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Abstract

This paper evaluates models that exploit timely monthly releases to compute early estimates of current
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new method proposed by Giannone, Reichlin, and Small (2005). The method consists in bridging quarterly
GDP with monthly data via a regression on factors extracted from a large panel of monthly series with
different publication lags. We show that bridging via factors produces more accurate estimates than
traditional bridge equations. We also show that survey data and other ‘soft’ information are valuable for
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1 Introduction

This paper evaluates different methods to construct early estimates and short term forecasts of quarterly GDP

growth for the euro area, exploiting timely releases of monthly data.

Forecasting the present is an important task in Central Banks and, in particular, in the euro area. GDP

data are published with a considerable delay. The first official release is the Eurostat’s flash estimate of euro

area GDP growth which is published six weeks after the end of the reference quarter). As a consequence,

policy decisions have to rely on other information which is released in a more timely manner. More timely

information have monthly or higher frequency and include “hard” indicators, like industrial production which

is released six weeks after the end of the reference month, while “‘soft” indicators such as survey data which

are released at the end of, or few days after, the reference month.

Monthly indicators are routinely used in judgemental forecasting to form a view on current economic conditions

before GDP data are made available. Statistical models which can perform this exercise and exploit timely

information must deal with mixed frequency (using monthly data to nowcast quarterly GDP) and jagged

edges (at the end of the sample, different variables will have missing points corresponding to different dates in

accordance with their timeliness). In policy institutions models that have these characteristics go under the

name of ‘bridge equations’. These are predictive equations that bridge monthly information with quarterly

ones.

More precisely, bridge equations are regressions of quarterly GDP growth on a small set of preselected key

monthly indicators. This simple modelling strategy has been popular among policy institutions which com-

monly pooled several GDP forecasts from bridge equation models so as to consider information from a large

number of predictors. In this paper we will focus on two main implementations of this technique: an approach,

implemented at the ECB, that combines a number of selected bridge equations based on multiple regressors

(see Diron, 2006; Rünstler and Sédillot, 2003) and an approach, which pools forecasts of GDP based on a large

number of bridge equations with only one predictor each (see Kitchen and Monaco, 2003).

An alternative way to exploit large information to bridge monthly and quarterly variables has been proposed

by Giannone, Reichlin, and Small (2005), first applied on US data at the Board of Governors of the Federal

Reserve and now also regularly implemented at the ECB. This method consists in combining predictors in few

common factors which are then used as regressors in bridge equation via the Kalman filter.

The first part of the paper will present an out-of-sample evaluation of the three methods, estimated with
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different specification choices. The design of the experiment is pseudo-real time in the sense that we will

replicate the data availability situation that is faced in real-time application of the models and that the

models are re-estimated using only the information available at the time of the forecast. However, our design

differs from a perfect real-time evaluation since we use final data vintages and hence ignore revisions to earlier

data releases.

Although there is a large literature comparing the forecasting accuracy of factor models and forecast averaging,1

no paper has focus on now-casting and therefore on forecasting combination and factor forecast with bridging.

This is important since forecasting improvement of GDP with respect to naive models is mainly limited to

current quarter (D’Agostino, Giannone, and Surico, 2006).2

We evaluate the impact of new data releases on current GDP nowcast throughout the quarter. We update the

model two times per month, at the mid and at the end of the month and measure the accuracy of the forecasts

computed using the information available at each date. This allows to understand the importance of different

types of releases since the end of month update incorporates essentially the releases of ‘soft’ data while the

mid of the month update incorporates mainly ‘hard’ data. Moreover, following Banbura and Rünstler (2007)

we will study the weight the model attaches to ‘soft’ and ‘hard’ data to nowcast GDP. Both exercises will

allow us to quantify the reliability of ‘soft’ data for the euro area case.

The paper is structured as follows. Section 2 describes the bridge techniques. Section 3 briefly reviews the

alternative modelling strategy proposed in Giannone, Reichlin, and Small (2005) which relies on combining

predictors in a few common factors. Section 4 provides an assessment on the empirical performance of these

alternative methods. This section further reviews how to retrieve policy relevant information from the predic-

tions of the ‘bridging with factors’ model, in effect rendering this model less mechanical in nature. Section 5

concludes.

2 Bridge equations (BE)

A traditional modelling strategy for obtaining an early estimate of quarterly GDP growth by exploiting

information in monthly variables is based on the so-called ‘bridge equations’ (BE). ‘Bridging’ stands for linking

1See for example Marcellino, Stock, and Watson (2003) for euro area data, Stock and Watson (2006) for the US, Camba-
Mendez, Kapetanios, Smith, and Weale (2001) for major European countries, Artis, Banerjee, and Marcellino (2005) for the
UK, Reijer (2007) for the Netherlands, Duarte and Rua (2007) for Portugal, Schumacher (2007) for Germany and Nieuwenhuyze
(2005) for Belgium.

2A recent Euro-system project (see Rünstler, Barhoumi, Cristadoro, Reijer, Jakaitiene, Jelonek, Rua, Ruth, Benk, and
Nieuwenhuyze (2008)) provides results from a streamlined version of this paper, but based on different country data-sets.
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monthly data, typically released early in the quarter, with quarterly data, such as GDP and its components

that are released late and are not available at monthly frequencies.

The bridge equations under regular use in several policy institutions, including the ECB, rely on selected

indicators, which have been shown to contain some predictive content for quarterly GDP growth (see Baffigi,

Golinelli, and Parigi, 2004; Diron, 2006; Kitchen and Monaco, 2003; Rünstler and Sédillot, 2003).

Let us denote quarterly GDP growth as yQ
t and the vector of k selected stationary monthly indicators, for

every bridge equation j, as xj
t = (xj

1,t, . . . , x
j
k,t)

′, t = 1, · · · , T. The bridge equation is estimated from

quarterly aggregates of the monthly data. Predictions of GDP growth are obtained in two steps. In a first

step, the monthly indicators are forecast over the remainder of the quarter to obtain forecasts of their quarterly

aggregates, xjQ
it . The forecasts of the monthly predictors are typically based on univariate time series models.

In a second step, the resulting values are used as regressors in the bridge equation to obtain the GDP forecast.

We have:

yQ
t = µ +

k∑

i=1

βj
i (L)xjQ

it + εjQ
t (1)

where µ is an intercept parameter and βj
i (L) = βj

i0 + . . . βj
is(i)L

s(i) denote lag polynomials of length s(i).

The models are designed to be used in real time and that at each date of the forecast some series, due to

publication lags, will have missing data at the end of the sample. Moreover, due to the different timing of

data releases, the number of missing data differs across series. Missing data are typically forecasted using

univariate monthly autoregressive models.

Bridge equation can handle only a limited set of predictors. Information from many predictors is incorporated

by combining predictions from many small models (see Diron, 2006; Kitchen and Monaco, 2003). An alternative

route to incorporate large information consists in combining the predictors into few common factors.

3 Bridging with factors (BF)

In order to exploit information of many timely monthly releases to obtain an early estimate of quarterly GDP

growth, an alternative to averaging many bridge equation, is to use estimated common factors as regressors.

This idea was first introduced by Giannone, Reichlin, and Small (2005) and applied to US data.
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In a nutshell, the idea of this approach is to compute factors from a large panel of monthly data. Factors

are averaged so as to obtain quarterly series which are then used as regressors in the GDP equation; where

time aggregation is such that the quarterly series corresponds to the third month of the quarter. Missing

observations for the first and second quarter are computed via the Kalman filter.

Consider the vector of n stationary monthly series xt = (x1,t, . . . , xn,t)′, t = 1, . . . , T , which have been

standardized to mean zero and variance one. The dynamic factor model considered by Giannone, Reichlin,

and Small (2005) is then given by the equations

xt = Λft + ξt, ξt ∼ N(0, Σξ), (2)

ft =
p∑

i=1

Aift−i + ζt, (3)

ζt = Bηt, ηt ∼ N(0, Iq).

From an n× r matrix of factor loadings Λ, equation (2) relates the monthly series xt to a r×1 vector of latent

factors ft = (f1,t, . . . , fr,t)′ plus an idiosyncratic component ξt = (ξ1,t, . . . , ξn,t)′. The latter is assumed to be

multivariate white noise with diagonal covariance matrix Σξ. Equation (3) describes the law of motion for the

latent factors ft, which are driven by q-dimensional standardized white noise ηt, where B is a r × q matrix,

where q ≤ r. Hence ζt ∼ N(0, BB′). Finally, A1, . . . , Ap are r × r matrices of parameters and it is further

assumed that the stochastic process for ft is stationary.

Let us now define quarterly GDP growth as the average of monthly latent observations: yQ
t = (yt+yt−1+yt−2)

and obtain quarterly factors as fQ
t = (ft + ft−1 + ft−2). The factors-based bridge equation is then defined as:

ŷQ
t = β′f̂Q

t . (4)

where β is an r × 1 vector of parameters. In the 3rd month of each quarter, we evaluate the forecast for

quarterly GDP growth, ŷQ
t , as the quarterly average of the monthly series:

ŷQ
t =

1
3
(ŷt + ŷt−1 + ŷt−2) (5)

and define the forecast error εQ
t = yQ

t − ŷQ
t . We assume that εQ

t is distributed with εQ
t ∼ N(0, σ2

ε). Innovations

ξt, ζt, and εQ
t are assumed to be mutually independent at all leads and lags.

In order to insure consistency among monthly indicators and quarterly GDP, all monthly variables are trans-

formed so as to insure that the corresponding quarterly quantities are given by xQ
it ∼ (xit + xit−1 + xit−2)

where t = 3k and k = 1, · · · , T/3. This implies that series in differences enter the factor model in terms of 3

5



month changes which is consistent with having defined quarterly GDP growth as the three month average of

monthly latent observations.

Having specified the bridge equation we now have to deal with the fact that the monthly panel is unbalanced

at the end of the sample due to different publication lags of the data. A key feature of the model by Giannone,

Reichlin, and Small (2005) is that it deals easily with the unbalanced data set problem. From the state space

form of the model, Kalman filter techniques can be easily applied. Precisely, to obtain efficient forecasts of

GDP growth yQ
t from the unbalanced data sets, the Kalman filter and smoother recursions is applied to the

state space representation of this model.3 The advantage of this framework over that of the simple bridge

equations is that instead of forecasting missing values on the basis of a univariate autoregressive model, we

obtain a forecast compatible with the model which exploits multivariate information.

Let us denote z′t = (x′t, y
Q
t ) and consider a data set ZT = {zs}T

s=1 that has been downloaded on a certain day

of the month and might contain missing observations for certain series at the end of the sample. Following

Giannone, Reichlin, and Small (2005), a model-based measure for the uncertainty of forecasts from any data

set Zt can be easily computed by noting that the the variance of the forecast error for yQ
t+h can be decomposed

into

var(ŷQ
t+h|t − yQ

t+h) = πt+h|t + σ2
ε (6)

where πt+h|t = var(ŷQ
t+h|t − ŷQ

t+h) represents the effect stemming from the uncertainty in forecasts ft+h|t of

the latent factors.4 We denote πt+h|t as filter uncertainty, as opposed to residual uncertainty σ2
ε .

Giannone, Reichlin, and Small (2005) have pointed that πt+h|t can be used for inspecting the information

content of new data releases. Consider two data sets Z(date 1)
t and Z(date 2)

t ⊇ Z(date 1)
t , hence Z(date 2)

t is

downloaded on a later date. With parameters θ being estimated from data Z(date 1)
t in both cases, it can be

shown that

π
(date 1)
t+h|t = π

(date 2)
t+h|t + var

[
ŷ

Q,(date 1)
t+h|t − ŷ

Q,(date 2)
t+h|t

]
. (7)

Hence, π
(date 1)
t+h|t ≥ π

(date 2)
t+h|t and filter uncertainty necessarily increases when information is withdrawn. Em-

pirical results will be shown below.
3See Appendixes A1 and A2 for further details.
4For the state space representation shown in the appendix, πt+h|t is obtained from the corresponding elements of matrix

Pt+h|t defined in equation A.5.
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4 The models at work

In its regular monitoring of economic activity in the euro area, ECB staff uses a set of bridge equations that has

gradually developed in recent years. This also includes equations to forecast the demand components of the

national accounts and GDP of euro area member states, respectively (see Diron, 2006; Rünstler and Sédillot,

2003). The GDP forecast is derived as the simple average of the predictions from all the equations. In this

paper we consider a subset of these equations, i.e. twelve bridge equations, which are designed to forecast euro

area GDP directly, and derive the GDP forecast as the simple average of the predictions from these equations.

They contain in various combinations, a small set of selected indicators for the euro area: industrial production,

industrial production in construction, retail sales, new car registrations, the unemployment rate, money M1,

the European Commission business and service confidence indices, and, among composite indicators, the

OECD leading indicator, and the CEPR-Bank of Italy coincident indicator for the euro area ‘EuroCoin’. The

models used in each of the 12 individual equations are listed in Table 1. The GDP forecast is derived as the

simple average of the predictions from such equations. In what follows we will refer to the method as BES

model, standing for Bridge Equations based on Selected predictors.

Table 1: Bridge equations for euro area GDP growth-(BES model).
Equation

Explanatory variables 1 2 3 4 5 6 7 8 9 10 11 12

Industrial production (total) * * * * * * * * *
Ind productuion construction * * * * * * *
Retail sales * * * * * * * *
New car registrations * * * * *
Service confidence * * * *
Unemployment rate * *
Money M1 * *
Business confidence *
EuroCoin (CEPR) *
OECD leading indicator *

With the exception of EuroCoin and the service confidence index, the data have been transformed to
represent monthly differences when expressed in rates (unemployment and business survey) and monthly

growth rates otherwise. All series appear at lag 0 in the equations, i.e. βj
i (L) = 1 with the exception of

EuroCoin, which appears at lag 1, i.e βj
i (L) = L, and real money, which appears at lag 2, i.e βj

i (L) = L2.

The factor model will be based of a larger information set incorporating a wide range of monthly indicator.

The predictors include n = 85 monthly indicators. Among official data on euro area economic activity, the

monthly series contain 19 series, i.e. components of industrial production (17), retail sales, new passenger car

registrations. As to survey data, we use 24 series from the European Commission business, consumer, retail
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and construction surveys. Financial data comprise 22 series including exchange rates (6), interest rates (7),

equity price indices (4), and raw material prices (5). As to the international economy the data contain 11

series including key macro-economic indicators for the US (7) and extra area trade volumes from the balance

of payments statistics (4). In addition, the data set includes 5 series related to employment and 4 series

on monetary aggregates and loans. We have transformed series to obtain stationarity. The series and their

transformations are described in Appendix A3.

We will also produce early estimates of GDP growth averaging many bridge equations based on the same

information set used for bridging with factor. We will assess the forecasting performance of an average of the

predictions obtained by the eighty-five univariate bridge equations. Each equation j predicts quarterly GDP

growth from the quarterly aggregate of stationary monthly indicator xjQ
1t where:

yQ
t = µj + βj

1(L)xjQ
1t + εjQ

t (8)

The idea of model averaging to combine information from large data-sets has been discussed largely in Hendry

and Clements (2004). This method has been used for early estimates of GDP growth by the US Treasury

(Kitchen and Monaco, 2003). In what follows we will refer to the method as BEA model, standing for Bridge

Equations based on All predictors.

4.1 Design of the simulated pseudo out-of-sample exercise

We evaluate the forecasting accuracy of different methods under realistic informational assumptions. We

design the forecasting evaluation exercise by mimic as closely as possible the real-time flow of information, by

replicating the real time pattern of data availability. The parameters of the model are estimated recursively

using only the information available at the time of the forecast. We do not have a real-time database for all

the predictors considered, therefore we will not be able to take into account the real-time data revisions.

Taking into account the real time data flow is important to understand the marginal impact of blocks of releases

since the latter depends on their order. The order of data arrival and the publication lag are particularly

important when data are nearly collinear as it is the case for macroeconomics series. In this case, the block

that is more timely has a larger information content since, by the time the later release is published, its

informational content is already incorporated in the forecast.

In principle, the now-cast from each model can be computed whenever new data are released within the month.

The Giannone, Reichlin, and Small (2005) factor model implemented at the Fed is updated once a week while
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at the ECB the same model and the bridge equations are updated twice a month, in relation to data releases

at the end of the month and the release of important ‘hard’ data such as industrial production in the middle

of the month.

We will replicate this practice at the ECB and thus conduct two forecasts per month which replicate the data

availability prevailing at the time of the two monthly updates. More precisely, we use a data set downloaded

on 25 February 2008 and combine this with the typical data release calendar to re-construct data availability

at the end of the month (end) and in the middle of the month (mid).

The data situation at the end of the month coincide with the release of financial market data and survey data

for the previous month and retail trade turnover and monetary aggregates with a lag of one month. Around

the middle of the month the bulk of ‘hard’ data on economic activity, including data on industrial production,

external trade and new passenger car registrations are released. The attribution of releases to each update is

described in the last column of the Table in appendix A3.5

For GDP of a certain quarter, we will produce a sequence of forecasts in seven consecutive months prior to

the release.

Starting from these two data sets, Z(i)
T = {xs}T

s=1 for i = {end, mid}, we define a pseudo real-time data set

Z(i)
t = {xs}t

s=1 as the observations from the original data set Z(i)
T up to period t, but with observation xi,t−h,

h ≥ 0, eliminated, if observation xi,T−h is missing in Z(i)
T .

Notice that, we could have updated the model more frequently throughout the month as done in the evaluation

on US data by Giannone, Reichlin, and Small (2005). There use was made of a stylized calendar which allowed

us to measure the marginal impact of the releases in that calendar on the now-cast. Such a detailed analysis is

more difficult with European data since releases are clustered and the relative order of different data releases

has changed over the evaluation period. Therefore, for this application, the model is updated only twice a

month, in relation, roughly, to the release of ‘soft’ (end of month) and ‘hard’ (mid-month) data respectively.

In this case the order of the stylized calendar is not far from reality since there are only two large groups and

hence changes in the ordering over the evaluation sample are rather limited.

Therefore, the mid-of-month and the end-of-month updates reflect the incorporation of ‘hard’ and ‘soft’ data

respectively, hence by looking at the evolution of the forecasts and its accuracy it is possible to assess the

impact of hard and soft data on GDP.
5The international data in our data set are published at various dates and we therefore attributed them accordingly.
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4.2 Empirical specification of the models

There are several parameters to be specified: the number of lags for the bridge equations; the number of

factors r, the number of shocks q and the lag length p of the VAR on the factors

Bridge equations. Model specification is either based on information criteria or on the RMSE criteriun.

The information criteria used is that proposed in Schwarz (1978) and will be referred to as SIC. For the BEA

model, the lag length is chosen from the SIC for each equation individually at each point in time. We search

lags in the range [0, 4] and also consider the averages across this range. For the BES model the lag length is

fixed ex-ante using the specification that is actually used at the ECB.6 For the BEA model, parameters are also

chosen on the basis of a recursive RMSE criterium. According to this criterion we chose the parametrization

that, at each point in time, produces the minimum RMSE for the forecast computed up to that point. In

addition, we will consider simple forecast averages across a range of specifications. For both BES and BEA,

we use the autoregressive model on the monthly growth rates (or monthly difference) to forecast the missing

observations for the predictors; lag length is selected by the SIC.

Bridging with factors. Here use is made of both the RMSE and the information criteria, together with

forecast averages across a range of specifications. For the RMSE we consider the lowest average RMSE over

the entire forecast horizon. For instance, in 2003Q4, the available forecast errors are from 1999Q1 to 2003Q2

and this sample is used for model selection. As information criteria we use criterion IC2 from Bai and Ng

(2002) to determine r within a range of [1, 8]. Given r, we estimate equation (3) and determine lag length

p from the SIC within a range of [1, 4]. Finally, we apply principal components analysis to the estimated

residuals ζ̂t and follow Bai and Ng (2007) in selecting q as the smallest value that satisfies the condition
(∑r

i=q+1 λ̂i

)
/

(∑r
i=1 λ̂i

)
< qcrit, where λ̂i are the ordered eigenvalues from the sample covariance matrix of

ζt and qcrit is an appropriate critical value.

For both information and RMSE criteria, the model is selected from the range r = [1, 8], q = [1,min(5, r)],

and p = [1, 4]. Forecast averages are also taken over this range.

6The specification is based on the findings in Diron (2006) and Rünstler and Sédillot (2003), and mostly selects lag 0. This of
course may bias results against them.
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4.3 Forecasting performance

The models are evaluated by looking at the out-of-sample forecasting performances during the period 1999Q1

to 2007Q2. For GDP of a certain quarter, a sequence of forecasts in seven consecutive months prior to the

release are computed. Furthermore, we conduct two forecasts per month, which replicate the data availability

prevailing at the end of the month and in the middle of the month.

Figure 1: euro area GDP growth and model forecasts.
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The figure reports the forecasts from the three models under study against the GDP numbers.
For the BF and the BEA models the average performance across the diffeent specifications is
reported. Values shown are the forecasts conducted at the end of months 7, 4, and 1, respectively,
prior to the release of the GDP flash estimate.

Figure 1 shows the forecasts from the BF model and the two implementations of the bridge equation model,

BES and BEA respectively. Results show that the factor model forecast tracks GDP more accurately, in

particular during the pronounced slowdown in 2001-2003. The BEA produces forecasts which are rather flat.
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Figure 2: RMSE from pseudo real-time exercise 1999Q1 - 2005Q4.
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In the x-axis we write −i end to indicate the forecasts conducted using information available
at the end of i months ahead of the data release; we use −i mid to indicate the forecast computed
using information available in the middle of the month. See text for more details. For the BF
and the BEA models the average performance across the different specifications is reported. The
NAIVE forecast predicts GDP growth to be equal to the average of past GDP growth.

However, the BES starts tracking GDP dynamics one month before the first GDP release.

We compute out-of-sample measures for all models. Precisely, we look at the evolution of the RMSE for the

now-casts computed after each data release within the quarter when GDP growth is projected on available

monthly data series. Results are shown in Figure 2, which reports the RMSE for all models as well as for

the naive constant growth forecast. For the BF model the Figure shows the RMSE derived from the average

across specifications while detailed results for all parameterizations are reported in Table 2.

From both Figure 2 and Table 2 we can see that, for the BF model, there is a clear decline of the RMSE with

the increase in monthly information. For the averages across different specifications, for instance, the RMSE

declines steadily from .338 to .234, an improvement of around 30%. This feature is less clear for the bridge

equations, especially the BEA specification whose performance does not improve over the quarter. Notice that

the BES model becomes more accurate once there is less than 2 months to go for the release of GDP. This

matches the time when industrial production for the current quarter is included for the first time. The result

is not surprising as the BES makes extensive use of ‘hard’ data.

In general, we find that the BF model uniformly outperforms the AR(1) benchmark and the bridge equations
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Table 2: Root mean squared error from short-term forecasts (1999Q1 - 2007Q2).

Months Benchmarks BF Model BE Models
to GDP Best BEA

Quarter release Vintage NAIVE AR(1) RecRMS Avg IC ex-post BES RecRMS Avg IC

Next -7 -7 end 0.3473 0.3301 .3394 .3342 .3421 .3201 .3490 .3536 .3532 .3488
-7 mid 0.3473 0.3301 .3440 .3335 .3392 .3208 .3493 .3511 .3517 .3473

Next -6 -6 end 0.3473 0.3301 .3223 .3207 .3361 .3037 .3478 .3488 .3498 .3448
-6 mid 0.3420 0.3446 .3195 .3176 .3293 .3016 .3478 .3462 .3479 .3423

Next -5 -5 end 0.3420 0.3446 .3118 .2957 .3123 .2812 .3440 .3381 .3402 .3350
-5 mid 0.3420 0.3446 .3125 .2941 .3063 .2805 .3475 .3363 .3389 .3331

Current -4 -4 end 0.3420 0.3446 .2775 .2659 .2661 .2463 .3447 .3336 .3364 .3304
-4 mid 0.3420 0.3446 .2740 .2654 .2616 .2447 .3420 .3322 .3344 .3281

Current -3 -3 end 0.3420 0.3446 .2710 .2643 .2713 .2400 .3474 .3305 .3330 .3266
-3 mid 0.3363 0.2955 .2600 .2642 .2662 .2338 .3204 .3264 .3289 .3224

Current -2 -2 end 0.3363 0.2955 .2618 .2559 .2671 .2404 .3149 .3197 .3219 .3150
-2 mid 0.3363 0.2955 .2299 .2360 .2370 .2119 .2649 .3159 .3185 .3116

Previous -1 -1 end 0.3363 0.2955 .2172 .2216 .2277 .2052 .2562 .3152 .3177 .3111
-1 mid 0.3363 0.2955 .1987 .2105 .2089 .1894 .2341 .3075 .3103 .3043

Previous 0 0 end 0.3363 0.2955 .2057 .2137 .2116 .2031 .2346 .3074 .3103 .3042

The table reports root mean square forecast errors from different models computed at the end of the month (end) or in
the middle of the month (mid) as explained in the main text. The parameterizations for the BF model and the BEA model
have been selected using three criteria. Namely, recursive mean square forecast error (RecRMS); averaging across all possible
parameterizations (Avg); and applying recursively information criteria (IC). Best ex−post refers to the BF model with parameter
settings r = 5, p = 3 and q = 1, which gave the lowest RMSE over the whole forecasting sample.

across all horizons and independently from the specification selection method. This is most likely a reflection

of the fact that, contrary to the bridge equation model, the factor model exploits the information content of

cross correlations across series. The major gains occur for the intermediate horizons, i.e. the forecasts made 3

to 5 months ahead of the release of the GDP flash estimate. For these forecasts, the RMSE is about 20% lower

compared to the AR(1) benchmark. Among specification selection methods differences are small. This is in

line with Rünstler, Barhoumi, Cristadoro, Reijer, Jakaitiene, Jelonek, Rua, Ruth, Benk, and Nieuwenhuyze

(2008) who found that information and recursive RMSE criteria perform about equally well across nine data

sets. Bridge equations do not uniformly beat the AR(1) and any gains upon the latter are small. Differences

between the various specification selection methods are also very small for the bridge equation models.

Let us also remark that the best ex-post parameterizations on the entire exercise for the BF model is: r = 5,

q = 3, and p = 1, shown in Table 2 under the heading ‘Best ex-post ’. Notice that this also corresponds to
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Figure 3: Model based measure of uncertainty (Bridging with factors model).
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In the x-axis we write −i end to indicate the forecasts conducted using information available
at the end of i months ahead of the data release; we use −i mid to indicate the forecast computed
using information available in the middle of the month. See text for more details.

the parameters chosen at the end of the evaluation sample using the recursive mean square forecast error

criterion. This is the model selected for the last run at the end of the evaluation exercise from the recursive

RMSE criterion. We use this parameterizations to compute the in-sample measure of uncertainty and also for

the measures of contributions from economic indicators to the forecast reported below.

4.4 The marginal impact of data releases

From the factor model estimates, we can compute the marginal impact of data releases on the now-cast in two

alternative ways.

First, following Giannone, Reichlin, and Small (2005), we can compute model based uncertainty as new data

are published using equation (6). Results are reported in Figure 3 which illustrates that the general pattern

of the out-of-sample measure is confirmed. Figure 3 further shows that the major reductions in model based

uncertainty, reflected in the steps shown in the figure, come primarily with the releases of ‘soft’ data.

Second, following Banbura and Rünstler (2007), we can compute contribution (weight) of data releases to the

forecast.
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Figure 4: Contributions to GDP forecasts - (Bridging with Factors).
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Values shown are mean absolute contributions of data groups, standardized by the standard
deviation of GDP growth as explained in the text. ‘Data end’ and ‘Data mid’ refers to data
availability at the end and in the middle of the month respectively. See appendix A3 for the
precise definition of these two groups of data.

Since the pattern of data availability changes over time, the weight on each individual series changes throughout

the quarter.7 By looking at the magnitude of their weight in the forecasts, we can understand which variables

are useful and when. Banbura and Rünstler (2007) have proposed to compute the weights of the individual

observations in the estimates of the state vector using an algorithm developed by Harvey and Koopman (2003).

Again, weights can be calculated for an arbitrary information set with those weights related to missing data

being set to zero. This allows expressing forecasts as a weighted sum of available observations in Zt, i.e.

ŷQ
t+h|t =

t−1∑

k=0

ωk(h)zt−k , (9)

From this expression the contribution of series i to the forecast can be computed as ck,it =
∑t−1

k=0 ωk,i(h)zi,t−k,

where ωk,i(h) is the ith element of ωk(h), i = 1, . . . , n. Results are reported in figure 4 which displays the

mean absolute contribution, standardised with the sample standard deviation of GDP growth σ, namely
∑T

t=1 |ck,it| /σ and where time runs from 1999Q1 to 2007Q2, i.e. the evaluation sample.

Results show that the ‘soft’ data have most of the weight for earlier estimates. Later, when ‘hard’ data for
7Notice that otherwise the filter is stationary and hence if it was unbalanced the weight of different blocks would not change.
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the quarter are released, the weight on ‘soft’ information decreases in favor of the ‘hard’ data. Note that this

is in line with the fact that, as shown by all results in this paper, the accuracy improves in earlier forecasts

with the end-of-month update while for later forecasts it improves mainly with the mid-of-month release.

5 Conclusions

This paper evaluates pools of bridge equations and the ‘bridging with factors’ approach proposed by Giannone,

Reichlin, and Small (2005) for the backcast, nowcast and short-term forecast of euro area quarterly GDP

growth. This model provides a framework to exploit the data flow of monthly information during the quarter

to forecast quarterly GDP and it allows to estimate the factors and compute missing observations due to

publication lags within the same framework via the use of the Kalman filter.

In addition, we provide an out-of-sample evaluation of the models when updated at different dates of the

month in relation with releases of ‘soft’ data and ‘hard’ data respectively.

Results indicate that the factor model improves upon the pool of bridge equations. In the case of the nowcast

the root mean squared is lower by 10-15% and it is therefore a valid new tool to be used for short-term analysis.

We also show that, while the performance of bridge equations is fairly constant over the quarter, the RMSE

of the factor model decreases with the arrival of new information. The advantage over bridge equations

is particularly pronounced in the middle of the quarter, when it exploits a large number of early releases

efficiently. Early in the quarters forecast errors decrease in relation to the release of ‘soft’ data since industrial

production and ‘hard’ data in general are not yet available. At the end of the quarter, on the other hand,

the decrease is marked in relation to the release of ‘hard’ data. This shows that timeliness is important and

that, in order to evaluate the marginal improvement of groups of releases we need to condition on available

information. The same point is shown by the fact that the contribution of the ‘soft’ data releases to the

forecast is large at the beginning of the quarter and small at the end while the opposite is true for ‘hard’ data.

Contrary to the bridge equations of the BES the bridging factor model makes use of a wide range of relevant

‘soft’ data. This translates into a better forecasting performance in particular at longer horizons, when the

availability of ‘hard’ data for the reference quarter is scarce.
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A Appendix

A1 State Space representation of factor model

We cast equations (2) to (5) in state space form in the manner explained in Banbura and Rünstler (2007). We

construct a series yQ
t at monthly frequency such that it contains mean-adjusted quarterly GDP growth in the

3rd month of the respective quarter, whereas the remaining observations are treated as missing. The final row

of observation equation (A.1), related to yQ
t , is defined only for the 3rd month of the quarter and otherwise is

skipped in application.

Aggregation rule (5) is implemented in a recursive way in equation (A.2), as from ŷQ
t = Ξtŷ

Q
t−1 + 1

3 ŷt, where

Ξt = 0 for t corresponding to the 1st month of the quarter and Ξt = 1 otherwise (Harvey, 1989:309ff). As a

result, expression (5) holds in the 3rd month of each quarter. The inclusion of the GDP forecast in the state

vector, α′t = (f ′t , ŷt, ŷ
Q
t ), greatly facilitates the calculation of the various statistics discussed below.

[
xt

yQ
t

]
=

[
Λ 0 0
0 0 1

] 


ft

ŷt

ŷQ
t


 +

[
ξt

εQ
t

]
(A.1)




Ir 0 0
−β′ 1 0
0 − 1

3 1







ft+1

ŷt+1

ŷQ
t+1


 =




A1 0 0
0 0 0
0 0 Ξt+1







ft

ŷt

ŷQ
t


 +




ζt+1

0
0


 (A.2)

The estimation of the model parameters θ = (Λ, A1, . . . , Ap, β, Σξ, B, σ2
ε) is discussed in Giannone, Reichlin,

and Small (2005). Briefly, Λ is estimated from static principal components analysis applied to a balanced

sub-sample of data {xs}T
s=1. This also gives sample estimates of the common factors. The latter are used to

estimate equation (3) and a quarterly version of (4) by standard regression techniques. Matrix B is estimated

from principal components analysis applied to the estimated residuals ζ̂t.

Let us finally remark that (n, T ) consistency of the factors for this two-step estimator whereby, in the first step,

factors are estimated by principal component and, in the second step, they are re-estimated via the Kalman

smoother, have been proven by Doz, Giannone, and Reichlin (2006b). The same authors, in a separate paper

(Doz, Giannone, and Reichlin, 2006a), show that by iterating we obtain a quasi maximum likelihood estimator

for the factors.
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A2 Handling missing observations with the factor model

Let us denote z′t = (x′t, y
Q
t ) and consider a data set ZT = {zs}T

s=1 that has been downloaded on a certain day

of the month and might contain missing observations for certain series at the end of the sample. For the state

space form

zt = W (θ)αt + ut, ut ∼ N(0,Σu(θ)) (A.3)

αt+1 = Tt(θ)αt + vt, vt ∼ N(0,Σv(θ)),

with fixed θ and any data set Zt the Kalman filter and smoother provide minimum mean square linear

(MMSLE) estimates at+h|t of the state vector and their precision, Pt+h|t,

at+h|t = E [αt+h|Zt] (A.4)

Pt+h|t = E
[
at+h|t − αt+h

] [
at+h|t − αt+h

]′ , (A.5)

for h > −t.

To handle missing observations, the rows in equation (A.3) corresponding to the missing observations in zt

are simply skipped when applying the recursions, which is equivalent to setting to infinity the variance of

the idiosyncratic noise related to the missing observations (on this point see Giannone, Reichlin, and Small

(2005)).
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A3 Data Appendix
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BF No. BF Series BF Group BF Publication lag BF Transformation BF Dates of
BF (months) BF code BF Release

1 IP-Total industry IndProd 3 2 mid
2 IP-Total Industry (excl construction) IndProd 2 2 mid
3 IP-Manufacturing IndProd 2 2 mid
4 IP-Construction IndProd 3 2 mid
5 IP-Total Industry excl construction and MIG Energy IndProd 2 2 mid
6 IP-Energy IndProd 2 2 mid
7 IP-MIG Capital Goods Industry IndProd 2 2 mid
8 IP-MIG Durable Consumer Goods Industry IndProd 2 2 mid
9 IP-MIG Energy IndProd 3 2 mid
10 IP-MIG Intermediate Goods Industry IndProd 2 2 mid
11 IP-MIG Non-durable Consumer Goods Industry IndProd 2 2 mid
12 IP-Manufacture of basic metals IndProd 2 2 mid
13 IP-Manufacture of chemicals and chemical products IndProd 2 2 mid
14 IP-Manufacture of electrical machinery and apparatus IndProd 2 2 mid
15 IP-Manufacture of machinery and equipment IndProd 2 2 mid
16 IP-Manufacture of pulp, paper and paper products IndProd 2 2 mid
17 IP-Manufacture of rubber and plastic products IndProd 2 2 mid
18 Retail trade, except of motor vehicles and motorcycles IndProd 2 2 mid
19 New passenger car registrations IndProd 1 2 mid
20 Unemployment rate, total Emp 1 1 end
21 Index of Employment, Construction Emp 3 2 mid
22 Index of Employment, Manufacturing Emp 3 2 mid
23 Index of Employment, Total Industry Emp 3 2 mid
24 Index of Employment, Total Industry (excluding construction) Emp 3 2 mid
25 Industry Survey: Industrial Confidence Indicator Surveys 0 1 end
26 Industry Survey: Production trend observed in recent months Surveys 0 1 end
27 Industry Survey: Assessment of order-book levels Surveys 0 1 end
28 Industry Survey: Assessment of export order-book levels Surveys 0 1 end
29 Industry Survey: Assessment of stocks of finished products Surveys 0 1 end
30 Industry Survey: Production expectations for the months ahead Surveys 0 1 end
31 Industry Survey: Employment expectations for the months ahead Surveys 0 1 end
32 Industry Survey: Selling price expectations for the months ahead Surveys 0 1 end
33 Consumer Survey: Consumer Confidence Indicator Surveys 0 1 end
34 Consumer Survey: General economic situation over last 12 months Surveys 0 1 end
35 Consumer Survey: General economic situation over next 12 months Surveys 0 1 end
36 Consumer Survey: Price trends over last 12 months Surveys 0 1 end
37 Consumer Survey: Price trends over next 12 months Surveys 0 1 end
38 Consumer Survey: Unemployment expectations over next 12 months Surveys 0 1 end
39 Construction Survey: Construction Confidence Indicator Surveys 0 1 end
40 Construction Survey: Trend of activity compared with preceding months Surveys 0 1 end
41 Construction Survey: Assessment of order books Surveys 0 1 end
42 Construction Survey: Employment expectations for the months ahead Surveys 0 1 end
43 Construction Survey: Selling price expectations for the months ahead Surveys 0 1 end
44 Retail Trade Survey: Retail Confidence Indicator Surveys 0 1 end
45 Retail Trade Survey: Present business situation Surveys 1 1 end
46 Retail Trade Survey: Assessment of stocks Surveys 1 1 end
47 Retail Trade Survey: Expected business situation Surveys 1 1 end
48 Retail Trade Survey: Employment expectations Surveys 1 1 end
49 Total trade - Intra Euro 12 trade, Export Value Int’l 2 2 end
50 Total trade - Extra Euro 12 trade, Export Value Int’l 2 2 end
51 Total trade - Intra Euro 12 trade, Import Value Int’l 2 2 end
52 Total trade - Extra Euro 12 trade, Import Value Int’l 2 2 end
53 US, Unemployment rate Int’l 1 1 mid
54 US, IP total excl construction Int’l 1 2 mid
55 US, Employment, civilian Int’l 1 2 mid
56 US, Retail trade Int’l 1 2 mid
57 US, Production expectations in manufacturing Int’l 1 1 end
58 US, Consumer expectations index Int’l 1 1 end
59 World market prices of raw materials in Euro, total, HWWA Int’l 1 2 end
60 World market prices of raw materials in Euro, total, excl energy, HWWA Int’l 1 2 end
61 World market prices, crude oil, USD, HWWA Int’l 1 2 end
62 Gold price, USD, fine ounce Int’l 1 2 end
63 Brent Crude, 1 month fwd, USD/BBL converted in euro Int’l 1 2 end
64 ECB Nominal effective exch. rate Financial 1 2 end
65 ECB Real effective exch. rate CPI deflated Financial 1 2 end
66 ECB Real effective exch. rate producer prices deflated Financial 1 2 end
67 Exch. rate: USD/EUR Financial 1 2 end
68 Exch. rate: GBP/EUR Financial 1 2 end
69 Exch. rate: YEN/EUR Financial 1 2 end
70 Eurostoxx 500 Financial 1 2 end
71 Eurostoxx 325 Financial 1 2 end
72 US SP 500 composite index Financial 1 2 end
73 US, Dow Jones, industrial average Financial 1 2 end
74 US, Treasury Bill rate, 3-month Financial 1 1 end
75 US Treasury notes & bonds yield, 10 years Financial 1 1 end
76 10-year government bond yield Financial 1 1 end
77 3-month interest rate, Euribor Financial 1 1 end
78 1-year government bond yield Financial 1 1 end
79 2-year government bond yield Financial 1 1 end
80 5-year government bond yield Financial 1 1 end
81 Index of notional stock - Money M1 Money 2 2 end
82 Index of notional stock - Money M2 Money 2 2 end
83 Index of notional stock - Money M3 Money 2 2 end
84 Index of Loans Money 2 2 end
85 Money M2 in the U.S. Money 2 2 end

The ‘Publication lag’ refers to the delay in months for releasing the data for a reference period. The date of release indicates
if the release is included in the end or mid update of the model (see main text for further details). As for the transformation
code is used to refer to differences while 2 is used when log differencing has been applied.
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