of the economic monotonicity axiom (including the symmetric 
treatment of base and comparison period scenarios) can now be given: 

Economic Monotonicity Test: Let q0 = q(p0) and q1 = q(p1). Consider two 
different scenarios for the comparison period (t=1 and t=1*) and the base period 
(t=0 and t=0*). Suppose that for all commodities we have  and for at 
least one i the inequality is strict. Then 

* ,1,1 ii
p p≥

(4)  . )q,p,q,p(P)q,p,q,p(P 1100*1*100 >

Or suppose for all commodities we have  and for at least one i the 
inequality is strict. Then 

0,i*0,i pp ≥
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(5)  )q,p,q,p(P)q,p,q,p(P 110011*0*0 < . 

In (4),  differs from  and simultaneously  is allowed to differ from , whereas in (1) 
the quantity vector  is kept fixed. Analogously, in (5)  differs from  and simultaneously 

 is allowed to differ from , whereas in (2) the quantity vector  is kept fixed. This is the 
crucial difference between economic monotonicity and strict monotonicity.  

*1p 1p *1q 1q

1q *0p 0p

*0q 0q 0q

 

4. Laspeyres and Paasche Index 
 Kohli (2010) has demonstrated that the Paasche and Fisher index formulas violate 
economic monotonicity. Taking the approach stated in (4) and (5), the Laspeyres index formula 
also violates economic monotonicity. In order to see why the Laspeyres formula violates 
economic monotonicity too, it is useful to reformulate this index as the weighted arithmetic mean 
of price ratios, where the weights are “expenditure shares” for the base period: 

(6)  
∑
∑=

i 0,i0,i

i 0,i1,iL
0,1 qp

qp
P

0,i

1,i

i
j

0,j0,j

0,i0,i
p
p

qp
qp

∑∑
=  

 Formula (6) violates inequality (5) of economic monotonicity. Suppose, for example, that 
the price of only one good i differs between base period t=0 and base period t=0*. Inequality (5) 
postulates that if , then for the Laspeyres index we must have , which will 
not necessarily be true. Suppose, for example, that the case defined by relationship (3a) applies − 
that is, quantities are non-negatively related to prices − then 

*0,i0,i pp < L
*0,1

L
0,1 PP >

*0,i0,i pp <  implies that *0,i0,i qq ≤ . 

As a consequence, the weight ∑ j 0,j0,j0,i0,i qpqp  may be much smaller than 

∑ j *0,j*0, qj*0,i*0,i pqp . In formula (6), the (larger) price increase  will receive a 

smaller weight than the (smaller) price increase . In extreme cases, the changes in the 
weights will overcompensate the impact of the respective price changes, resulting in a violation 
of economic monotonicity. 

)p/ 0,i1,ip(

)p/p( *0,i1,i

 The same line of reasoning can be applied to the Paasche index. This index formula can 
be reformulated as the weighted harmonic mean of price ratios, where the weights are 
“expenditure shares” of the comparison period: 

(7)  
∑
∑

=
i 1,i0,i

i 1,i1,iP
0,1 qp

qp
P .

p
p

qp
qp

1
1

0,i

1,i

i
j

1,j1,j

1,i1,i

−
−

⎥
⎥
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⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
= ∑∑

 

This formula violates inequality (4) of economic monotonicity. To see this, suppose, for example, 
that the price of only one good i differs between comparison period t = 1 and base period t = 1*. 
Inequality (4) postulates that for *1,i1,i pp < , the Paasche index must produce . If 
quantity changes are non-negatively related to price changes, then 

P
0*,1

P
0,1 PP <

0,i*1,i1,i ppp <<  implies that 
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*1,i1,i qq ≤ . As a consequence, the weight ∑ j 1,j1,j1,i1,i qpqp  could be much smaller than 

∑ j *1,j*1,j*1,i*1,i qpqp

P
0*,1

P
0,1 PP >

. In formula (7), the (larger) price decline  will receive a 

smaller weight than the (smaller) price decline . In extreme cases, the difference in 
the weights will overcompensate the difference in the respective price changes, leading to 

. 

)p/p( 0,i1,i

)p/p( 0,i*1,i

 Above, in demonstrating that the Laspeyres and the Paasche index violate the economic 
monotonicity test, it was assumed that quantities are positively related to prices. However, the 
case described by relationship (3b), where quantities are negatively related to prices, is standard 
in the context of the economic theory of consumer demand. In this case, the Laspeyres index still 
violates (5) and the Paasche index still violates (4). 

 

5. Concluding Remarks 
 A primary concern of axiomatic index theory is the construction of tests that can provide 
insight into the properties of index formulas. Many price index formulas in common use violate 
some of the proposed axioms of index theory. Knowing which axioms are, and are not, satisfied 
is one important criteria for assessing the appropriateness of a formula for specific uses. 

 Among the axioms that have been proposed, the strict monotonicity test is one of the 
most widely accepted. Kohli (2010) has introduced the concept of index monotonicity in an 
economic framework. The present paper has shown that the notion of economic monotonicity 
can be formalized along the lines of the traditional strict monotonicity test of the axiomatic 
approach to index theory.  

 Kohli has demonstrated that the Paasche and Fisher index formulas violate economic 
monotonicity. This paper has shown that the same deficiency applies to the Laspeyres index. 
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Chapter 16 
ON THE STOCHASTIC APPROACH TO INDEX NUMBERS 

W. Erwin Diewert1 

 
“In mathematics disputes must soon come to an end, when the one side is proved 
and the other disproved. And where mathematics enters into economics, it would 
seem that little room could be left for long-continued disputation. It is therefore 
somewhat surprising that one economist after another takes up the subject of 
index-numbers, potters over it for a while, differs from the rest if he can, and then 
drops it. And so nearly sixty years have gone by since Jevons first brought 
mathematics to bear upon this question, and still economists are at loggerheads 
over it. Yet index-numbers involve the use of means and averages, and these 
being a purely mathematical element, demonstration ought soon to be reached, 
and then agreement should speedily follow.” 

Walsh [1921; preface]. 

1. Introduction 
 

 The recent appearance of a book on the stochastic approach to index number theory by 
Selvanathan and Prasada Rao [1994] marks an appropriate occasion to provide a critical review 
of this approach. This is the primary purpose of the present paper. 

 The stochastic approach2 to index number theory originated with Jevons [1863; 23-26] 
[1865; 121-122] [1869; 156-157], Edgeworth [1887; 245] [1888a] [1888b] [1889; 286-292] and 
Bowley [1901; 219] [1911] [1919; 346] [1926] [1928; 217]. Basically, this approach was driven 
by the quantity theory of money: as the quantity of gold or money is increased, all prices should 
increase approximately proportionally. Thus a measure of the general increase in prices going 
from period 0 to period t could be obtained by taking an appropriate average of price relatives, 

, where  denotes the price of commodity i in period t. This average of the price 
relatives can be regarded as an index number of price change going from period 0 to t. 
Selvanathan and Prasada Rao [1994; 5-6] express this ancient theory in more modern language 
as follows: 

0iit p/p itp
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“The stochastic approach considers the index number problem as a signal 
extraction problem from the messages concerning price changes for different 
commodities. Obviously the strength of the signal extracted depends upon the 
messages received and the information context of the messages.” 

 The recent resurrection of the stochastic approach to index number theory is due to Balk 
[1980], Clements and Izan [1981] [1987], Bryan and Cecchetti [1993] and Selvanathan and 
Prasada Rao [1994]3. The main attraction of the approach over competing approaches to index 
number theory is its ability to provide confidence intervals for the estimated inflation rates: 

“Accordingly, we obtain a point estimate of not only the rate of inflation, but also 
its sampling variance. The source of the sampling error is the dispersion of 
relative prices from their trend rates of change -- the sampling variance will be 
larger when the deviations of the relative prices from their trend rates of change 
are larger. This attractive result provides a formal link between the measurement 
of inflation and changes in relative prices.” 

Clements and Izan [1987; 339]. 

 Selvanathan and Prasada Rao note the above advantage but go further and claim that the 
stochastic approach can be utilized to derive standard errors for many well known index number 
formulae: 

“The attraction of this approach is that is provides an alternative interpretation to 
some of the well known index numbers as the estimators of parameters of specific 
regression models. For example, the Laspeyres, Paasche, Theil-Törnqvist and 
other index numbers can be derived from various regression models. Further this 
approach provides standard errors for these index numbers.” 

Selvanathan and Prasada Rao [1994; 6]. 

 At this point, it should be mentioned that the two main competing approaches to index 
number theory are the test approach and the economic approach. 

 The test approach can apply to two periods (the bilateral case) or to many periods (the 
multilateral case). The bilateral test approach assumes that complete price and quantity 
information on the relevant set of commodities is available for the two periods under 
consideration, say periods s and t. Denote the price and quantity vectors for these two periods by 

 and  where , etc. A bilateral price index is defined as a function 

P of the four sets of variables, . The bilateral test approach attempts to 
determine the functional form for P by assuming that P satisfies certain plausible tests, axioms or 
mathematical properties. In the case of only one commodity in the set of commodities to be 
aggregated, the imposed tests generally cause the price index  to collapse 
down to the single price ratio, 

sp , tp ,q,q ts ]p,,p[p Nss1
s K=

,p,p(P ts )q,q ts

)q,q,p,p(P t1s1t1s1
.pp s1t1  There is an analogous bilateral test approach for the 

quantity index  Fisher [1911; 403] observed that in the present context of 
complete information on prices and quantities, the price and quantity indexes, P and Q, should 
satisfy the following conservation of value equation: 

).q,q,p,p tsts(Q

                                                 
3 See Selvanathan and Prasada Rao [1994; 6] for an extensive list of their recent contributions. 
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(1)  sstttstststs qp/qp)q,q,p,p(Q)q,q,p,p(P ⋅⋅=

where  The importance of (1) is that once the functional form for P has 
been determined, then (1) automatically determines the functional form for Q. Moreover, tests 
for the quantity index Q can be translated into tests for the corresponding price index P defined 
via (1). Useful references for the test approach are Walsh [1901] [1921] [1924], Fisher [1911] 
[1921] [1922], and Diewert [1992a] [1993a; 6-10]. The early history of the test approach is 
reviewed by Frisch [1936; 5-7] and Diewert [1993b; 38-41]. 

.qpqp ntnt
N

1n
tt

=∑=⋅

 In the test approach, the vectors of prices and quantities for the two periods are regarded 
as independent variables. In the economic approach, the two price vectors are regarded as 
independent variables but the quantity vectors are regarded as solutions to various economic 
maximization or minimization problems. In the consumer price context, it is assumed that the 
consumer has preferences over N commodities and these preferences can be represented by an 
aggregator or utility function ).q(f)q,...,q(f N1 ≡  It is also assumed that in each period t, the 

consumer minimizes the cost  of achieving the utility level  when facing the 

period t vector of prices  The Konüs [1924] true cost of living index between 
periods s and t, using the reference utility level  is defined as the ratio of costs of achieving 

the reference utility level when facing the period s and t prices, . If the 
consumer’s utility function is linearly homogeneous, then the cost function  factors 
into two components, f  where  is defined as the unit (utility level) cost function, 

 In this homogeneous case, the Konüs true cost of living index reduces to the unit cost 

ratio,  and the corresponding quantity index is the utility ratio, . 

]p),q(f[C tt

].p,...,p, Ntt2t
q(f

),p )p(c

)q(f t

C/]p), t

q(f t

p[p 1
t

(c)q(

),

]p),q(f[q(f[C s

]p),q(f[C

)q(f/) s
[ ].p,1C

c )p(c/)p( st

 Finally, consider a given formula for the price index, say  We say that P 
is exact for the consumer preferences dual to the unit cost function c if under the assumption of 
cost minimizing behavior on the part of the consumer for periods s and t, we have 

).q,q,p,p(P tsts

(2) . )p(c/()p(c)q,q,p,p(P tttsts =

Similarly, a given functional form for the quantity index,  is ),q,q,p,p(Q tsts exact for the 
linearly homogeneous utility function f if, under the assumption of cost minimizing behavior for 
periods s and t, we have 

(3) . )q(f/)q(f)q,q,p,p(Q sttsts =

The economic approach to index number theory concentrates on finding functional forms for 
price indexes P that are exact for flexible4 unit cost functions c and on finding functional forms 
for quantity indexes Q that are exact for flexible linearly homogeneous utility functions f. Index 
number formulae that are exact for flexible functional forms are called superlative.5 The theory 

                                                 
4 A flexible functional form is one that has a second order approximation property; see Diewert [1974; 115]. 
5 See Diewert [1976; 117]. 
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of exact index numbers was developed by Konüs and Byushgens [1926], Afriat [1972; 44-47], 
Samuelson and Swamy [1974] and Pollak [1989; 15-32]. The early history of exact index 
numbers is reviewed in Diewert [1993b; 45-50]. For examples of superlative indexes, see 

s of the 

lems 
volved in providing measures of reliability for based on the test or economic approaches. 

. The Early Statistical Approaches to Index Number Theory 

athan and 
ada Rao [1994; 49-51] consider is given by the following equations for t=1,2,...T: 

Diewert [1976] [1978] [1992b; 576]. 

 As can be seen from the above brief reviews of the test and economic approaches to 
index number theory,6 these approaches are silent on the problem of providing an estimate of the 
reliability of the suggested bilateral index number formulae. Thus the new champion
stochastic approach appear to have a strong a priori argument in favor of their approach. 

 In section 2 below, we review the original approaches of Jevons, Edgeworth and Bowley. 
In section 3, we review the initial new stochastic approaches of Clements and Izan [1981] and 
Selvanathan and Prasada Rao [1994; 51-61]. In section 4, we review the more sophisticated 
stochastic approaches of Balk [1980], Clements and Izan [1987] and Selvanathan and Prasada 
Rao [1994; 61-110]. The stochastic specifications that are utilized in the models presented in 
sections 3 and 4 are easily rejected from an empirical point of view. Thus in section 5, we 
present a new stochastic model that seems to be in the spirit of the type of model that Edgeworth 
had in mind but was never able to implement. In section 6, we present some practical criticisms 
of the new stochastic approaches to index number theory that will make it difficult for Statistical 
Agencies to embrace these approaches. Section 7 concludes by reconsidering the prob
in

 

2
 

 We assume that we are given price and quantity data, itp  and ,qit  for periods t=0,1,...,T 
and for commodities i=1,2,...,N. The first stochastic index number model that Selvan
Pras

(4) ;pp itt0iti ε+α=  i=1,2,...,N; 

where tα  represents the systematic part of e price change going from period 0th  to t and the 
independently distributed random variables itε  satisfy the following assumptions: 

 i=1,2,...,N; 

m likelihood estimator 
for  in Model 1 defined by (4) and (5) is the Carli [1764] price index: 

(6) 

(5) ;Var;0E 2
titit σ=ε=ε

i.e.,  has mean 0 and variance .02
t >σ  The least squares and maximuitε

tα

,pp)N/1(ˆ 0iit1it =
N∑=α  

                                                 
6  Selvanathan and Prasada Rao [1994; 15-44] provide a rather inadequate review of the test and economic 
approaches. For example on page 17, they attribute Walsh's [1901] [1921; 97] price index to Drobisch, they misspell 
Marshall and they cite an incorrect reference to Marshall [1887], the cofounder of the Edgeworth-Marshall index. 
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whi  arithmch is the unweighted etic mean of the period 0 to t price relatives, .pp 0iit  The 
variance of tα̂  is  

2
tt )N/1(ˆVar σ=α  (7) 

and Selvanathan and Prasada Rao [1994; 51] note that an unbiased estimator for the variance is 

(8) [ ] ( )[ ]2t0iit
N

1i
2
t ˆpp)1N(1 α−∑−=σ = . 

Using (7) and (8 a confidence in), terval for the Carli price index tα̂  can be calculated under the 
m lvanathan and Prasada Rao [1994; 51] note, if 

Instead of assuming that the independent errors 

assumption of nor ally distributed errors. As Se
the dispersion of the price relatives 0iit p/p  increases, then the precision of our period t fixed 
base price index tα̂  will decline. 

 itε  are additive, we could more plausibly 
e that the errors are m e. 7  This leads to Model 2, which is defined by the 
ing equations for t=1,...,T

assum ultiplicativ
follow : 

(9) itt0iit ]pp[n ε+π=l ; i=1,...,N; 

(10) ;Var;0E 2
titit σ=ε=ε  i=1,...,N. 

ximThe least squares and ma um likelihood estimator for tπ  in Model 2 is 

(11) ]pp[]N/1[ˆ 0iit
N

1it l=∑=π . 

A variance estimator for  can be constructed in a m

n

anner analogous to the use of (7) and (8) in 
l 1. If we define to be the exponential of 

 tπ̂

tα  , we can exponentiate  to obtain the tπ̂Mode  tπ
following estimator for  tα : 

(12) .]pp[]ˆexp[ N/1
0iit

N
1it =∏=π  

The right hand side of (12) is the Jevons [1863; 53] geometric mean price index. Jevons [1869; 
157] later applied least squares theory to equation (9) and calculated a “probable error” (or 
confidence interval in modern terminology) for his estimator tπ̂ defined by (11). This appears to 
be the first relatively complete exposition of the stochastic approach to index number theory. 

 Jevons [1865; 120-122] also used the arithmetic mean index number (6) in his empirical 
work but he did not report any confidence intervals for his Carli indexes. Edgeworth [1887; 226-
246] considered both arithmetic and geometric mean (unweighted) index numbers and 
Edgeworth [1888a] was entirely devoted to the problems involved in constructing confidence 
intervals for these indexes. Bowley [1901; 203-229] [1919; 345-346] [1928; 216-222] was very 

                                                 
7 Edgeworth [1887; 237-243] argued on empirical and logical grounds that Model 2 was more plausible than Model 
1, assuming normally distributed errors. His logical argument was based on the positivity of prices; hence a price 

uld be symmetrically distributed. 
relative could have any upper bound but had a definite lower bound of zero, leading to an asymmetric distribution of 
price relatives. However, the logarithm of a price relative co

 337



W. Erwin Diewert 

much concerned with the problems involved in determining the precision of index numbers.8 
Bowley [1911] was concerned with the precision of weighted index numbers while Bowley 
[1926] extended his earlier work to cover the case of correlated price relatives. Finally, Bowley 
was aware that precision in official indexes was rather important, since so many government 
expenditures were indexed to official price indexes. The following quotation refers to a potential 
upward bias of 18 percentage points in the Ministry of Labour index numbers for the UK over 
the yea

“Every 4 points cost over a million pounds in the annual railw
Bowley [1919; 348] 

We turn now to an exposition of the new stochastic models. 

. The New Stochastic Approach to Index Numbers 

s (5) on the independently 
distributed errors  are now replaced by the following assumptions: 

(13) i=1,...,N 

where the are nonrandom fixed shares to be determined later; i.e. the  satisfy 

(14)  for i=1,2,...,N and 

Since the 

h sulting least squares and maximum 
ator for the period 0 to t inflation rate 

rs 1914-1918: 

ay wage bill.” 

 

 

3

 

 Model 3 consists of equations (4) again but our old assumption
itε

ititit
2 w/Var;0E σ=ε=ε ;  

iw iw

0w >i i1i=

i  are positive, we can multiply both sides of equation i in (4) by the square root of 

iw , ,w 2/1
i  in order to obtain homoscedastic errors. T e re

.1wN =∑  

w

likelihood estim  tα  is 

(15) [ ] [ ]0iiti1in1n0iiti1i1 ===

where the sec d equality follows u

NNN ppwwppwˆ ∑=∑∑=α   

on sing (14). Using (13), it can be seen that is an unbiased 
estimator for  and its variance is 

(16) 

tα̂  
 tα

2
iiii1it =

22N ]w[wˆVar σ=σ∑=α  

where the second equality follows using (14). An unbiased estimator for  is 2
tσ

( )[ ] .ˆ(17) ppw)]1N/(1[ˆ 0iiti1it α−∑−≡σ =
2N2  

                                                 
 [1927; 240-247] succinctly reviewe terature and also computed standard errors for various index 

number formulae using BLS data on US wholesale prices. 
8 Mills d the above li
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itε  Under the added assumption that the residuals are normally distributed, (16) and (17) may be 
used to obtain confidence intervals for the share weighted index numbers ˆ  given by (15). α t

 Selvanathan and Prasada Rao [1994; 51-55] consider the following special cases: 

(18) ;qpqpw 0n0n
N

1n0i0ii =∑≡  i=1,...,N; 

(19) ;qpqpw nt0n
N

1nit =∑≡  i=1,...,N

In order to make the iw  fixed variables, we need to assume that base period prices and 
quantities, 0ip  and ,q 0i  and current period quantities, ,qit  are fixed. Thus in equations (4), the 
only random variables are the current period prices .pit  

0ii . 

 Substituting (18) into (15) causes tα̂  to become the fixed base Laspeyres price index, 

,qpqp 000t ⋅⋅  and substitutin s to the Paasche price index,  into (15) leadg (19) .qpqp t0tt ⋅⋅  
Furthermore, substitution of (18) and (19) into (15)-(17) yields estimators for the variances of the 

 base Laspeyres and Pa e indexes. Thus the new stochastic approach of 
nathan and Prasada Rao does lead to estimates of the precision of these well known indexes 
ided that their stochastic assumptio rrect). 

 We turn now to the new stochastic approach of Clements and Izan [1981]. Consider two 

fixed asche pric
Selva
(prov ns (13) are co

distinct periods s and t where Tts0 ≤<≤ . Let stπ  be the logarithm of the price chang  
from period s to t. The equations that define Model 4 are: 

(20) ]p/p[n iststisit ε+π=l

e going

 i=1,...,N; ;

;wVar;0E i
2
stistist σ=ε=ε     i=1,...,N  

n s fy s o 0) through by
 to homosced variances. The least squares and maximum likelihood estim

(21) 

 2/1
i )w(  

ator for st

where the weights iw  agai atis (14). Multiplying both side f (2
leads astic π  
in this transforme odel is 

Usi  An unbiased estimator for  is 

 the expenditure share of commodity i in period t. Clements 
Prasada Rao [1994; 76-77] choose the weights 

9 

d m

(22) ]1ist = . 

ng (21), the variance of stπ̂  is σ

p/p[nwˆ isiti
N l∑=π

.2
st

2
stσ

(23) )p/p(n .]ˆ[w)]1N/(1[ˆ 2
stisiti

N
1i

2
st π−∑−≡σ = l  

Let ∑ =≡ N
1n ntntititit qp/qpw  be

and Izan [1981; 745-746] and Selvanathan and 
iw  that appear in (21) as follows:

(24) ;w)2/1(w)2/1(w itisi +≡  i=1,...,N; 

                                                 
9 These authors choose period s to be period t-1 but this choice is not essential to their argument. 
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i.  is chosen to be the average expenditure share on commodity i over periods s and t. 
Substituting (24) into (22) yields 

(25) 

e., iw

itis w)2/w)2N
1ist p[]ˆexp[ =∏=π . 

The right hand side of (25) is known as the Törnqvist [1936] price index.10 

1(/1(
isit ]p +

rrors, (23) can be used to form confidenc Under the assumption of normally distributed e e 
intervals for ,ˆ stπ  the logarithm of the Persons-Törnqvist price index. However, since the weights 

iw  defined by (24) depend on isp  and ,pit  it will be necessary to assume that the conditional 
( )(on iw ) distribution of isit ppnl  is normal and satisfies assum s (21). Thus the stoc

tions justifying Model 4 are more tenuous than those for Model 3 above. 

The variance assumptions (13) and (21), i
2
tit w/Var σ=ε  and 2

stistVar σ=ε
 some justification.11 The following quotation indicates how Clements and Izan 
sumptions on the variances of the log price relatives: 

“If all goods were equally im ptio

ption hastic 

 , 
require justify 
their as

portant, the assum

assump

iw/

n that ivar ε  is the same for all 
i would be acceptable. However, this is not so, since the budget share iw  varies 
with i. If we think in terms of sampling the individual prices to form Dpi for each 
commodity group, then it seems reasonable to postulate that the collection agency 
invests more resources in sampling the prices of those goods more important in 
the budget. This implies that iεvar  is inversely proportional to iw .” 

 In contra ach athan 
and Pra  being 
accurat , or in any case, they wanted their analysis to apply to this case.12 They justify 
their variance assumptions in (13) and (18) as fol

                                                

Clements and Izan [1981; 745] 

st to the explicit sampling appro of Clements and Izan [1981], Selvan
sada Rao [1994] (with the exception of their section 7.4) regarded their prices as
ely known

lows:13 

 

,)ww 2/1
itis

2/1sstssttt )qpqp/qpqp ⋅⋅⋅⋅

10 This index first appeared as formula 123 in Fisher [1922; 473]. Fisher [1922; 265] listed it as number 15 in his list 
of the 29 best formulae, but he did not otherwise distinguish it. Walsh [1921; 97] almost recommended (25), but he 
used the geometric average of the weight, (  in place of the arithmetic average. Finally, Persons [1928; 

21-22] recommended (25), the Fisher ideal index, (  and seven other indexes as being 
the best from the viewpoint of his test approach. Thus (25) should perhaps be known as the Persons-Törnqvist 
formula. 
11 The first person to make a variance specification of this form appears to have been Edgeworth [1887; 247] as the 
following quotation indicates: “Each price which enters into our formula is to be regarded as the mean of several 
prices, which vary with the differences of time, of place, and of quality; by the mere friction of the market, and, in 
the case of ‘declared values’, through errors of estimation, it is reasonable to support that this heterogeneity is 
greater the larger the volume of transactions.” Edgeworth did not make any formal use of these observations. 

12 “Even in the case where prices of all the commodities of relevance are measured, and measured without any 
errors, the question of reliability of a given index arises.” (Selvanathan and Prasada Rao [1994; 4]). 

13 The reader will deduce that, in the interests of a homogeneous presentation, I have modified the original notation 
of Clements and Izan and Selvanathan and Prasada Rao. 
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“Under this assumption we have that the variance of the price relative of i is 

0i
2
t w/λ  and is inversely proportional to .w 0i  This means that the variability of a 

price relative falls as the commodity becomes more important in the consumer’s 

 ments 
and Iza riance 
assump

e ith relative price, specification (7) implies that the 
variability of a relative price falls as the commod

 for a relative price to change as the commodity in question grows in 

out a 
eature of th bers 

as (15) or (22) are invariant to the level of commodity aggregation, provided that the same 
shares that appear in the variance specifications (13) or (21) are used to do the aggregation. 

 commodities 1 and 2

 and  are used to define the following aggregate period 0 to t price relative: 

budget.” 
Selvanathan and Prasada Rao [1994; 52] 

In their more sophisticated stochastic model to be discussed in the next section, Cle
n [1987] no longer relied on their earlier sampling theory justification for their va
tions of the form (21). Instead, they provided the following justification: 

“As ite  is the change in th
ity becomes more important in 

the consumer’s budget. Thus the variability of a relative price of a good having a 
large budget share, such as food, will be lower than that of a commodity with a 
smaller share, such as cigarettes. This is a plausible specification, since there is 
less scope
importance in the budget.” 

Clements and Izan [1987; 341] 

 As can be seen from the above quotations, the justifications presented for the variance 
assumptions in the new stochastic approaches are rather weak.14 We will return to this point in 
section 5 below. 

 Clements and Izan [1981; 747] and Selvanathan and Prasada Rao [1994; 89] point 
positive f e new stochastic models such as Model 3 or 4: the resulting index num
such 

i
To see this, consider Model 3 represented by (4) and (13) and suppose that  
are aggregated together. Let Atp be the price of the aggregate commodity in period t. The 
weights w

w  

1 2w

(26) ]p/p)][ww/(w[]p/p)][ww/(w[p/p 20t22120iit2110AAt +++≡ . 

.pp Att0AAt ε+α=  Replace the first two equations in (4) by the new aggregated equation 
Using the first t equwo ations in (4) as well as (26), it can be seen that the new aggregate error is 

 to  

]
equal

(27) t2212it211At [ ] [ .)ww/(w)ww/(w ε++ε+=ε  

Using (13) and (27), the expectation of 0AAp  is equal to tt p α , the expectation of Atε  is 0 and 
the variance of Atε  is 

(28) [ ] [ ] )]ww/([]w/[)ww/(w]w/[)r 21
2
t2

2
t

2
2121

2
t

2
211At +σ=σ++σε . ww/(wVa +=

                                                 
14 In his new stochastic model, Balk [1980; 72] simply assumed a variance specification analogous to (13) or (21) 
without any justification other than mathematical convenience. 
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Thus the m f the same  as the means and 
ianc

ean and variance of the aggregated error are o  form
var es of the original errors, itε  and ,t2ε  see (13). It is straightforward to show that the 

aximum likelihood estimator *
1  for α̂ tα  m in the aggregated model is equal to the disaggregated 

timat

4. 
 

 hastic 
models imple 
signal e  Izan 
summa

“Thus the rate of inflation can be estimated by averaging over these n 

 relative prices.” 
Clements and Izan [1987; 339] 

an criticism 

ctively). In order to rectify th ir Laspe model, Selvanathan and 
Prasada Rao [1994; 61-73] generalize their model as follows: assume that the period t over 

es or tα̂  defined by (15). 

 We turn now to more sophisticated new stochastic approaches to price indexes. 

 

A Specific Price Trends Stochastic Approach 

The models presented in the previous section are similar to the classical stoc
 presented in section 2, except that the variance assumptions were different. These s
xtraction models were effectively criticized by Keynes [1930; 58-84]. Clements and
rize this Keynsian criticism as follows: 

observations. This approach was correctly criticized by Keynes (1930, pp. 85-88) 
on the basis that it requires the systematic component of each price change to be 
identical. In other words, all prices must change equiproportionally so that there 
can be no changes in relative prices. The objective of this article is to rehabilitate 
the stochastic approach by answering Keynes’s criticism by allowing for 
systematic changes in

 Selvanathan and Prasada Rao [1994; 61] also acknowledge that the Keynesi
applies to their Laspeyres and Paasche models (Model 3 with the defined by (18) and (19) iw  

yres respe is deficiency in the

period 0 price ratios satisfy 

(29) itit0iit p/p ε+β+α=  i=1,...,N; t=1,...,T 

where the independently distributed residuals itε  satisfy the fo wing assumptions: 

(30) 

llo

;wVar;0E 2
titit σ=ε=ε 1,...,N  t=1,...,T. i  i= ;

are assumed to be shares; i.e., the  satisfy (14). 
nathan and Prasa a Rao [1994; 62 erpret

As usual, the positive variance weights 
Selva d

iw  
] int

iw
 iβ as the expectation of e in the ith 

relative price in addition to general infl ; i. ystematic part of odity i price 
change in addition to the overall period 0 to t price change 

the chang
 commation e., it is the s

tα
15

                                                

 Selvanathan and Prasada Rao 

 

1

15 It is immediately evident that the specification (29) is not very satisfactory. As we go from period 0 to 1, it is 
reasonable to postulate that β  is the systematic part of the commodity 1 price change 1011 p

1

p  in addition to the 
general period 0 to 1 price change α  but it is not reasonable to assume that this same β  will characterize the 
systematic part of the commodity 1 relative price changes 

1

1011 pp for later periods, t=2,3,...,T, since as t increases, 
these fixed base systematic trends will tend to increase in magnitude. 
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[1994; 62] note that the parameters tα  and iβ  are not identified. Thus they add an identifyin  
restriction of the following form: 

(31) .0wi
N

1i =β∑ =  

g

i

The restriction (31) says that a share weighted average of the specific commodity price trends iβ  
sums to zero, a very reasonable assumption since the parameter tα  contains the general period t 
trend. What is not so reasonable, however, is the assumption that the iw  which appears in (31) is 
the same as the iw  which appear in (30). 

 ists of (14) and (29)-(31
estim eters which appear

Let us call the model that cons ) Model 5. Maximum likelihood 
ators, fo s in this model can be obtained in a 

ihood residuals  by: 

,ˆ,ˆ it βα and ,ˆ 2
tσ  r the param

manner analogous to the way Selvanathan and Prasada Rao [1994; 63-66] derived estimators for 
their specific version of this model. Define the maximum likel  itê

( ) ;ˆ iβ  i-1,...,N; t=1,...,T. (32) ˆppê t0iitit −α−≡

aximum likelihood estim  obtained by solving 
the following system of equatio
The m ators for the parameters of Model 5 can be

ns, along with equations (32): 

;ppwˆ 0iiti
N

1it =∑≡α(33)      t=1,...,T; 

(34) ;êw)N/1( 2
iti

N
1i

2
t =∑=σ     t=1,...,T; 

(35) ∑ == σασ∑=β T
1i

2
tt0iit

2
t

T
1ii ]ˆ/1[/]ˆp/p][(ˆ/1[ˆ  i=1,...,N. 

Substitution of equations (33) into (35) shows that the iβ̂  satisfy the restriction (31). Eq  

(34) show that the period t variance estim or 2
tσ̂  is a weighted sum of the squares of the period t 

maximum likelihood residuals, .e2
i

−)

uations

at

ˆ t  Equations (35) show that the ith commodity effect iβ̂  is a 
weighted average over T periods of the deviations of the period 0 to t price relatives 1011 pp  
from the period t general inflation rates tα , where the weights are inversely proportional to the 

period t variance estimates, .ˆ tα  Equations (33) show that the estimator for the period 0 to t 
general inflation rate tα̂  is a ple weighted average of the period 0 to t price relatives, 

2

sim

0iit pp  -- an am ple result! 

 If  let the weights iw  equal the base period expenditure shares ,w 0i  we obtain the 
specific price trends stochastic model of Selvanathan and Prasada Rao [1994; 61-67] and the 
period 0 to t inflation estimate tα̂  defined by (33) collapses down to the fixed base Laspeyres 

price index, 

azingly sim

 we

.qpqp 000t ⋅ ⋅  sy to show that It is ea tα̂  is an unbiased estimator for tα  with the 

ariancv e .2
tσ  Thus Selvanathan and Prasada Rao feel that they have justified the use of the fixed 

base Laspeyres price index (and provided measures of its variability) from the viewpoint of a 
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sophisticated stochastic approach that blunts the force of the Keynesian objection to stochastic 
index number models. 

However, a problem with M ecific commodity 
effects  in equations (29) is not very compelling. A more credible specific price trends 
 odel 5 is that its specification for the sp

iβ
stochastic model was developed by Clements and Izan [1987; 341-345] and repeated by 
Selvanathan and Prasada Rao [1994; 78-87]. The equations that characterize the model of these 
authors are: 

(36) itt1itit ]p/p[n ε+β+π=−l    i=1,...,N; t=1,...,T; i

;wVar;0E i
2
iitit σ=ε=ε    i =1,...,N; t=1,...,T; (37) 

As usual, the variance weights iw  that appear in (37) are assumed known and assumed to satisfy 
(14). As in the previous model, the tπ  and iβ  are not identified. Hence Clements and Izan 
[1987; 342] assume that the iβ  satisfy the following restriction: 

0w ii
N

1i =β∑ =  (38) 

wher  in (38) are the same as those appearing in (3e the weights that appear 7). It is this 
coincidence that leads to the following elegant formulae for the maximum likelihood estimators 

e parameters of Model 6, 

    ; 

0) 

iw  

for th consisting of (14) and (36)-(38): 

(39)  i=1,...N; t=1,...,T;ˆˆ]p/p[nĉ it1ititit β−π−≡ −l

(4 ];p/p[nwˆ 1ititi
N

1it −=∑=π l      t=1,...,T; 

(41) ;êw)N/1(ˆ 2
iti

N
1i

2
t =∑=σ      t=1,...,T; 

(42) ]/1[/])p/p(n][/1[ˆ T 2
st1itit

2
s

T
1ii ∑= σπ−σ∑=β l ; i=1,...,N. 

 The interpretation of (40) to (42) is analogous to the earlier interpretation of (33)-(35). 
However, the interpretation of the sp i  commodity price trend param i  is mu e 
reasonable for Model 6 than for Model 5: the i

1i=−

ecif c eters ch morβ
β  in the ith equation of (36) can be thought of as 

an average (multiplicative) price trend in the commodity i chain price relatives  around 1itp/ −itp
the general period t-1 to t inflation rates, ]exp[ tπ , over all T periods in the sample; i.e., 
exponentiating both sides on the equation in (36) that corresponds to commodity i and period t 
and dropping the error term yields ately equal to ]exp[π  times ]exp[1itit p/p −  approxim t iβ . 
Thus the specification (36) will ca modity specifi

ic s (in addition to the gen

ra

pture constant com c growth rates over the 
sample period in pr e eral growth in prices). 

 Note that the logarithm of the period t-1 to t inflation te, ,tπ  is estimated by the right 
hand sid tical to the
same la. 

e of (40), which is iden  right hand side of (22) if we set s=t-1 and use the 
 weights  in each formuiw
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 Recall that ∑ =≡ N
1n ntntititit qpqpw  is the ith expenditure share in perio t. Clements 

and Izan [1987; 342] make the following specification for the iw  which appear in (37) and (38): 

(43) 

d /

);1T(ww it
T

0ii +∑≡ =  i=1,...,N; 

i.e., the iw  are the mean expenditure shares over the entire sample period. 

 Of course, since the iw  defined by (43)16 are not generally equal to the  defined by iw
(24) when s=t-1, the Model 6 period t-1 to t inflation estimates tπ̂  defined by (40) will not 
coincide ecisely with the Model 4 estimates t,1tˆ −pr π  defined by (22) when s=t-1. Thus Model 6 
does not lead to a precise justification for the Törnqvist price index of Model 4, but Clements 
and Izan [1987; 343] argue that since the sh ed by (43) will not differ much from the 
shar defined by (24) when s=t-1, thei

ares defin
es r specific price trends model provides an approximate 

justification for the use of the Persons-Törnqvist price index. 

 defined by (43) 
epend he prices and hence the “fixed” weights 

 Clements and Izan [1987; 344-350] go on to show how variance estimates for the price 
defined by (40) can be derived. However, as in Model 4, the indexes 

d
tπ̂  

on t
iw

which appear in (37) and (38) are  p  it i
not really independent of the price relatives 

w  
.pp 1itit −  Hence the applicability of Model 6 when 

e 17 

es to a critical ap

ajor d
987; 

345] note explic ir 
empiric mmon 
observation that the food and energy components of the consumer price index are more volatile 

                                                

th  iw  are defined by (43) is in doubt.

 This completes our review of the new stochastic approaches to index number theory. In 
the following two sections, we subject these approach praisal. 

 

5. A Formulation of Edgeworth’s Stochastic Approach to Index Numbers 
 

 The new stochastic models presented in the previous two sections suffer from a rather 
2m efect: the variance assumptions of the type itit w/Var σ=ε  where iw  is an observed 

expenditure share of some sort are simply not supported empirically. Clements and Izan [1
itly that their variance assumptions (37) and (43) are not supported by the

al example.18 However, formal statistical tests are not required to support the co

 

iw

16 It is interesting to note that Walsh [1901; 398] almost derived the transitive multilateral system of index numbers 
defined by (40) and (43): in place of the arithmetic means of the sample expenditure shares defined by (43), Walsh 
recommended the use of the corresponding geometric means. It should also be noted that Balk's [1980; 71] 
specialization of his seasonal model is a special case of Model 6 with  defined as jsjs

T
0sitit

T
0t qpqp == ∑∑

0ii w≡ i

. 
17 Note that Model 5 when w  does not suffer from this difficulty. However, the interpretation of the β  in 
Model 5 is more problematic. 
18 “As can be seen, the variances are not inversely proportional to the budget shares as required by (16").” (Clements 
and Izan [1987; 345]). 
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than m are -- 
volatili hares. 

  dates 
back to  

raw 

steadier in price than producers’ goods, the 

summarizes his evidence on the monthly variability of commodity prices as follows: 

e 
matter of price variabili ity of specific commodities 
has changed from period to period.” 

In the light of the above iti hrough 6, let us reconsider the classical 

commod  Thus Model 7 is defined by the following equations: 

(45) 

The parameter 

any of the remaining components. Food has a big share while energy has a small sh
ty of price components is not highly correlated with the corresponding expenditure s

The observation that different price components have widely differing volatility
 the origins of index number theory. For example, Edgeworth [1887; 244] observed:

“Cotton and Iron, for example, fluctuate in this sense much more than Pepper and 
Cloves.” 

Later, Edgeworth [1918; 186] commenting on Mitchell’s work observed: 

“...that the fluctuation in price from year to year is much greater for some kinds of 
commodities than for others... Thus manufactured goods are steadier than 
materials. There are characteristic differences among the price fluctuations of the 
groups consisting of mineral products, forest products, animal products, and farm 
crops. Again, consumers’ goods are 
demand for the farmer being less influenced by vicissitudes in business 
conditions.” 

For a summary of Mitchell’s evidence on the variability of different components of US 
wholesale prices over the years 1890-1913, see Mitchell [1921; 40-43]. Finally, Mills [1927; 46] 

“It is clear from Table 4 that individual commodities differ materially in th
ty and, also, that the variabil

 cr cism of Models 3 t
stochastic models presented in section 2. However, instead of assuming that the period 5 
residuals have a common variance, we now assume that the log of each chain commodity price 
relative, ],p/p[nl  after adjusting for a common period t inflation factor tπ  has its own 

c variance 2σ

1itit −

ity specifi .i

(44) [ ] ;p/pn iti1itit ε+π=−l  i=1,...,N; t=1,...,T; 

;Var;0E 2
iitit σ=ε=ε   i=1,...,N; t=1,...,T. 

tπ  is the logarithm of the period t-1 to t price inde ,...,N. 

The p ratios 

 s first 
vaguely

“A third principle is that less weight should be attached to

“Or, if more weight attaches to a change of price in one ar
it is not on account of the importance of that article to 

x for t=1,...,T and for i=1

arameter 2
iσ  is the variance of the inflation adjusted logarithmic price 

] t1itp π−−  for t=1,...,T. 

It is interesting to note that a model similar to that defined by (44) and (45) wa
 suggested by Edgeworth as the following quotations indicate: 

[ it /pnl

 observations belonging 
to a class which are subject to a wider deviation from the mean.” 

Edgeworth [1887; 224]. 

ticle rather than another, 
the consumer or to the 
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shopkeeper, but on account of its importance to the calculator of probabilities, as 
affording an observation which is peculiarly likely to be correct...” 

Edgeworth [1889; 287]. 

“In combination of these values derived from observation

Edgeworth [1925; 383]. 

 rsed 
Edgew s: 

ty he suggests tha
be assigned to each commodity in inverse proportion to th

f commodities is so arbitrary and multiform, partly because of the 
difficulty of calculating any useful variability-measure for each class when 
determined. I wish Professor Edgeworth would take my 36 commodities, assign 

 We now show how estimators for our neo-Edgeworthian model defined by (44) and (45) 
e obtained. The log of the likelihood function corresponding to Model 7 is, apart from 

inessential constants, 

, less weight should be 
attached to one belonging to a class which is subject to a wider deviation from the 
mean, for which the mean square of deviation is greater.” 

Edgeworth [1923; 574]. 

“The term may include weighting according to ‘precision’ in the sense in which 
that term is attributed to errors of observation; a sense in which the price of 
pepper might deserve more weight than that of cotton, as M. Lucien March has 
the courage to maintain.” 

In the last quotation, Edgeworth is referring to March [1921; 81] who endo
orth.19 Irving Fisher summarized Edgeworth’s vague suggestions efficiently as follow

“Professor Edgeworth has made somewhat analogous, though less definite, 
proposals. He suggests that any commodity belonging to a class that is subject to 
wide scattering is a less reliable indicator than one belonging to a class not so 
subject. To take account of such differences in reliabili t weights 

e square of some 
variability-measure of the class to which it belongs. 

This idea is scarcely capable of specific application, partly because the 
classification o

each to what he believes is its proper class, estimate each class-variability-
measure, and calculate an index number accordingly.” 

Fisher [1922; 380] 

can b

(46) [ ] .)p/p(nnT),...,;,...,(L 2
t1ititi1i1ii

N
1i

2
N

2
iT1 π−σ∑∑−σ∑−≡σσππ −=== ll  2TN2

Differentiating (46) with respect to the parameters and setting the resulting partial derivatives 
equal to 0 leads to the following system of T+N simultaneous non linear equations to determine 
the likelihood estimators for Model 7 (assuming that the 2

iσ̂  are all strictly positive): 

(47) ]ˆ/1[/)p/p(n]1[ˆ 2
i

N
1i1itit1nt σ∑∑=π =−= l ; t=1,...,T; 

 maximum 

                                                

ˆ/ 2
n

N σ

 
19 March [1921; 81] observed that if the price of paper varied less than the price of wheat, then the former price 
should be given more weight in the index number formula. 
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(4 2
t1itit

T
1i

2
i ]ˆ)p/p(n[]T/1[ˆ π−∑=σ −= l   i=1,...,N. 

The interpretation of the specific commodity price variance estimators 2ˆ iσ  defined by (48) is 

8) 

straightforward. Equation t in (47) says that the estimator for the logarithm of the period t-1 to t 
ion rate, is a weighted average of the indivi

e essence of Edgeworth’s suggested 

solu
it exist

is the Jevons geometric mean price index for the t-1 to t price change. Once the 

inflat  ,tπ  
 

dual period t-1 to t log price changes, 
[ ],p/pn 1it−l

estimated varian
stoc

it with the weight for the ith log price change being inversely proportional to its 

ce, .ˆ 2
iσ  Thus Model 7 seems to capture th

hastic approach to index number theory. 

 There can be at most one finite tion to equations (47) and (48) that has all 2σ̂  strictly 
positive. A suggested algorithm for finding this solution if s is the following one. Begin 
iteration 1 by estimating tπ̂  as the mean of the unweighted log price changes: 

(49) );p/p(n)N/1(ˆ 1itit
N

1i
)1(

t −=∑≡π l  t=1,...,T. 

Thus ]ˆexp[ )1(π  

i

)1(
tπ̂  have been defined, define the iteration 1 variances 2)1(

i ]ˆ[σ  by (48) replacing tπ̂  by )1(
tπ̂ . At 

the first stage of iteration , define the )2( 2 tπ̂  by (47) using the iteration 1 2)1(
i ]ˆ[σ  in the right hand 

sides of (47). At the second stage of iteration 2, define the 2)2(
i ]ˆ[σ  by (48) using the )1(

tπ̂  in the 
right hand sid arry on repeating these first and second stage ite ons until the 
estimates converge. It can be shown that if the )k(

iσ̂  remain positive, then each stage of each 
iteration will lead to a strict increase in the log likelihood function (46) until convergence has 
been achieved. 

es of (48). Now c r

Unfortunately, the above algorithm may not always work in degenerate cases. For 
ere the period t prices are proportional to the base period prices for 
 explicit functions of the proportionality factors and all of the 

ny 
and define for t=1,...,T and let tend to 0 (with the other  positive and 

pproaches plus infinity. To rule out degenerate 
solutions of this type, it may be necessary to add a positive lower bound to the admissible 
variances in our model; i.e., we may need to add to (44) and (45) the following restrictions: 

(50)  i=1,...,N 

for some  chosen a priori. 

 We now turn to a critical evaluation of these new stochastic models for price indexes. 

 

ati

 
example, consider the case wh
all t. In this case, the tπ̂  are
commodity variances defined by (48) will be 0. There are other problems as well: if we pick a
i  [ ]1itt pnˆ −=π l  itp/
finite), we find that the log likelihood function a

2
iσ  2

jσ

;022
i >σ≥σ

 2σ
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6. A Critical Evaluation of the New Stochastic Approaches 

 

 Our first criticism of the new stochastic models presented in sections 3 and 4 has already 
been made: the variance assumptions made in these models are not consistent with the observed 
behavior of prices. This is a very fundamental criticism that has not been addressed by the 
proponents of these new models. The assertion of Selvanathan and Prasada Rao [1994; 6] that 
their stochastic approach has provided standard errors for several well known index number 
formulae is correct only if their stochastic assumptions are correct, which seems very unlikely! 

 Our second criticism is directed towards the specific price trend models of Balk [1980], 
Clements and Izan [1987] and Selvanathan and Prasada Rao [1994; 63-66]: these models force 
the same weights  to serve two distinct purposes and it is unlikely that their choice of weights 
could be correct for both purposes. In particular, their expenditure based weights are unlikely to 
be correct for the first purpose (which is criticism 1 again). 

iw

 Our third criticism of the new stochastic approaches presented in sections 4 and 5 is that 
the resulting price indexes are not invariant to the number of periods T in the sample. Balk 
[1980; 72-73] was very concerned with this problem (since he works in a Statistical Agency and 
hence must suggest “practical” solutions to problems) and he presented some evidence on the 
stability of his estimated index numbers as T was increased. His evidence indicates that our third 
criticism is empirically important. Due to the fact that variances of price relatives can change 
considerably over time (recall Mills [1927; 46]), our neo-Edgeworthian Model 7 presented in the 
previous section will be particularly subject to this instability criticism. 

 The above invariance problem also occurs in the multilateral context and in the 
multiperiod time series context when we want our estimated index numbers to satisfy the 
circularity test; i.e., to be transitive. Walsh, after noting how multilateral transitivity can be 
achieved by using weights that pertain to all of the periods in the sample (e.g., recall equations 
(43) in Model 6), draws attention to the above invariance problem and also notes why the 
multilateral case is more difficult than the bilateral case: 

“In no case is this remedy satisfactory, for two principle reasons: (1) Because the 
present epoch is extending every year, requiring recalculations; and it does not 
appear that a later recalculation will be more correct than an earlier. Besides, how 
is a past variation between two years several years ago to be affected by present 
variations? (2) Because we really do not know how to calculate weights, or to 
determine equivalence of mass-units, or to average mass-quantities, over more 
than two periods, since the geometric average loses its virtue when applied to 
more than two figures.” 

Walsh [1901; 399] 

 Our fourth criticism of the new stochastic approaches is simply a restatement of the 
fundamental objection of Keynes: 

“The hypothetical change in the price level, which would have occurred if there 
had been no changes in relative prices, is no longer relevant if relative prices have 
in fact changed -- for the change in relative prices has in itself affected the price 
level. 
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I conclude, therefore, that the unweighted (or rather the randomly weighted) index 
number of prices -- Edgeworth’s ‘indefinite’ index number -- ...has no place 
whatever in a rightly conceived discussion of the problems of price levels.” 

Keynes [1930; 78] 

Thus if price relatives are different, then an appropriate definition of average price change cannot 
be determined independently of the economic importance of the corresponding goods. What is an 
appropriate definition of aggregate price change? Earlier in his book, Keynes [1930; 59-61] 
indicated that the price relatives in a producer or consumer price index should be weighted 
according to their relative importance as indicated by a census of production or by a consumer 
budget study. Thus the best index number formula according to Keynes is an expenditure 
weighted sum of relative prices; i.e., the price relatives must be weighted according to their 
economic importance, not according to their statistical importance, a la Edgeworth.20 Of course, 
in the approach advocated by Keynes, there is still the problem of choosing the “best” economic 
weights (base or current period expenditure shares or a mixture of them), but precise answers to 
this question simply lead back to the test or economic approaches to index number theory. 

 Criticism four can be restated as follows. The early statistical approaches of Jevons and 
Edgeworth (see section 2) treated each price relative as an equally valid signal of the general 
inflation rate: the price relative for pepper is given the same weight as the price relative for bread. 
This does not seem reasonable to “Keynesians” if the quantity of pepper consumed is negligible. 

 Another more technical way of restating the Keynesian objection to stochastic 
approaches can be accomplished by drawing on the models presented in section 5: if we make 
more reasonable variance assumptions, models of the form (36)-(38) are reasonable, except that 
the constant  ’s should be replaced by sets of period specific iβ itβ ’s. But then the resulting 
model has too many parameters to be identified. 

 Our conclusion at this stage is: in the present context where all prices and quantities are 
known without sampling error, signal extraction approaches to index number theory should be 
approached with some degree of caution.21 
 Of course, there is a huge role for statistical approaches when we change our terms of 
reference and assume that the given price and quantity data are samples. The founders of the test 
approach, Walsh [1924; 516-517] and Fisher [1922; 336-340], did not deny a strong role for 
statistical techniques in the sampling context. In addition to the work of Bowley [1901] [1911] 
[1919] [1926] [1928], more recent references on the sampling aspects of price indexes include 
Mudgett [1951; 51-54], Adelman [1958], McCarthy [1961], Kott [1984] and the BLS [1988]. 

 

                                                 

1

20 Keynes’ belief in the importance of economic weighting (as opposed to Edgeworth [1901; 410] and Bowley 
[1901; 219] who at times believed that weighting was unimportant) dates back at least to Keynes [1911; 46]. 
21 The dynamic factor index approach of Bryan and Cecchetti [1993; 19] is an example of a signal extraction 
approach to index numbers that we did not cover due to its complexity. Their approach is only subject to our 
criticisms 3 and 4. Their approach is also subject to a criticism that can be leveled against the specific price trend 
models of section 4: the nonstationary components of their specific price trends (their counterparts to the β  which 
appear in Models 5 and 6 above) are assumed to be constant over the sample period. 
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7. Other Approaches to the Determination of the Precision of an Index 

 

 Having rejected the new stochastic approaches to index number theory (when all prices 
and quantities are known with certainty over the sample period), we have to admit that the 
proponents of these new approaches have a point: if all of the price relatives pertaining to two 
periods are identical, it must be the case that the “precision” of the index number computation 
for those two periods is greater than when the price relatives are widely dispersed. On the other 
hand, the proponents of the test and economic approaches to index number theory use their 
favorite index number formula and thus provide a precise answer whether the price relatives are 
widely dispersed or not. Thus the test and economic approaches give a false sense of precision. 

 The early pioneers of the test approach addressed the above criticism. Their method 
works as follows: (i) decide on a list of desirable tests that an index number formula should 
satisfy; (ii) find some specific formulae that satisfy these tests (if possible); (iii) evaluate the 
chosen formulae with the data on hand and (iv) table some measure of the dispersion of the 
resulting index number computations (usually the range or standard deviation was chosen). The 
resulting measure of dispersion can be regarded as a measure of functional form error. 

 Fisher [1922; 226-229] applied the above method to address the charge that the test 
approach gave a false precision to index numbers. He found 13 index number formulae 
(including the ideal) that satisfied the commodity, time and factor reversal tests and were not 
“freakish”; i.e., descended from modes or medians (and hence discontinuous). Fisher [1922; 227] 
found that the standard deviations between his 13 best fixed base indexes increased as the two 
periods being compared grew further apart; his “probable error” reached a maximum of 
about .1% when his 13 indexes were compared between 1913 and 1918. Fisher called this 
functional form error, instrumental error. In response to outraged criticisms from Bowley, Fisher 
later summarized his results as follows: 

“What I do claim to have demonstrated is something quite different, namely, that 
the ‘instrumental’ error, i.e., that part of the total error which may be ascribed to 
any inaccuracy in the mathematical formula used, is, in the case of the ideal 
formula (and, in fact, in the case of a score of other formulae as well), usually less 
than one part in 1000.” 

Fisher [1923; 248] 

 Warren Persons [1928; 19-23] also implemented the above test approach to the 
determination of functional form error. Persons looked for index number formulae that satisfied 
the time reversal test and his new test, the absence of weight correlation bias test. He found nine 
admissible index number formulae (including the Persons-Törnqvist and the Fisher ideal) and 
used Fisher’s [1922] data to numerically evaluate these nine. Finally, Persons [1928; 23] tabled 
the range of the resulting indexes over the sample period; he found the range was a maximum in 
1917 when it slightly exceeded 1%. It turned out that indexes satisfying Fisher’s tests had a 
narrower range of dispersion than the indexes satisfying Persons’ tests for the same data set. 

 Walsh [1921; 97-107] almost recommended the above approach to functional form error. 
He chose six index number formulae on the basis of how close they came empirically to 
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satisfying his multiperiod identity test.22 Walsh [1921; 106] used a small but somewhat extreme 
data set from Bowley [1901; 226] to evaluate his six index number formulae; he found that their 
range was about 2%. However, Walsh did not stop at this point; he went on to choose a single 
best index number formula: 

“To return to theory: would anything be gained by drawing an average of the 
results yielded by several methods? Hardly, as they have different merits. All that 
we can do is choose the best, after testing all the candidates; for to average the 
others with the best, would only vitiate the result.” 

Walsh [1921; 106-107] 

What was Walsh’s [1921; 102] theoretically best index number formula? None other than Irving 
Fisher’s [1922] ideal index!23 

 It is clear that there are some problems in implementing the above test approach to the 
determination of functional form error; i.e., what tests should we use and how many index 
number formulae should be evaluated in order to calculate the measure of dispersion? However, 
it is interesting to note that virtually all of the above index number formulae suggested by Fisher, 
Persons and Walsh approximate each other to the second order around an equal price and 
quantity point.24 

 The above approach may be used to estimate the functional form error that arises from 
choosing an index number formula that is based on the economic approach. The economic 
approach recommends the use of a superlative index number formula, such as the Fisher-Walsh 
ideal formula25 or the Persons-Törnqvist formula26 or the direct and implicit quadratic mean of 
order r families of price indexes that include two indexes recommended by Walsh [1901; 105].27 
Many of these superlative indexes appear in the list of best test approach index number formulae 
recommended by Fisher, Persons and Walsh.28 As was done for the test approach, the functional 
form error involved in using any specific superlative index could be approximated by evaluating 
a number of superlative indexes and then tabling a measure of their dispersion. 

                                                 
22 Walsh [1921; 104] called his test the circular test but it is slightly different from the Westergaard-Fisher [1922; 
413] circular test; see Diewert [1993b; 39] 
23 Walsh [1901] [1921] was an originator of the test approach to index number theory and he also proposed the use 
of the ideal index either before Fisher [1921] or coincidentally. Perhaps the reason why Walsh has been forgotten 
but Fisher lives on is due to the rather opaque writing style of Walsh whereas Fisher wrote in a very clear style. 
24 Thus these indexes are either superlative or pseudo-superlative; i.e., they approximate superlative indexes to the 
second order around an equal price and quantity point; see Diewert [1978; 896-898]. 
25 See Diewert [1976; 134]. 
26 See Diewert [1976; 121]. 
27 See Diewert [1976; 134-135]. The two Walsh indexes are obtained when we set r=1. Walsh [1921; 97] listed his 
two recommended indexes as formulae (5) and (6). The right hand side of (5) needs to be multiplied by the 
expenditure ratio for the two periods under consideration, since on the previous page, Walsh [1921; 96] assumed 
that these expenditures were equal. 
28 On the basis of its consistency with revealed preference theory and its consistency with linear and Leontief 
aggregator functions, Diewert [1976; 137-138] recommended the Fisher-Walsh ideal index as the best superlative 
index number formula. Allen and Diewert [1981; 435] also endorse this index number formula as being the best 
superlative one since it is consistent with both Hicks’ [1946; 312-313] Composite Commodity Theorem and 
Leontief’s [1936; 54-57] Aggregation Theorem. 
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 A specific proposal to measure the dispersion of superlative indexes is the following one. 
Choose the following members of Diewert’s [1976; 131] quadratic mean of order r price indexes 

2r P:P  (the Fisher-Walsh ideal price index),  (Walsh),  (Persons-Törnqvist), and 1P 0P .P 2−  
Choose the following members from Diewert’s [1976; 132] implicit quadratic mean of order r 
prices indexes 2r P~:P~  (implicit Walsh), 0P~  (implicit Törnqvist) and P .~

2−
29  These formulae 

include the most frequently used superlative indexes. To measure the dispersion of these indexes, 
consider the following dispersion measure D, which is the range of the seven indexes divided by 
the minimum index: 

(51)  1
20120122012012

tsts }]P~,P~,P~,P,P,P,Pmin{/}P~,P~,P~,P,P,P,P[max{)q,q,p,p(D −
−−−−≡

where ( )tsts
ii q,q,p,pPP ≡  and ( ).q,q,p,pP~P~ tsts

jj ≡  D can be interpreted as the percentage 
difference between the highest and lowest price indexes in the set of admissible indexes. 

 Note that  Moreover, since each of the seven indexes that appear on 
the right hand side of (1) satisfy the Fisher [1911; 534] [1922; 64]-Walsh [1901; 368] 

.0)q,q,p,p(D tsts ≥
time 

reversal test: 

(52) ,  )q,q,p,p/(1)q,q,p,p(P tstststs =

it can be verified that the dispersion measures defined by (51) will satisfy the following base 
period invariance property: 

(53) ;  )q,q,p,p(D)q,q,p,p(D ststtsts =

i.e., if we interchange periods, the dispersion remains unchanged. 

 The dispersion measure defined by (51) can be adapted to the test approach: the set of 
index number formulae that would appear in (51) would be restricted to formulae that satisfied 
the appropriate set of tests. In particular, assume that the admissible P satisfy the time reversal 
test (52) and Walsh’s [1901; 385] strong proportionality test: 

(54)  for  λ=λ )q,q,p,p(P tsss ;0>λ

i.e., if the period t price vector  is proportional to the period s price vector  then the index 
equals the common proportional factor. Under these hypotheses on the class of admissible price 
indexes in (51), the dispersion measure defined by the appropriate version of (51) would satisfy 
the base period invariance test (53) and would equal 0 if all the price relatives were identical. 

tp ,ps

 Returning to the economic approach to index numbers and the specific measure of 
formula error defined by (51), it can be verified that if both prices and quantities are proportional 
during the two periods under consideration, so that  and  for some 
  then each of the seven indexes which appears in the right hand side of (51) is equal 

st pp α= st qq β=
,0,0 >β>α

                                                 
29 Fisher’s [1922; 461-487] identification numbers for these formulae are: 353, 1153, 123, the geometric mean of 13 
and 19, 1154, 124, and the geometric mean of 14 and 20. 
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to α and hence the dispersion measure p(D s l attain its lower bound of 0. 

However, if only prices are proportional, then )q,q,p,p(D tsss α  will not necessarily equal 0. If 
we want a measure of dispersion that will equal z

)q,q,p, sss βα

ero whe

in

er to implement this a

 wil

only prices are proportional, a 

,
bility of the in

In ord
tion by 

n 

dex

different approach is required, which we now turn to. 

 A more direct approach to the reliability of a price ),q,q,p,p(P tsts  is to simply 
look at the varia dividual price relatives, isit p/p , around the index number 

“average” value, 

 

pproach, define the ith absolute ).q,q,p,p(P tsts  
devia

(55) )q,q,p,p(P)p/p()q,q,p,p(d tsts
isit

tsts
i −≡  i=1,...,N. 

A measure f relative price variabo ility, V, could be defined as an

q,q,p,p sts

 by V). Unfortunat

re of 
c deviation ie  by 

 appropriate function of the 
tions  defined by (55), say: 

e D ely, the V defined by (56) and 

price variability between two 
ds, define the ith absolute logarithmi

devia  id

(56) (d,),q,q,p,p(d[M)q,q,p,p(V N
tsts

1
tsts K≡ )]t  

where M is a linearly homogeneous symmetric mean.30 

 A desirable property for a price variability measure V is that it satisfy the base period 
invariance property (53) (where we replac
(55) will not generally have this property. 

 In order to obtain a base period invariant measu
perio

p,p(nP)p/p(n)q,q,p,p(e ts
isit

tsts
i ll −≡ ,)q,q, ts  i=1,...,N. 

e a logarithmic price variability measure

(57) 

Defin  V by 

n. If the index number formula P s
nce 

g D). 

Define the mean of order r of N positive numbers 

(58) )]q,q,p,p(e,),q,q,p,p(e[M)q,q,p,p(V tsts
N

tsts
1

tsts K≡   

where again M is a homogeneous symmetric mea atisfies the 
time reversal test (52), then it can be verified that )q,q,p,p(e)q,q,p,p(e ststtsts =  and heii
the V defined by (58) satisfies the base period invariance p 53) (  V replroperty ( with acin

N1 x,...,x  for 0r ≠  by31  

(59) 

                                                

( ) .]x)N/1([x,...,xM r/1t
i

N
1iN1r =∑≡  

 
)x,...,x(M N1

λ=λλ ),...,( N1 )x,...,x(M N1

}x{max)x,...,x(M}x{min iiN1ii ≤≤

30 A symmetric mean  is defined to be a continuous, symmetric increasing function of N real variables 

that has the mean value property, M .  will also satisfy the following min-max 
property:  This last property and (55) imply that V will be nonnegative. 
31 See Hardy, Littlewood and Polya [1934; 12]. 
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The means of order r, ,Mr  are homogeneous symmetric means and hence can be used as M’s in 
(58). For example, if we choose r=2 and substitute  into (58), we obtain the following 
logarithmic price variability measure: 

2M

(60)  .])}q,q,p,p(nP)p/p(n{)N/1[()q,q,p,p(V 2/12N
1i

tsts
isit

tsts
2 ∑ = −≡ ll

Note that (60) bears some resemblance to the earlier stochastic measure of reliability, stσ̂  
defined by the square root of (23). It should also be noted that a monotonic transformation of the 
measure of relative price variability defined by (60),  was suggested as a 
measure of the nonproportionality of prices by Allen and Diewert [1981; 433]: the price index P 
that they used in (60) was the Jevons equally weighted geometric mean defined by the right hand 
side of (12) (with  replacing ). 

,)]q,q,p,p(V[N 2tsts
2

sp 0p

 Unfortunately, the measures of price variability defined by (58) or (60) are still not 
satisfactory in the present context. The problem is that some price relatives are completely 
unimportant and hence should not be given the same weight as items that are important in the 
budgets of the consumer or producer for the two periods under consideration: recall Edgeworth 
and March’s discussion about the relative importance of pepper versus wheat or cotton. We 
could use the budget shares of period s,  or the budget shares of period t,  as weights, 
but it seems less arbitrary to use an even handed average of these two sets of weights.

,wis ,wit

m
32 Thus we 

will weight the ith absolute logarithmic price deviation  defined by (57) by  
where m is a linearly homogeneous symmetric mean of two variables. Note that the symmetry 
property of m implies that 

ie ( ),w,w itis

(61)  i=1,...,N. ( ) ( ,w,wmw,wm isititis = )

                                                

Thus our final class of price variability measures is defined as follows: 

(62)  )]q,q,p,p(e)w,w(m,),q,q,p,p(e)w,w(m[M)q,q,p,p(V tsts
NNtNs

tsts
1t1s1

tsts K≡

where the  are defined by (57) and M is again a homogeneous symmetric mean. If the price 
index P satisfies the time reversal test (52) and the share aggregator function m satisfies (61), 
then it can be verified that the V defined by (62) satisfies the base period invariance test (53). 

ie

 
32 Our reasoning is similar to that of Walsh [1921; 90], who made the case for the use of average weights in a price 
index as follows: “Commodities are to be weighted according to their importance, or their full values. But the 
problem of axiometry always involves at least two periods. There is a first period, and there is a second period that is 
compared with it. Price-variations have taken place between the two, and these are to be averaged to get the amount 
of their variation as a whole. But the weights of the commodities at the second period are apt to be different from 
their weights at the first period. Which weights, then, are the right ones -- those of the first period? or those of the 
second? or should there be a combination of the two sets? There is no reason for preferring either the first or the 
second. Then the combination of both would seem to be the proper answer. And this combination itself involves an 
averaging of the weights of the two periods.” 
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This V will also be nonnegative. 33  Moreover, if the price index P satisfies the strong 
proportionality test (54), then V will equal 0 if prices are proportional so  .0)q,q,p,p(V tsts =λ

 The most straightforward special case of (62) is obtained if we let M and m be means of 
order 1; i.e., arithmetic means. In this case, V becomes 

(63) q,p,p(nP)p/p(nw)N/1()q,q,p,p(V sts
isitist

N
1i

tsts
1 ll −∑≡ = )q, t  

where ( )( itisist ww2/1w +≡ )  is the average expenditure share on commodity i during periods s 
and t. The measure (63) is simply the arithmetic average of the weighted absolute logarithmic 
deviations, ).q,q,p,p(ew tsts

iist λ  The only disadvantage of this measure is that it is not 
differentiable. A differentiable special case of (62) is obtained if we set  and still let m 
be the arithmetic mean: 

2MM =

(64) . 2/12tsts
isitist

N
1i

N
1i

tsts
2 })]q,q,p,p(nP)p/p(n[w)N/1()N/1({)q,q,p,p(V ll −∑≡ ==∑

Note the resemblance of (64) to the square root of (23). Comparing (64) to (63), V2 gives larger 
weight to the larger weighted absolute logarithmic deviations, )q,q,p,p(ew tsts

iist λ . Both of 
the measures  and  will serve as satisfactory measures of variability or degree of 

nonproportionality of relative prices relative to the index number formula . 
1V 2V

)q,q,p,p(P tsts

 There is another approach to the measurement of relative price variability that has the 
advantage that it is simultaneously a measure of relative quantity variability. Consider the 
following variability measure due to Robert Hill [1995; 81]34: 

(65)  0)]qpqp/qpqp(n)q,q,p,p(V ssttsttststs
H ≥⋅⋅⋅⋅= l

(66)    )]P/P(n[ PLl≡

(67)   [ ])QQ(n PLl≡  

where  and  are the Laspeyres and Paasche price indexes 

and  and  are the Laspeyres and Paasche quantity 
indexes. Equation (66) shows that the variability measure defined by (65) can be written as the 
absolute value of the log of the ratio of the Laspeyres and Paasche price indexes while (67) 
shows a similar equality involving the ratio of the Laspeyres and Paasche quantity indexes. Thus 
if prices in the two periods are proportional (so that ), then 

ssst
L qp/qpP ⋅⋅≡

ssts
L qp/qp ⋅⋅≡

tstt
P qp/qpP ⋅⋅≡

sttt
P qp/qpQ ⋅⋅≡Q

st pp α= α== PL PP

q

 and using (66), 

 Similarly, if quantities in the two periods are proportional (so that ), then .0VH = st qβ=

                                                 

)q,q,p,p(V tsts

}Q,Qmin{/}]Q,Q[max{nV PLPLH l≡

33 If P satisfies the usual homogeneity properties with respect to prices and quantities (e.g., see tests PT5-PT8 in 
Diewert [1992a; 215-216]), then it can be shown that  will be homogeneous of degree zero in each 
of its four sets of variables. 
34 Hill defined . It can be shown that this definition is equivalent to (67). 
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β== PL QQ

.1−x

 and using (67),  Hence as Hill [1995; 81] observed, if either prices are 
proportional (recall Hicks’ [1946; 312-313] Aggregation Theorem) or quantities are proportional 
(recall Leontief’s [1936; 54-57] Aggregation Theorem), then the variability measure  defined 
by (65) attains its lower bound of 0. Note also that if we interchange periods,  remains 
unchanged; i.e., it satisfies the base period invariance property (53). 

.0VH =

xln

HV

HV

 If x  is close to 1, then  can be closely approximated by the first order approximation, 
 Hence the Hill variability measure  can be approximated by the following measure: HV

(68) ]1)Q/Q[(P[()q,q,p,p(V PLL
tsts −=≡ ]1)P/ P −

PP

. 

This variability measure has the same mathematical properties that were noted for  Both 
measures are base period invariant measures of the spread between the Paasche and Laspeyres 
price (or quantity) indexes; both measures are approximately equal to the absolute value of the 
percentage difference between the Paasche and Laspeyres indexes. From the viewpoint of the 
test approach to index numbers, Bowley [1901; 227], Fisher [1922; 403] and Diewert [1992a; 
219-220] proposed that the price index P should be between the Paasche and Laspeyres price 
indexes. These bounds are also valid from the economic point of view if we have a homothetic or 
linearly homogeneous aggregator function. Thus the variability measures defined by (65) and 
(68) provide convenient methods of describing the width of these index number bounds. 

.HV

 Note that the variability or nonproportionality measures  and  do not depend on a 
particular index number formula P. However, if the index number formula P is a symmetric 
mean of the Paasche and Laspeyres indexes (e.g.,  the Fisher Walsh ideal index), 
then P will lie between  and  and  or 

HV

,2

V

( )PPP /1
PL=

LP HV V  may be used as reliability measures for P. 

 We have presented three classes of dispersion measures (see (51), (62) and (65) or (68) 
above) that could be used to measure the reliability of an index number formula. The use of (62), 
(65) or (68) as measures of dispersion would meet some of the criticisms of the test and 
economic approaches that have been made by the proponents of the stochastic approach. If all of 
the relative prices were identical, the above dispersion measures would attain their lower bounds 
of zero, but if the price relatives were dispersed, nonzero measures of dispersion or variability 
would be obtained if (51) or (62) were used. 

 It is now almost 75 years after Walsh [1921] made his comments on the diversity of 
approaches to index number theory and economists are still “at loggerheads.” However, perhaps 
this diversity is a good thing. The new stochastic approach to index numbers has at least caused 
this proponent of the test and economic approaches to think more deeply about the foundations 
of the subject. 
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