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The Key Assumption and What We Do

I Production function estimation as a tool for productivity
analysis

I e.g., Estimate a production function that explains the
input/output behavior of a sample of �rms. Use residuals as
productivity measures for applied work.

I We present a �new� semiparametric approach to estimation
that allows for richer patterns of �rm heterogeneity than
prevailing approaches of Olley&Pakes (1996) and
Levinsohn&Petrin (2002). Focus only on wage and output
price heterogeneity today.
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The Problem

I yjt = αljt + βkjt + ωjt + εjt

I ωjt is endogenous

I Fixed e�ects impose ωjt = ωj

I IV requires good instruments

I The semiparametric approach initiated by OP and pursued
further by LP - use a model of �rm behavior.
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The Scalar Unobservability Assumption

I (ωjt , kjt) is �rm j 's time t state.

I Firm j makes a time t static input decision mjt = ft(ωjt , kjt) or
dynamic input decision ijt = gt(ωjt , kjt).

I Take inverse of input demand function

ωjt = φt(kjt ,mjt)

.

I Control for endogeneity nonparametrically

yjt = αljt + Φt(mjt , kjt) + εjt



Evolution of TFP and β

I First order Markov assumption

ωjt = g(ωjt−1) + ηjt

I Time to build assumption

Kjt = d(Kjt−1, ijt−1)

I kjt is decided at time t − 1 and ηjt independent of all t − 1
information implies

ηjt⊥kjt

I Use this moment to estimate β



Relaxing the Scalar Unobservability Assumption

I Basic problem is that ωjtand εjt enter symmetrically into the
production function, i.e., (ωjt + εjt).

I However from the �rm's point of view, ωjt and εjt enter
asymmetrically into the pro�t maximization problem. Lets
exploit this fact.

I Use the �rst order condition for the �rm's static input decision
(i.e., labor input decision)

I Use FOC + production function jointly to invert out ωjt and
εjt as functions of parameters, i.e., ωjt(α, β) and εjt(α, β)

I Use same moment conditions OP and LP to estimate model
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Cobb-Douglas Example

Let the state be (ωjt , kjt ,Pjt ,Wjt)
Then we have the system

ln

(
PjtYjt

WjtLjt

)
= − ln (α) + εjt

yjt = αljt + βkjt + ωjt + εjt

More generally (
sjt
yjt

)
= Υ(xjt , ωjt , εjt)
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Application to Chilean Data

Plant level Chilean manufacturing panel data from 1979-1996
Same data set used by Levinsohn and Petrin

Table: Industry 311

Method Labor 95% CI Capital 95% CI

OLS .953 .932,.947 .400 .389,.411

LP .647 .595,.700 .399 .292,.505

GNR .414 .402,.425 .362 .274,.391
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Robustness Check : The CES

Qjt = Ajt

(
αLρ

jt + βK ρ
jt

) r

ρ

For α + β = 1, r > 0, ρ < 1

Table: Industry 311

Estimate SE

ρ -.51 .06

α .14 .06

β .86 .19

r .69 .06

Average Labor Elasticity = .45 (SE=.02)
Average Capital Elasticity = .24 (SE=.02)
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The Diewert Production Function

Qjt = Ajt

(
αLρ

jt + βK ρ
jt + γL0.5ρjt K

0.5ρ
jt

) r

ρ

For α + β + γ = 1, r > 0, ρ < 1

Table: Industry 311

Estimate SE

ρ -1.11 .26

α .01 .02

β .85 .12

γ .14 .10

r .70 .05

Average Labor Elasticity = .45 (SE=.02)
Average Capital Elasticity = .25 (SE=.01)



Further Applications

I We show how to nonparametrically identify and estimate the
distribution of α in a Cobb-Douglas setting with panel data

I We can easily allow for more general assumptions on TFP
evolution - i.e., higher order Markov assumptions or controlled
Markov process assumptions

I Multiple dimensions of unobserved heterogeneity appear
prevalent in data
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