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Abstract

The index number problem is known as that of decomposing aggregate
value change, in ratio or difference form, into two, ideally symmetric,
factors. This note comments on a recent contribution of Casler [6].

Keywords: Index number theory; ideal indices; decomposition.

JEL classification: C43.

1 Introduction

Time and again people are searching for the Holy Grail of index number
theory, here defined as being a symmetric pair of price and quantity indices
that satisfy all known requirements. Section 2 more precisely describes the

∗ The author thanks Stephen Casler for his comments on an earlier version.
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objective of the search. Section 3 catalogues the findings. Section 4 discusses
a recent finding by Casler [6]. The conclusion can be brief: the Holy Grail is
a mirage!

2 The index number problem

We consider two time periods, a base period, denoted by the label 0, and a
comparison period, denoted by the label 1, and a set of commodities, labeled
from 1 to N . The vectors of (unit) prices and quantities of these commodities
will be denoted by pt ≡ (pt

1, ..., p
t
N) and qt ≡ (qt

1, ..., q
t
N) respectively (t =

0, 1). It is assumed that pt, qt ∈ <N
++. The value of a commodity at period

t is then given by vt
n ≡ pt

nq
t
n (n = 1, ..., N ; t = 0, 1), and the aggregate value

by V t ≡ ∑N
n=1 vt

n =
∑N

n=1 pt
nq

t
n ≡ pt · qt (t = 0, 1). The value share of a

commodity is defined as st
n ≡ vt

n/V
t (n = 1, ..., N ; t = 0, 1). It is clear that

N∑
n=1

st
n = 1 (t = 0, 1); (1)

that is, the base and comparison period value shares add up to 1.
In the classical index number problem one wants to decompose the ag-

gregate value ratio into two parts,

V 1

V 0
= P (p1, q1, p0, q0)Q(p1, q1, p0, q0), (2)

of which the first part, P (p1, q1, p0, q0), measures the effect of differing prices
and the second part, Q(p1, q1, p0, q0), measures the effect of differing quan-
tities. Both functions operate on the price and quantity vectors of the two
periods and map these into unitless scalars. Provided that certain reasonable
requirements are satisfied, the first part is called a price index and the second
part a quantity index.

The indices P (p1, q1, p0, q0) and Q(p1, q1, p0, q0) should exhibit the basic
properties of continuity, positivity, monotonicity in prices (quantities), linear
homogeneity in comparison period prices (quantities), identity, homogeneity
of degree zero in prices (quantities), and invariance to the units of measure-
ment (see Balk [1] for precise formulations). The time reversal test stipulates
that reversing the time periods yields an index which is identically equal to
the reciprocal of the original index. The factor reversal test requires that (2)
be satisfied whereby Q(p1, q1, p0, q0) = P (q1, p1, q0, p0); that is, price index
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and quantity index have the same functional form except that prices and
quantities have been interchanged. An index is called ideal if it satisfies the
factor reversal test.

The alternative problem, equally old but lesser known, is to decompose
the aggregate value difference into two parts,

V 1 − V 0 = P(p1, q1, p0, q0) +Q(p1, q1, p0, q0), (3)

of which the first term, P(p1, q1, p0, q0), measures the part of the value dif-
ference that is due to differing prices and the second term, Q(p1, q1, p0, q0),
measures the part of the value difference that is due to differing quantities.
Both functions operate on the price and quantity vectors of the two peri-
ods but map these into money amounts. Provided that certain reasonable
requirements are satisfied, the first part is called a price indicator and the
second part a quantity indicator.

The indicators P(p1, q1, p0, q0) and Q(p1, q1, p0, q0) should exhibit the ba-
sic properties of continuity, monotonicity in prices (quantities), identity, lin-
ear homogeneity in prices (quantities), and invariance to the units of mea-
surement (see Diewert [7] for precise formulations). The time reversal test
stipulates that reversing the time periods yields an indicator which is iden-
tically equal to the negative of the original indicator. The factor reversal
test requires that (3) be satisfied whereby Q(p1, q1, p0, q0) = P(q1, p1, q0, p0);
that is, price indicator and quantity indicator have the same functional form
except that prices and quantities have been interchanged. An indicator is
called ideal if it satisfies the factor reversal test.

The link between additive and multiplicative decompositions is provided
by the logarithmic mean.1 The additive decomposition derived from expres-
sion (2) is

V 1 − V 0 = L(V 1, V 0) ln P (p1, q1, p0, q0) + L(V 1, V 0) ln Q(p1, q1, p0, q0). (4)

Recall that L(V 1, V 0) is an average of the period 1 value V 1 and the period
0 value V 0, and notice that ln P (.) and ln Q(.) are approximately equal to
the percentage of aggregate price and quantity change respectively.

1The logarithmic mean is, for any two strictly positive real numbers a and b, defined by
L(a, b) ≡ (a− b)/ ln(a/b) and L(a, a) ≡ a. It has the following properties: (1) min(a, b) ≤
L(a, b) ≤ max(a, b); (2) L(a, b) is continuous; (3) L(λa, λb) = λL(a, b) (λ > 0); (4)
L(a, b) = L(b, a); (5) (ab)1/2 ≤ L(a, b) ≤ (a + b)/2; (6) L(a, 1) is concave.
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Reversely, the additive decomposition (3) leads to

V 1

V 0
= exp

{
P(p1, q1, p0, q0)

L(V 1, V 0)

}
× exp

{
Q(p1, q1, p0, q0)

L(V 1, V 0)

}
, (5)

as multiplicative decomposition of the value ratio. It is good to notice that
properties of indices do not automatically carry over to indicators, and vice
versa.

3 Ideal indices and indicators

History has provided us with a number of ideal indices. Fisher’s [8] solution
to the ratio type index number problem was

V 1

V 0
=

(
p1 · q0

p0 · q0

p1 · q1

p0 · q1

)1/2 (
p0 · q1

p0 · q0

p1 · q1

p1 · q0

)1/2

≡ PF (p1, q1, p0, q0)QF (p1, q1, p0, q0). (6)

Fisher’s indices exhibit all the basic properties, plus the time reversal test,
and the factor reversal test.

Montgomery’s [9], [10] solution was

V 1

V 0
=

N∏
n=1

(
p1

n

p0
n

)L(v1
n,v0

n)/L(V 1,V 0) N∏
n=1

(
q1
n

q0
n

)L(v1
n,v0

n)/L(V 1,V 0)

≡ PMV (p1, q1, p0, q0)QMV (p1, q1, p0, q0). (7)

Since Vartia [14], [15] independently rediscovered this solution to the index
number problem, the functions PMV (.) and QMV (.) are called Montgomery-
Vartia indices. These indices satisfy the time reversal test and the factor
reversal test. Of the basic properties, they fail to satisfy monotonicity glob-
ally. However, as shown by Balk [2], such a failure can hardly be expected to
occur in practice. More important is the fact that these indices do not exhibit
the basic property of linear homogeneity in comparison period prices (quan-
tities), because of the fact that the weights do not add up to 1 (which in turn
depends on the concavity of L(a, 1)). Thus this solution is not completely
satisfactory.
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Sato [12] and Vartia [14], [15] independently discovered a new pair of ideal
price and quantity indices. They are given by

V 1

V 0
=

N∏
n=1

(
p1

n

p0
n

)L(s1
n,s0

n)/
∑N

n=1
L(s1

n,s0
n) N∏

n=1

(
q1
n

q0
n

)L(s1
n,s0

n)/
∑N

n=1
L(s1

n,s0
n)

≡ PSV (p1, q1, p0, q0)QSV (p1, q1, p0, q0). (8)

These functions exhibit all the basic index properties except global mono-
tonicity (as shown by Reinsdorf and Dorfman [11]). But, as shown by Balk
[2], the failure of monotonicity will only materialize in rather exceptional cir-
cumstances. Moreover, the Sato-Vartia indices satisfy the time reversal test
as well as the factor reversal test.

The fourth pair of ideal indices was developed by Stuvel [13]. They are
not linearly homogeneous in comparison prices (quantities). See Balk [4] for
more details on these indices.

We now turn to the difference type index number problem. Bennet’s [5]
solution was

V 1 − V 0 =
1

2
(q0 + q1) · (p1 − p0) +

1

2
(p0 + p1) · (q1 − q0)

=
N∑

n=1

q0
n + q1

n

2
(p1

n − p0
n) +

N∑
n=1

p0
n + p1

n

2
(q1

n − q0
n)

≡ PB(p1, q1, p0, q0) +QB(p1, q1, p0, q0). (9)

The Bennet indicators exhibit all the basic properties, plus the time reversal
test, and the factor reversal test. The correponding multiplicative decompo-
sition is

V 1

V 0
= exp


∑N

n=1
q0
n+q1

n

2
(p1

n − p0
n)

L(V 1, V 0)

× exp


∑N

n=1
p0

n+p1
n

2
(q1

n − q0
n)

L(V 1, V 0)

 , (10)

Of the basic index properties these Bennet indices fail global monotonicity, as
one easily checks, as well as linear homogeneity in comparison period prices
(quantities). The two reversal tests remain satisfied.

Montgomery’s [9], [10] solution to the difference type index number prob-
lem was

5



V 1 − V 0 =
N∑

n=1

L(v1
n, v

0
n)

L(p1
n, p

0
n)

(p1
n − p0

n) +
N∑

n=1

L(v1
n, v

0
n)

L(q1
n, q

0
n)

(q1
n − q0

n)

≡ PM(p1, q1, p0, q0) +QM(p1, q1, p0, q0). (11)

The Montgomery indicators satisfy the time reversal test as well as the factor
reversal test. Of the basic properties, they only fail to exhibit monotonicity
globally, but, as argued by Balk [2], this problem is unlikely to be of prac-
tical importance. Applying the transformation given in equation (5) to the
Montgomery indicators brings us back to the Montgomery-Vartia indices.

4 Casler’s contribution

Against the background sketched in the previous two sections I now turn to
Casler’s [6] contribution. Basically, Casler neither considers the value ratio
V 1/V 0 nor the value difference V 1−V 0, but the asymmetric, forward-looking
growth rate V 1/V 0− 1. It is simple to check that the following expression is
an identity,

V 1

V 0
− 1 =

N∑
n=1

s0
n

∆pn

p0
n

+
N∑

n=1

s0
n

∆qn

q0
n

+
N∑

n=1

s0
n

∆pn

p0
n

∆qn

q0
n

, (12)

where ∆pn ≡ p1
n − p0

n and ∆qn ≡ q1
n − q0

n (n = 1, ..., N). Since ∆pn/p
0
n +

∆qn/q
0
n = ∆pn/p

0
n + ∆qn/q

0
n (n = 1, ..., N), expression (12) can be replaced

by

V 1

V 0
− 1 =

N∑
n=1

s0
n

∆pn

p0
n

+
N∑

n=1

s0
n

∆qn

q0
n

+
N∑

n=1

s0
n

∆pn/p
0
n + ∆qn/q

0
n

∆pn/p0
n + ∆qn/q0

n

∆pn

p0
n

∆qn

q0
n

, (13)

which can be decomposed as

V 1

V 0
− 1 =

N∑
n=1

s0
n

∆pn

p0
n

+
N∑

n=1

s0
n

∆pn/p
0
n

∆pn/p0
n + ∆qn/q0

n

∆pn

p0
n

∆qn

q0
n

+
N∑

n=1

s0
n

∆qn

q0
n

+
N∑

n=1

s0
n

∆qn/q
0
n

∆pn/p0
n + ∆qn/q0

n

∆pn

p0
n

∆qn

q0
n

. (14)
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This expression can be simplified to

V 1

V 0
− 1 =

N∑
n=1

s0
n

(
1 + (1/2)H(∆pn/p

0
n, ∆qn/q

0
n)
) ∆pn

p0
n

+
N∑

n=1

s0
n

(
1 + (1/2)H(∆pn/p

0
n, ∆qn/q

0
n)
) ∆qn

q0
n

, (15)

where H(a, b) ≡ 2ab/(a + b) denotes the harmonic mean of a and b. This
appears to be the decomposition favoured by Casler. The first term at the
right-hand side of expression (15) gives the contribution of price change, and
the second term gives the contribution of quantity change to V 1/V 0 − 1.

Multiplying both sides of this expression by V 0 delivers

V 1 − V 0 =
N∑

n=1

q0
n

(
1 + (1/2)H(∆pn/p

0
n, ∆qn/q

0
n)
)

∆pn

+
N∑

n=1

p0
n

(
1 + (1/2)H(∆pn/p

0
n, ∆qn/q

0
n)
)

∆qn. (16)

As Casler observed, these indicators do not satisfy global monotonicity (be-
cause of the interaction terms), though in practice that might be a minor
problem. Also, the time reversal test is not satisfied.

However, to compare this decomposition to Fisher’s, one should proceed
one step further and turn expression (16) into a multiplicative decomposition,
by using the logarithmic mean transformation. This leads to

V 1

V 0
= exp

{∑N
n=1 q0

n (1 + (1/2)H(∆pn/p
0
n, ∆qn/q

0
n)) ∆pn

L(V 1, V 0)

}

× exp

{∑N
n=1 p0

n (1 + (1/2)H(∆pn/p
0
n, ∆qn/q

0
n)) ∆qn

L(V 1, V 0)

}
. (17)

These Casler indices have several defects. They are not globally monotonic in
prices (quantities). They are not linearly homogeneous in comparison period
prices (quantities). And they do not satisfy the time reversal test.

It is interesting to observe that the Casler indicators, as in expression
(16), are actually members of a family. This family emerges when in expres-

sion (13) the ratio ∆pn/p0
n+∆qn/q0

n

∆pn/p0
n+∆qn/q0

n
, which is identically equal to 1, is replaced
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by f(∆pn/p0
n)+g(∆qn/q0

n)
f(∆pn/p0

n)+g(∆qn/q0
n)

for arbitrary functions f(a) and g(a), which is also
identically equal to 1. The Bennet indicators materialize in the case where
f(a) = g(a) = 1 for all a.

5 Conclusion

It is hard to beat the Fisher indices as decomposition of a value ratio. How-
ever, though ideal, they are not perfect. For example, they are not consistent-
in-aggregation, and it is not straightforward to represent them as weighted
sums or products of individual price (quantity) relatives. On the last point
see Balk [3].

The Montgomery-Vartia indices do exhibit consistency-in-aggregation,
and are nicely decomposable to the individual commodity level, but they
are not linearly homogeneous in comparison prices (quantities).

The Sato-Vartia indices share with Fisher the inconsistency-in-aggregation,
but are nicely decomposable as appears from expression (8). The failure of
global monotonicity is practically not very relevant.

Though the Stuvel indices are consistent-in-aggregation, they are decom-
position-resistant and not linearly homogeneous in comparison prices (quan-
tities).

Though performing perfectly as indicators, the Bennet indices fail global
monotonicity as well as linear homogeneity in comparison prices (quantities).

Both the Casler indicators and indices fail global monotonicity, and time
reversal. In addition the Casler indices fail linear homogeneity in comparison
price (quantities).

That the Holy Grail of index number theory has as yet not been found,
does not come as a surprise. The thing does not exist, as substantiated ex-
tensively by Balk [4]. But the quest continues to deliver interesting findings.
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