Why are Prices Sticky? A Test of Alternative Models of Price Adjustment

Christopher Douglas – University of Michigan, Flint Ana María Herrera – Michigan State University

Index Measures Conference, May 15 2008

WHY ARE PRICES STICKY?

- □ Price stickiness required to drive a real money-output relationship.
 - The *form* of price stickiness is key to understanding inflation dynamics (Reis, 2006).
- "The idea that prices set by firms in concentrated industries might exhibit rigidities is an old concern of industrialorganization economists" (Slade, 1999).
- Understand pricing patterns on the microeconomic level to understand how best to model them on the macroeconomic level.

A ROADMAP FOR THIS TALK

- □ Theoretical Background and Testable Implications
- □ Data: Why Gasoline Prices?
- Previous Literature
- □ Methodology: Discreteness and time dependence (ACB)
- □ Testable Implications in the ACB Framework
- □ Estimation Results
- □ Conclusion

3 THEORIES OF PRICE ADJUSTMENT

1. <u>Menu Cost</u>

- A firm must pay a fixed cost in order to change its price (Dixit, 1991).
- Even though small, menu costs can exert a large impact on the business cycle (Mankiw, 1985; Fishman and Simhon, 2005).

2. Information Processing

- Processing delays (Calvo, 1983; Sims, 1998; Mankiw and Reis, 2002).
- "Inattentive producers" (Reis, 2006).
- "Inattentive consumers" (Levy, Bergen, Dutta, and Venable, 2005; Ray, Chen, Bergen, and Levy, 2006).

3. <u>Strategic Considerations</u>

- Customer Anger: Firms deliberately stretch out long price increases to avoid upsetting consumers (Rotemberg, 1982).
- Fairness: Firms avoid changing the price if consumers believe such a change is "unfair" (Kahneman, Knetsch, and Thaler, 1986; Rotemberg, 2002, 2006)

	Current price gap	Auto- correlation	History of price changes	Remaining price gap	Symmetry
Menu Costs	Yes	0	No	No	Yes
Information processing					
"Inattentive producers"					
"Inattentive consumers"					
Strategic interactions					
Partial adjustment					
Fair pricing					

	Current price gap	Auto- correlation	History of price changes	Remaining price gap	Symmetry
Menu Costs	Yes	0	No	No	Yes
Information processing	Yes	-	-	No	
"Inattentive producers"					Yes
"Inattentive consumers"					No (in the "small")
Strategic interactions					
Partial adjustment					
Fair pricing					

	Current price gap	Auto- correlation	History of price changes	Remaining price gap	Symmetry
Menu Costs	Yes	0	No	No	Yes
Information processing	Yes	-	-	No	
"Inattentive producers"					Yes
"Inattentive consumers"					No (in the "small")
Strategic interactions	Yes	+	+		
Partial adjustment				Yes	
Fair pricing				No	No (in the "large")

	Current price gap	Auto- correlation	History of price changes	Remaining price gap	Symmetry
Menu Costs	Yes	0	No	No	Yes
Information processing	Yes	-	-	No	
"Inattentive producers"					Yes
"Inattentive consumers"					No (in the "small")
Strategic interactions	Yes	+	+		
Partial adjustment				Yes	
Fair pricing				No	No (in the "large")

A ROADMAP FOR THIS TALK

- □ Theoretical Background and Testable Implications
- □ Data: Why Gasoline Prices?
- Previous Literature
- □ Methodology: Discreteness and time dependence (ACB)
- □ Testable Implications in the ACB Framework
- □ Estimation Results
- □ Conclusion

DATA - WHOLESALE GASOLINE PRICES

- Daily observations of prices charged by 9 Philadelphia gasoline wholesalers between January 1, 1989 and December 31, 1991.
- $\square \quad Why?$
 - 5 reasons

OIL REFINERIES AND REFINED PRODUCT MOVEMENT

REASON 1: MAIN INPUT COST IS EASILY OBSERVABLE

REGIONAL GASOLINE CONTENT REGULATION

Note: Minnesota mandates year-round oxygenation. Other oxygenation mandates only affect winter gasoline content.

REASON 2: HOMOGENEOUS GOOD

WHOLSALER-RETAIL STATION RELATION

Company-op

Refiner owns the station Employee of refiner operates station Directly supplied by refiner Lessee-dealer Refiner owns station Leased to third party Mainly purchase from Jobbers

Dealer-owned

Individual retailer owns station Under contract to sell specific brand Purchase from Jobbers

REASON 3: PRICE CHANGES IN LIEU OF QUANTITY

Lots of 1 gallon

BUT... ARE GASOLINE PRICES STICKY?

□ Bils and Klenow (JPE, 2004)

- Prices seldom change for some goods; for example, prices of newspapers, men's haircuts, and taxi fares change less than 5 percent of months. But some prices change very frequently, with prices of gasoline, tomatoes, and airfares changing more than 70 percent of months."
- The monthly frequency of price changes ranges from 1.2 percent for coin-operated apparel laundry and dry cleaning to 79 percent for regular unleaded gasoline.

REASON 4:

STICKINESS IN WHOLESALE GASOLINE PRICE

Firm	Brand	Number of observations	Frequency of price change	Frequenc y of price increase	Frequenc y of price decrease	Average increase	Average decrease
1	Amoco	782	0.35	0.16	0.19	0.87	0.70
2	ARCO	782	0.46	0.21	0.25	0.85	0.70
3	BP	782	0.57	0.24	0.33	1.42	1.03
4	Chevron	641	0.37	0.29	0.28	0.95	0.81
5	Exxon	782	0.48	0.23	0.25	0.83	0.74
6	Gulf	743	0.41	0.20	0.21	0.87	0.70
7	Mobil	779	0.45	0.21	0.24	0.82	0.65
8	Sunoco	782	0.45	0.21	0.24	0.76	0.66
9	Texaco	681	0.40	0.19	0.21	0.90	0.66

□ In contrast, the frequency of price changes for the NYMEX price of unleaded gasoline delivered at the New York Harbor was 0.95

REASON 5: HOW TO MODEL DISCRETENESS OF PRICES AND TIME DEPENDENCE?

Firm	Number of price changes	Increase following increase	Increase following a decrease	Decrease following a increase	Decrease following a decrease
1	269	102	22	23	122
2	360	124	42	43	151
3	445	122	68	67	188
4	235	98	20	21	96
5	377	134	47	48	148
6	303	117	28	28	130
7	348	126	34	35	153
8	349	139	26	27	157
9	272	104	22	22	124

Evidence of time dependence in data...but there is no evidence in Autoregressive Conditional Hazard Model (Davis and Hamilton, 2004)

A ROADMAP FOR THIS TALK

- □ Theoretical Background and Testable Implications
- □ Data: Why Gasoline Prices?
- Previous Literature
- □ Methodology: Discreteness and time dependence (ACB)
- □ Testable Implications in the ACB Framework
- □ Estimation Results
- □ Conclusion

WHY ARE GASOLINE PRICES STICKY? THE EXISTING LITERATURE

- Industrial Organization literature: focus on "rockets and feathers"
 - Question: is there a systematic tendency for downstream prices in the oil well-to-service station gasoline industry to respond to increases in upstream prices more rapidly than downstream prices respond to decreases in upstream prices?
 - Data and Methodology:
 - □ Error Correction Models with or without dynamics

WHY ARE GASOLINE PRICES STICKY? THE EXISTING LITERATURE

- □ Davis and Hamilton (JMCB, 2004)
 - Dixit's menu cost model:

Firm chooses t_1, t_2, \ldots to minimize

$$E_{t_0}\left\{\sum_{i=1}^{t_i}\left[\left(\int_{t_{i-1}}^{t_i} e^{-\rho t} k \left[p(t_{i-1}) - p^*(t)\right]^2 dt + g e^{-\rho t_i}\right)\right]\right\}$$

• then the probability of a price change is given by

$$h_{t+1} = h[p(t), p^{*}(t)] = 1 + \Phi\left(\frac{p(t) - p^{*}(t) - b}{\sigma}\right) - \Phi\left(\frac{p(t) - p^{*}(t) + b}{\sigma}\right)$$

Optimal decision rule is for the firm to change the price whenever $(6\pi \sigma^2)^{1/4}$

$$\left| p(t_{i-1}) - p^*(t_i) \right| > b = \left(\frac{6g\sigma^2}{k} \right)^{1/2}$$

DAVIS AND HAMILTON (Continued)

- □ <u>Findings:</u>
 - Dixit's model is "broadly consistent" with the data Yet...
 - □ Implied menu costs are too large
 - A logit model with the same explanatory variable (price-cost gap) outperforms a structural menu cost model.
 - No time dependence present in the pricing decision (Autoregressive Conditional Hazard outperformed by logit).

A ROADMAP FOR THIS TALK

- □ Theoretical Background and Testable Implications
- □ Data: Why Gasoline Prices?
- Previous Literature
- □ Methodology: Discreteness and time dependence (ACB)
- □ Testable Implications in the ACB Framework
- □ Estimation Results
- □ Conclusion

WHEN WILL THE NEXT PRICE CHANGE OCCUR? A POINT PROCESS

- □ A point process can be described either in terms of the sequence of arrival times t_i or the sequence of durations u_i .
- □ Engle and Russell (1998) propose the Autoregressive Conditional Duration (ACD) to model the distribution of waiting times u_i conditional on the history of arrival times.
- Many point processes have been used in other fields of statistics

AUTOREGRESSIVE CONDITIONAL HAZARD

The ACH Model

$$h_{t+1} = \frac{1}{\psi_{N(t)} + \gamma' \mathbf{Z}_{\mathbf{t}}}$$

where

$$\psi_n = \alpha \sum_{i=1}^{n-1} \beta^{i-1} u_{n-i} + \beta^{n-1} \overline{u}$$

 h_{t+1} : probability of a price change

 $\psi_{N(t)}$: expected duration between N^{th} and $(N-1)^{th}$ price changes u_{n-i} : observed duration

 \overline{u} : average duration

ACH SPECIFICATION AND FLEXIBILITY LOSS

- □ Some of the flexibility of the ACD is lost by using a linear specification for the mean ψ_i
- \Box Need to use a smoothing function

$$h_{t+1} = \frac{1}{\psi_{N(t)} + \gamma' \mathbf{Z}_{\mathbf{t}}}$$

□ Time dependence is captured only through dependence in arrival times (durations)

AUTOREGRESSIVE CONDITIONAL BINOMIAL MODEL (ACB)

Let the response probability be given by:

$$h_t = prob(x_t = 1 | x_t, x_{t-1}, \dots, x_1, \mathbf{z}_{t-1})$$

Then, the ACB(q,r,s) model is given by:

$$G^{-1}(h_t) = \omega + \sum_{j=1}^q \alpha(x_{t-j} - h_{t-j}) + \sum_{j=1}^r \beta G^{-1}(h_{t-j}) + \sum_{j=1}^s \delta x_{t-j} + \gamma \mathbf{z}_{t-1}$$

The dynamics of the response probability are given by:

$$h_{t} = G\left[\omega + \sum_{j=1}^{q} \alpha(x_{t-j} - h_{t-j}) + \sum_{j=1}^{r} \beta G^{-1}(h_{t-j}) + \sum_{j=1}^{s} \delta x_{t-j} + \gamma \mathbf{z}_{t-1}\right]$$

THE ACB (Continued)

- □ Conditional on x_t , and h_t the log-likelihood can be written recursively and maximized via MLE.
- □ Time dynamics are captured by:
 - History of price changes
 - History of probabilities of a price change.
- \Box The ACB(0,0,0) is a standard logit model
- □ Advantages:
 - Testing time dynamics is straight-forward.
 - Testing implications of alternative models of price stickiness is easy.

THE ACB (Continued)

- *Furthermore:* We can also investigate the role of durations by combining ACB with Autoregressive Conditional Duration (ACD) model.
 - Use Nelson's (1991) ACD form

$$\ln(\psi_{N(t)}) = \phi + \rho \frac{u_{N(t)-1}}{\psi_{N(t)-1}} + \xi \ln(\psi_{N(t)-1})$$

- Include $\ln(u_{N(t)})$ as an explanatory variable in the ACB model
- Estimate the ACB-ACD model jointly

A ROADMAP FOR THIS TALK

- □ Theoretical Background and Testable Implications
- □ Data: Why Gasoline Prices?
- Previous Literature
- □ Methodology: Discreteness and time dependence (ACB)
- **Testable Implications in the ACB Framework**
- □ Estimation Results
- □ Conclusion

TESTABLE IMPLICATIONS IN THE ACB FRAMEWORK: THE PROBABILITY OF A PRICE CHANGE

	Current price gap $ P_t - P_t^* $	Auto- correlation $G^{-1}(h_{t,l})$	History of price changes x_{t-1}
Menu Costs	$\gamma \neq 0$	$\beta = 0$	$\delta = 0$
Information processing	$\gamma \neq 0$	$\beta < 0$	$\delta < 0$
"Inattentive producers"			
"Inattentive consumers"			
Strategic interactions	$\gamma \neq 0$	$\beta > 0$	$\delta > 0$
Partial adjustment			
Fair pricing			

$$h_{t} = G\left[\omega + \sum_{j=1}^{r} \beta G^{-1}(h_{t-j}) + \sum_{j=1}^{s} \delta x_{t-j} + \gamma \left| P_{t-1} - P_{t-1}^{*} \right| \right]$$

ALTERNATIVE SPECIFICATIONS

□ Basic specification

- $|P_t P_t^*|$: price-cost gap. Optimal price defined as input cost plus average mark-up.
- □ <u>Additional Dynamics</u>
 - $|P_{t-1} P^*_{t-1}|: \text{ one day lag of gap.}$
- □ <u>Alternatives</u>
 - $|P_{wl(t)} P^*_{wl(t)}|$: amount of gap remaining after previous correction, dated by w1(t).
 - Asymmetry: $z_t = [\theta_t, \theta_t(P_t P^*_t), (1 \theta_t), (1 \theta_t)(P_t P^*_t)]$ where $\theta_t = 1$ if $P_t - P^*_t \ge 0$
 - □ For "small gaps": $P^*(t) P(t) \approx 0 \Rightarrow$ is the constant different?
 - □ For "large gaps": $P^*(t) P(t) \neq 0$ => is the slope different?
 - $u_{N(t)}$: duration between price changes

TESTABLE IMPLICATIONS IN THE ACB FRAMEWORK: THE PROBABILITY OF A PRICE CHANGE

	Current price gap $ P_t - P_t^* $	Auto- correlation $G^{-1}(h_{t-1})$	History of price changes x_{t-1}	Remaining price gap $ P_{wI(t)} - P^*_{wI(t)} $	Symmetry
Menu Costs	$\gamma \neq 0$	$\beta = 0$	$\delta = 0$	No	Yes
Information processing	$\gamma \neq 0$	$\beta < 0$	$\delta < 0$	No	
"Inattentive producers"					Yes
"Inattentive consumers"					No (in the "small")
Strategic interactions	$\gamma \neq 0$	$\beta > 0$	$\delta > 0$		
Partial adjustment				Yes	
Fair pricing				No	No (in the "large")

A ROADMAP FOR THIS TALK

- □ Theoretical Background and Testable Implications
- □ Data: Why Gasoline Prices?
- Previous Literature
- □ Methodology: Discreteness and time dependence (ACB)
- □ Testable Implications in the ACB Framework
- **Estimation Results**
- □ Conclusion

ESTIMATION RESULTS

Firm	ω	β	δ	$ P_t - P_t^* $	$P_{t-1} - P_{t-1}^*$	log L	LR	RV
1	-1.601	-0.505**	-0.184	-0.0364	0.196**	-478.97	0.00070**	1.82
	(0.234)	(0.145)	(0.151)	(0.0386)	(0.0402)			.0344
2	-0.110	0.828**	0.149	0.107**	-0.102**	-529.43	0.0324^{*}	0.968
	(0.0595)	(0.117)	(0.0802)	(0.0350)	(0.0331)			.1665
3	-0.0898	0.368^{*}	0.320^{*}	0.296**	-0.247**	-512.83	0.0000**	2.33
	(0.0987)	(0.174)	(0.140)	(0.0551)	(0.0525)			.0099
4	-0.638	0.467*	0.508**	0.106*	-0.0680	-405.37	0.00530**	2.26
	(0.272)	(0.239)	(0.174)	(0.0433)	(0.0581)			.0119
5	-0.0992	0.901**	0.202**	0.113**	-0.114**	-520.52	0.0000**	1.38
	(0.0513)	(0.0464)	(0.0900)	(0.0296)	(0.0292)			.0838
6	-0.209	0.827**	0.206	0.185**	-0.169**	-471.30	0.0183*	3.45
	(0.129)	(0.105)	(0.121)	(0.0333)	(0.0352)			.0003
7	-0.0672	0.899**	0.0686	0.121**	-0.117**	-521.19	0.1136	1.59
	(0.0507)	(0.0608)	(0.0696)	(0.0276)	(0.0267)			.0559
8	-0.868	-0.570*	-0.00605	0.0223	0.126**	-524.31	0.0990	2.11
	(0.253)	(0.256)	(0.210)	(0.0467)	(0.0419)			.0174
9	-0.267	0.780**	0.259^{*}	0.157**	-0.141**	-432.65	0.0186*	2.09
	(0.101)	(0.0798)	(0.115)	(0.0321)	(0.0330)			.0183

ESTIMATION RESULTS

Firm	ω	β	δ	$ P_t - P_t^* $	$P_{t-1} - P_{t-1}^*$	log L	LR
1	-1.601	-0.505**	-0.184	-0.0364	0.196**	-478.97	0.00070**
	(0.234)	(0.145)	(0.151)	(0.0386)	(0.0402)		
2	-0.110	0.828**	0.149	0.107**	-0.102**	-529.43	0.0324^{*}
	(0.0595)	(0.117)	(0.0802)	(0.0350)	(0.0331)		
3	-0.0898	0.368*	0.320^{*}	0.296**	-0.247**	-512.83	0.0000**
	(0.0987)	(0.174)	(0.140)	(0.0551)	(0.0525)		
4	-0.638	0.467^{*}	0.508**	0.106*	-0.0680	-405.37	0.00530**
	(0.272)	(0.239)	(0.174)	(0.0433)	(0.0581)		
5	-0.0992	0.901**	0.202**	0.113**	-0.114**	-520.52	0.0000**
	(0.0513)	(0.0464)	(0.0900)	(0.0296)	(0.0292)		
6	-0.209	0.827**	0.206	0.185**	-0.169**	-471.30	0.0183*
	(0.129)	(0.105)	(0.121)	(0.0333)	(0.0352)		
7	-0.0672	0.899**	0.0686	0.121**	-0.117**	-521.19	0.1136
	(0.0507)	(0.0608)	(0.0696)	(0.0276)	(0.0267)		
8	-0.868	-0.570*	-0.00605	0.0223	0.126**	-524.31	0.0990
	(0.253)	(0.256)	(0.210)	(0.0467)	(0.0419)		
9	-0.267	0.780**	0.259*	0.157**	-0.141**	-432.65	0.0186*
	(0.101)	(0.0798)	(0.115)	(0.0321)	(0.0330)		

ESTIMATION RESULTS

Firm	ω	β	δ	$ P_t - P_t^* $	$P_{t-1} - P_{t-1}^*$	log L	LR
1	-1.601	-0.505**	-0.184	-0.0364	0.196**	-478.97	0.00070**
	(0.234)	(0.145)	(0.151)	(0.0386)	(0.0402)		
2	-0.110	0.828**	0.149	0.107**	-0.102**	-529.43	0.0324^{*}
	(0.0595)	(0.117)	(0.0802)	(0.0350)	(0.0331)		
3	-0.0898	0.368*	0.320^{*}	0.296**	-0.247**	-512.83	0.0000**
	(0.0987)	(0.174)	(0.140)	(0.0551)	(0.0525)		
4	-0.638	0.467^{*}	0.508**	0.106*	-0.0680	-405.37	0.00530**
	(0.272)	(0.239)	(0.174)	(0.0433)	(0.0581)		
5	-0.0992	0.901**	0.202**	0.113**	-0.114**	-520.52	0.0000**
	(0.0513)	(0.0464)	(0.0900)	(0.0296)	(0.0292)		
6	-0.209	0.827**	0.206	0.185**	-0.169**	-471.30	0.0183*
	(0.129)	(0.105)	(0.121)	(0.0333)	(0.0352)		
7	-0.0672	0.899**	0.0686	0.121**	-0.117**	-521.19	0.1136
	(0.0507)	(0.0608)	(0.0696)	(0.0276)	(0.0267)		
8	-0.868	-0.570*	-0.00605	0.0223	0.126**	-524.31	0.0990
	(0.253)	(0.256)	(0.210)	(0.0467)	(0.0419)		
9	-0.267	0.780**	0.259*	0.157**	-0.141**	-432.65	0.0186*
	(0.101)	(0.0798)	(0.115)	(0.0321)	(0.0330)		

DYNAMIC RESPONSE TO 10¢ and a 1.36 ¢ SHOCK

Dashed Line: 10¢ shock; Solid Line: 1.36¢ shock

Firm	Pos const	Neg const	Pos gap	Neg gap	Lag pos gap	Lag neg gap
1	-1.7162**	-1.5107^{**}	0.0120	-0.0649	0.2139**	0.1831**
	(0.2787)	(0.3082)	(0.0910)	(0.0473)	(0.0777)	(0.0485)
2	-0.2568	-0.0156	0.1528^{**}	0.1273^{**}	-0.0877	-0.1502^{**}
	(0.1570)	(0.1026)	(0.0548)	(0.0464)	(0.0573)	(0.0485)
3	-0.1039	-0.0628	0.3601^{**}	0.2574^{**}	-0.2704^{**}	-0.2490**
	(0.1278)	(0.1362)	(0.0855)	(0.0695)	(0.0884)	(0.0609)
4	-1.2550^{**}	-0.6091**	0.1222^{*}	0.0623	0.0421	-0.0492
	(0.3817)	(0.2257)	(0.0587)	(0.0570)	(0.0799)	(0.0623)
5	-0.1180	-0.1460**	0.1347^{**}	0.1420**	-0.1357^{**}	-0.1419**
	(0.0626)	(0.0566)	(0.0441)	(0.0386)	(0.0448)	(0.0382)
6	-1.9085**	-0.8220**	0.1689^{**}	0.0700	0.1567^{*}	0.0212
	(0.3541)	(0.2607)	(0.0677)	(0.0476)	(0.0789)	(0.0535)
7	-0.0509	-0.1281	0.0826	0.1587**	-0.0710	-0.1507**
	(0.0654)	(0.0666)	(0.0474)	(0.0406)	(0.0521)	(0.0392)
8	-0.8584**	-0.6660	0.0283	0.0200	0.1526^{*}	0.0756
	(0.2434)	(0.4345)	(0.0570)	(0.0502)	(0.0688)	(0.0900)
9	-0.3476**	-0.1961*	0.1640^{**}	0.1506**	-0.1286*	-0.1445**
	(0.1280)	(0.0948)	(0.0495)	(0.0400)	(0.0504)	(0.0411)

ASYMMETRY

Firm	Pos const	Neg const	Pos gap	Neg gap	Lag pos gap	Lag neg gap
1	-1.7162^{**}	-1.5107**	0.0120	-0.0649	0.2139**	0.1831**
	(0.2787)	(0.3082)	(0.0910)	(0.0473)	(0.0777)	(0.0485)
2	-0.2568	-0.0156	0.1528^{**}	0.1273^{**}	-0.0877	-0.1502^{**}
	(0.1570)	(0.1026)	(0.0548)	(0.0464)	(0.0573)	(0.0485)
3	-0.1039	-0.0628	0.3601**	0.2574^{**}	-0.2704**	-0.2490**
	(0.1278)	(0.1362)	(0.0855)	(0.0695)	(0.0884)	(0.0609)
4	-1.2550^{**}	-0.6091^{**}	0.1222^{*}	0.0623	0.0421	-0.0492
	(0.3817)	(0.2257)	(0.0587)	(0.0570)	(0.0799)	(0.0623)
5	-0.1180	-0.1460**	0.1347^{**}	0.1420**	-0.1357^{**}	-0.1419**
	(0.0626)	(0.0566)	(0.0441)	(0.0386)	(0.0448)	(0.0382)
6	-1.9085**	-0.8220**	0.1689^{**}	0.0700	0.1567^{*}	0.0212
	(0.3541)	(0.2607)	(0.0677)	(0.0476)	(0.0789)	(0.0535)
7	-0.0509	-0.1281	0.0826	0.1587**	-0.0710	-0.1507**
	(0.0654)	(0.0666)	(0.0474)	(0.0406)	(0.0521)	(0.0392)
8	-0.8584**	-0.6660	0.0283	0.0200	0.1526^{*}	0.0756
	(0.2434)	(0.4345)	(0.0570)	(0.0502)	(0.0688)	(0.0900)
9	-0.3476**	-0.1961*	0.1640**	0.1506**	-0.1286*	-0.1445**
	(0.1280)	(0.0948)	(0.0495)	(0.0400)	(0.0504)	(0.0411)

ASYMMETRY

Firm	Pos const	Neg const	Pos gap	Neg gap	Lag pos gap	Lag neg gap
1	-1.7162^{**}	-1.5107^{**}	0.0120	-0.0649	0.2139**	0.1831**
	(0.2787)	(0.3082)	(0.0910)	(0.0473)	(0.0777)	(0.0485)
2	-0.2568	-0.0156	0.1528^{**}	0.1273^{**}	-0.0877	-0.1502**
	(0.1570)	(0.1026)	(0.0548)	(0.0464)	(0.0573)	(0.0485)
3	-0.1039	-0.0628	0.3601^{**}	0.2574^{**}	-0.2704^{**}	-0.2490**
	(0.1278)	(0.1362)	(0.0855)	(0.0695)	(0.0884)	(0.0609)
4	-1.2550^{**}	-0.6091**	0.1222^{*}	0.0623	0.0421	-0.0492
	(0.3817)	(0.2257)	(0.0587)	(0.0570)	(0.0799)	(0.0623)
5	-0.1180	-0.1460**	0.1347^{**}	0.1420**	-0.1357**	-0.1419**
	(0.0626)	(0.0566)	(0.0441)	(0.0386)	(0.0448)	(0.0382)
6	-1.9085**	-0.8220**	0.1689^{**}	0.0700	0.1567^{*}	0.0212
	(0.3541)	(0.2607)	(0.0677)	(0.0476)	(0.0789)	(0.0535)
7	-0.0509	-0.1281	0.0826	0.1587**	-0.0710	-0.1507**
	(0.0654)	(0.0666)	(0.0474)	(0.0406)	(0.0521)	(0.0392)
8	-0.8584**	-0.6660	0.0283	0.0200	0.1526^{*}	0.0756
	(0.2434)	(0.4345)	(0.0570)	(0.0502)	(0.0688)	(0.0900)
9	-0.3476^{**}	-0.1961^*	0.1640^{**}	0.1506^{**}	-0.1286*	-0.1445**
	(0.1280)	(0.0948)	(0.0495)	(0.0400)	(0.0504)	(0.0411)

ASYMMETRY

ASYMMETRY

Price Gap

Price Gap

THE ROLE OF DURATIONS

Firm	$\ln\left(u_{N(t)}\right)$	$\ln\left(u_{N(t)-1}\right)$	$u_{N(t-1)-1}$
1	0.0080**	0.644	0.0513
2	0.7323	0.0557	1.000
3	0.0161^{*}	0.1797	0.1573
4	0.2404	0.1923	0.9542
5	0.1948	0.1897	0.00130^{***}
6	0.2744	0.1512	0.2184
7	0.4074	0.5271	0.8559
8	0.2806	0.8415	1.000
9	0.7675	0.4976	0.1505

THE ROLE OF DURATIONS

		<u> </u>	
Firm	$\ln\left(u_{N(t)}\right)$	$\ln\left(u_{N(t)-1}\right)$	$u_{N(t-1)-1}$
1	0.0080**	0.644	0.0513
2	0.7323	0.0557	1.000
3	0.0161^{*}	0.1797	0.1573
4	0.2404	0.1923	0.9542
5	0.1948	0.1897	0.00130^{***}
6	0.2744	0.1512	0.2184
7	0.4074	0.5271	0.8559
8	0.2806	0.8415	1.000
9	0.7675	0.4976	0.1505

SUMMARY OF ESTIMATION RESULTS

- $\Box \quad \underline{\text{Autocorrelation: } \beta > 0 \text{ for 7 of 9 firms}}$
- Dynamics: Cost shocks instantly passed through to retail stations.
- □ <u>Asymmetry</u>:
 - *"In the small"* for 5 out of 9 firms: More likely to raise price when gap is small and negative than lower price when gap is small and positive.
 - *"In the large"* for 6 out of 9 firms: More likely to lower price when gap is large and positive than raise price when gap is large and negative.

TESTABLE IMPLICATIONS IN THE ACB FRAMEWORK: THE PROBABILITY OF A PRICE CHANGE

	Current price gap $ P_t - P_t^* $	Auto- correlation $G^{-1}(h_{t-1})$	History of price changes x_{t-1}	Remaining price gap $ P_{wI(t)} - P^*_{wI(t)} $	Symmetry
Menu Costs	$\gamma \neq 0$	$\beta = 0$	$\delta = 0$	No	Yes
Information processing	$\gamma \neq 0$	$\beta < 0$	$\delta < 0$	No	
"Inattentive producers"					Yes
"Inattentive consumers"					No (in the "small")
Strategic interactions	$\gamma \neq 0$	$\beta > 0$	$\delta > 0$		
Partial adjustment				Yes	
Fair pricing				No	No (in the "large")

CONCLUSION: WHY ARE PRICES STICKY?

- Results are consistent with "fair pricing".
 - $\beta > 0$: since retailers feel entitled to their "reference transaction price", wholesalers keep probability of price change consistent over time.
 - Cost shocks instantly passed to retailers, since they threaten wholesaler's "reference profit".
 - Asymmetry "in the large", wholesalers are adverse to large upswings in price.
 - □ Kahneman et al (1986): Shortages will be rationed, instead of a price increase to avoid "unfair windfall".
 - Henly, Potter, and Town (1996): Since wholesalers are tied to retailers via long term contracts, wholesalers use non-price methods of rationing in lieu of large price increases.

CONCLUSION: WHY ARE PRICES STICKY?

- Asymmetry "in the small" consistent with rational inattention by consumers (retailers).
 - Summary statistics: average magnitude of price increase < \$0.01.</p>
 - But, retailers must change price in increments of \$0.01 or greater.
 - Thus, wholesalers have incentive to make small price increases, because they know retailers cannot follow suit.
 - Perhaps related to menu costs... but in conjunction with strategic interactions.