Estimating Production Functions with Heterogeneous Firms

Amit Gandhi, Salvador Navarro, and David Rivers

University of Wisconsin-Madison

May 16, 2008

(ロ)、

(ロ)、(型)、(E)、(E)、 E のQで

 Production function estimation as a tool for productivity analysis

(ロ)、(型)、(E)、(E)、 E、 の(の)

- Production function estimation as a tool for productivity analysis
- e.g., Estimate a production function that explains the input/output behavior of a sample of firms. Use residuals as productivity measures for applied work.

- Production function estimation as a tool for productivity analysis
- e.g., Estimate a production function that explains the input/output behavior of a sample of firms. Use residuals as productivity measures for applied work.
- We present a "new" semiparametric approach to estimation that allows for richer patterns of firm heterogeneity than prevailing approaches of Olley&Pakes (1996) and Levinsohn&Petrin (2002). Focus only on wage and output price heterogeneity today.

The Problem

$$\blacktriangleright y_{jt} = \alpha l_{jt} + \beta k_{jt} + \omega_{jt} + \epsilon_{jt}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The Problem

$$\blacktriangleright y_{jt} = \alpha l_{jt} + \beta k_{jt} + \omega_{jt} + \epsilon_{jt}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• ω_{jt} is endogenous

The Problem

- $\blacktriangleright y_{jt} = \alpha l_{jt} + \beta k_{jt} + \omega_{jt} + \epsilon_{jt}$
- ω_{jt} is endogenous
- Fixed effects impose $\omega_{jt} = \omega_j$
- IV requires good instruments
- The semiparametric approach initiated by OP and pursued further by LP - use a model of firm behavior.

(ロ) (型) (E) (E) (E) (O)

The Scalar Unobservability Assumption

• (ω_{jt}, k_{jt}) is firm j's time t state.

.

- Firm j makes a time t static input decision $m_{jt} = f_t(\omega_{jt}, k_{jt})$ or dynamic input decision $i_{jt} = g_t(\omega_{jt}, k_{jt})$.
- Take inverse of input demand function

$$\omega_{jt} = \phi_t(k_{jt}, m_{jt})$$

Control for endogeneity nonparametrically

$$y_{jt} = \alpha l_{jt} + \Phi_t(m_{jt}, k_{jt}) + \epsilon_{jt}$$

うして ふゆう ふほう ふほう うらつ

Evolution of TFP and β

First order Markov assumption

$$\omega_{jt} = g(\omega_{jt-1}) + \eta_{jt}$$

Time to build assumption

$$K_{jt} = d(K_{jt-1}, i_{jt-1})$$

▶ k_{jt} is decided at time t − 1 and η_{jt} independent of all t − 1 information implies

$$\eta_{jt} \perp k_{jt}$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

• Use this moment to estimate β

▶ Basic problem is that ω_{jt} and ϵ_{jt} enter symmetrically into the production function, i.e., $(\omega_{jt} + \epsilon_{jt})$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- ▶ Basic problem is that ω_{jt} and ϵ_{jt} enter symmetrically into the production function, i.e., $(\omega_{jt} + \epsilon_{jt})$.
- However from the firm's point of view, ω_{jt} and ε_{jt} enter asymmetrically into the profit maximization problem. Lets exploit this fact.

- ▶ Basic problem is that ω_{jt} and ϵ_{jt} enter symmetrically into the production function, i.e., $(\omega_{jt} + \epsilon_{jt})$.
- ► However from the firm's point of view, ω_{jt} and ϵ_{jt} enter asymmetrically into the profit maximization problem. Lets exploit this fact.
- Use the first order condition for the firm's static input decision (i.e., labor input decision)

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

- ▶ Basic problem is that ω_{jt} and ϵ_{jt} enter symmetrically into the production function, i.e., $(\omega_{jt} + \epsilon_{jt})$.
- However from the firm's point of view, ω_{jt} and ϵ_{jt} enter asymmetrically into the profit maximization problem. Lets exploit this fact.
- Use the first order condition for the firm's static input decision (i.e., labor input decision)
- Use FOC + production function jointly to invert out ω_{jt} and ϵ_{jt} as functions of parameters, i.e., $\omega_{jt}(\alpha, \beta)$ and $\epsilon_{jt}(\alpha, \beta)$

- ▶ Basic problem is that ω_{jt} and ϵ_{jt} enter symmetrically into the production function, i.e., $(\omega_{jt} + \epsilon_{jt})$.
- ► However from the firm's point of view, ω_{jt} and ϵ_{jt} enter asymmetrically into the profit maximization problem. Lets exploit this fact.
- Use the first order condition for the firm's static input decision (i.e., labor input decision)
- Use FOC + production function jointly to invert out ω_{jt} and ϵ_{jt} as functions of parameters, i.e., $\omega_{jt}(\alpha, \beta)$ and $\epsilon_{jt}(\alpha, \beta)$
- Use same moment conditions OP and LP to estimate model

Cobb-Douglas Example

Let the state be $(\omega_{jt}, k_{jt}, P_{jt}, W_{jt})$ Then we have the system

$$\ln \left(\frac{P_{jt} Y_{jt}}{W_{jt} L_{jt}} \right) = -\ln (\alpha) + \varepsilon_{jt}$$

$$y_{jt} = \alpha l_{jt} + \beta k_{jt} + \omega_{jt} + \varepsilon_{jt}$$

Cobb-Douglas Example

Let the state be $(\omega_{jt}, k_{jt}, P_{jt}, W_{jt})$ Then we have the system

$$\ln \left(\frac{P_{jt} Y_{jt}}{W_{jt} L_{jt}} \right) = -\ln (\alpha) + \varepsilon_{jt}$$

$$y_{jt} = \alpha l_{jt} + \beta k_{jt} + \omega_{jt} + \varepsilon_{jt}$$

More generally

$$\left(\begin{array}{c} s_{jt} \\ y_{jt} \end{array}\right) = \Upsilon(x_{jt}, \omega_{jt}, \varepsilon_{jt})$$

Application to Chilean Data

Plant level Chilean manufacturing panel data from 1979-1996 Same data set used by Levinsohn and Petrin

Application to Chilean Data

Plant level Chilean manufacturing panel data from 1979-1996 Same data set used by Levinsohn and Petrin

lable:	Industry	311

.

Method	Labor	95% CI	Capital	95% CI
OLS	.953	.932, .947	.400	.389,.411
LP	.647	.595, .700	.399	.292,.505
GNR	.414	.402, .425	.362	.274,.391

Robustness Check : The CES

$$Q_{jt} = A_{jt} \left(\alpha L_{jt}^{\rho} + \beta K_{jt}^{\rho} \right)^{\frac{r}{\rho}}$$

For $\alpha + \beta = 1, r > 0, \rho < 1$

Table: Industry 311

	Estimate	SE
ρ	51	.06
α	.14	.06
β	.86	.19
r	.69	.06

◆□ > < 個 > < E > < E > E 9 < 0</p>

Robustness Check : The CES

$$Q_{jt} = A_{jt} \left(\alpha L_{jt}^{\rho} + \beta K_{jt}^{\rho} \right)^{\frac{r}{\rho}}$$

For $\alpha + \beta = 1, r > 0, \rho < 1$

Table: Industry 311

	Estimate	SE
ρ	51	.06
α	.14	.06
β	.86	.19
r	.69	.06

うして ふゆう ふほう ふほう うらう

Average Labor Elasticity = .45 (SE=.02) Average Capital Elasticity = .24 (SE=.02)

The Diewert Production Function

$$Q_{jt} = A_{jt} \left(\alpha L_{jt}^{\rho} + \beta K_{jt}^{\rho} + \gamma L_{jt}^{0.5\rho} K_{jt}^{0.5\rho} \right)^{\frac{r}{\rho}}$$

For $\alpha + \beta + \gamma = 1, r > 0, \rho < 1$

Table: Industry 311

	Estimate	SE
ρ	-1.11	.26
α	.01	.02
β	.85	.12
γ	.14	.10
r	.70	.05

うして ふゆう ふほう ふほう うらう

Average Labor Elasticity = .45 (SE=.02) Average Capital Elasticity = .25 (SE=.01)

Further Applications

We show how to nonparametrically identify and estimate the distribution of α in a Cobb-Douglas setting with panel data

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Further Applications

- We show how to nonparametrically identify and estimate the distribution of α in a Cobb-Douglas setting with panel data
- We can easily allow for more general assumptions on TFP evolution - i.e., higher order Markov assumptions or controlled Markov process assumptions

(ロ) (型) (E) (E) (E) (O)

Further Applications

- We show how to nonparametrically identify and estimate the distribution of α in a Cobb-Douglas setting with panel data
- We can easily allow for more general assumptions on TFP evolution - i.e., higher order Markov assumptions or controlled Markov process assumptions

 Multiple dimensions of unobserved heterogeneity appear prevalent in data