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Abstract

The measurement of productivity change (or difference) is usually
based on models that make use of strong assumptions such as competi-
tive behaviour and constant returns to scale. This survey discusses the
basics of productivity measurement and shows that one can dispense
with most if not all of the usual, neoclassical assumptions. By virtue
of its structural features, the measurement model is applicable to in-
dividual establishments and aggregates such as industries, sectors, or
economies.
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1 Introduction

The methodological backing of productivity measurement and growth ac-
counting usually goes like this. The (aggregate) production unit considered
has an input side and an output side, and there is a production function
that links output quantities to input quantities. This production function
includes a time variable, and the partial derivative of the production func-
tion with respect to the time variable is called technological change (or, in
some traditions, multi- or total factor productivity change). Further, it is
assumed that the production unit acts in a competitive environment; that is,
input and output prices are assumed as given. Next, it is assumed that the
production unit acts in a profit maximizing manner (or, it is said to be ‘in
equilibrium’), and that the production function exhibits constant returns to
scale. Under these assumptions it then appears that output quantity growth
(defined as the output-share-weighted mean of the individual output quantity
growth rates) is equal to input quantity growth (defined as the input-share-
weighted mean of the individual input quantity growth rates) plus the rate
of technological change (or, multi- or total factor productivity growth).

For the empirical implementation one then turns to National Accounts,
census and/or survey data, in the form of nominal values and deflators (price
indices). Of course, one cannot avoid dirty hands by making various impu-
tations where direct observations failed or were impossible (as in the case
of labour input of self-employed workers). In the case of capital inputs the
prices, necessary for the computation of input shares, cannot be observed,
but must be computed as unit user costs. The single degree of freedom that
is here available, namely the rate of return, is used to ensure that the re-
striction implied by the assumption of constant returns to scale, namely that
profit equals zero, is satisfied. This procedure is usually rationalized by the
assumption of perfect foresight, which in this case means that the ex post
calculated capital input prices can be assumed as ex ante given to the pro-
duction unit, so that they can be considered as exogenous data for the unit’s
profit maximization problem.

This account is, of course, somewhat stylized, since there occur many,
smaller or larger, variations on this theme in the literature. Recurring, how-
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ever, are a number of so-called neo-classical assumptions: 1) a technology
that exhibits constant returns to scale, 2) competitive input and output
markets, 3) optimizing behaviour, and 4) perfect foresight. A fine example
from academia is provided by Jorgenson, Ho and Stiroh (2005, p. 23, 37),
while the Sources and Methods publication of Statistics New Zealand (2006)
shows that the neo-classical model has also deeply invaded official statistical
agencies.1 An interesting position is taken by the EU KLEMS Growth and
Productivity Accounts project. Though in their main text Timmer et al.
(2007) adhere to the Jorgenson, Ho and Stiroh framework, there is a curious
footnote saying

“Under strict neo-classical assumptions, MFP [multifactor pro-
ductivity] growth measures disembodied technological change. In
practice [my emphasis], MFP is derived as a residual and includes
a host of effects such as improvements in allocative and techni-
cal efficiency, changes in returns to scale and mark-ups as well
as technological change proper. All these effects can be broadly
summarized as “improvements in efficiency”, as they improve the
productivity with which inputs are being used in the production
process. In addition, being a residual measure MFP growth also
includes measurement errors and the effects from unmeasured
output and inputs.”

There are more examples of authors who exhibit similar concerns, without,
however, feeling the need to adapt their conceptual framework.

I believe that for an official statistical agency, whose main task it is to
provide statistics to many different users for many different purposes, it is
discomforting to have such, strong and often empirically refuted, assump-
tions built into the methodological foundations of productivity and growth
accounting statistics. This especially applies to the behavioural assumptions
numbered 2, 3 and 4. There is ample evidence that, on average, markets are
not precisely competitive; that producers’ decisions frequently turn out to
be less than optimal; and that managers almost invariably lack the magical
feature of perfect foresight. Moreover, the environment in which production
units operate is not so stable as the assumption of a fixed production function
seems to claim.

1The neo-classical model figured already prominently in the 1979 report of the U. S.
National Research Council’s Panel to Review Productivity Statistics (Rees 1979).
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But I also believe that it is possible, and even advisable, to avoid making
such assumptions. In a sense I propose to start where the usual story ends,
namely at the empirical side.2 For any production unit, the total factor
productivity index is then defined as an output quantity index divided by
an input quantity index. There are various options here, depending on what
one sees as input and output, but the basic feature is that, given price and
quantity (or value) data, this is simply a matter of index construction. There
appear to be no behavioural assumptions involved, and this even applies
— as will be demonstrated — to the construction of capital input prices.
Surely, a number of imputations must be made (as in the case of the self-
employed workers) and there is fairly large number of more or less defendable
assumptions involved (for instance on the depreciation rates of capital assets),
but this belongs to the daily bread and butter of economic statisticians.

In my view, structural as well as behavioural assumptions enter the pic-
ture as soon as it comes to the explanation of productivity change. Then there
are, depending on the initial level of aggregation, two main directions: 1) to
explain productivity change at an aggregate level by productivity change and
other factors operating at lower levels of aggregation; 2) to decompose pro-
ductivity change into factors such as technological change, technical efficiency
change, scale effects, input- and output-mix effects, and chance. In this case,
to proceed with the analysis one cannot sidestep a technology model with
certain specifications.

The contents of this paper unfold as follows. Section 2 outlines the ar-
chitecture of the basic, KLEMS-Y, input-output model, with its total and
partial measures of productivity change. Section 3 proceeds with the KL-VA
and K-CF models. Then it is time to discuss the measurement of capital in-
put cost in Sections 4 and 5. This gives rise to four additional input-output
models, which are discussed in Section 6. Section 7 is devoted to the rate
of return: endogenous or exogenous, ex post or ex ante. Section 8 consid-
ers a number of implementation issues, after which we take a look at the
Netherlands’ system of productivity statistics. The conclusion can be brief.

2There is another, minor, difference between my approach and the usual story. The
usual story runs in the framework of continuous time in which periods are of infinitesimal
short duration. When it then comes to implementation several approximations must
be assumed. My approach does not need this kind of assumptions either, because this
approach is entirely based on accounting periods of finite duration, such as years.
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2 The basic input-output model

Let us consider a single production unit. This could be an establishment or
plant, a firm, an industry, a sector, or even an entire economy. I will simply
speak of a ‘unit’. For the purpose of productivity measurement, such a unit
is considered as a (consolidated) input-output system. What does this mean?

For the output side as well as for the input side there is some list of com-
modities (according to some classification scheme). A commodity is thereby
defined as a set of closely related items which, for the purpose of analysis,
can be considered as “equivalent”, either in the static sense of their quanti-
ties being additive or in the dynamic sense of displaying equal relative price
or quantity changes. Ideally, then, for any accounting period considered (ex
post), say a year, each commodity comes with a value (in monetary terms)
and a price and/or a quantity. If value and price are available, then the
quantity is obtained by dividing the value by the price. If value and quantity
are available, then the price is obtained by dividing the value by the quantity.
If both price and quantity are available, then value is defined as price times
quantity. In any case, for every commodity it must be so that value equals
price times quantity, the magnitudes of which of course must pertain to the
same accounting period. Technically speaking, the price concept used here
is the unit value. At the output side, the prices must be those received by
the unit, whereas at the input side, the prices must be those paid. Consoli-
dation (also called net-sector approach) means that the unit does not deliver
to itself.

The situation as pictured in the preceding paragraph is typical for a unit
operating on the (output) market. The question how to deal with non-market
units will be considered where appropriate.

The inputs are customarily classified according to the KLEMS format.
The letter K denotes the class of owned, reproducible capital assets. The
commodities here are the asset-types, sub-classified by age category. Cohorts
of assets are assumed to be available at the beginning of the accounting
period and, in deteriorated form (due to ageing, wear and tear), still available
at the end of the period. Investment during the period adds entities to
these cohorts, while desinvestment, breakdown, or retirement remove entities.
Examples include buildings and other structures, machinery, transport and
ICT equipment, tools. As will be discussed later in detail, theory implies
that quantities sought are just the quantities of all these cohorts of assets
(together representing the productive capital stock), whereas the relevant
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prices are their unit user costs (per type-age combination), constructed from
imputed interest rates, depreciation profiles, (anticipated) revaluations, and
tax rates. The sum of quantities times prices then provides the capital input
cost of a production unit.

The letter L denotes the class of labour inputs; that is, all the types of
work that are important to distinguish, cross-classified for instance according
to educational attainment, gender, and experience (which is usually proxied
by age categories). Quantities are measured as hours worked (or paid), and
prices are wage rates per hour. Where applicable, imputations must be
made for the work executed by self-employed persons. The sum of quantities
times prices provides the labour input cost (or the labour bill, or labour
compensation, as it is sometimes called).

The classes K and L concern so-called primary inputs. The letters E, M,
and S denote three, disjunct classes of so-called intermediate inputs. First, E
is the class of energy commodities consumed by a production unit: oil, gas,
electricity, and water. Second, M is the class of all the (physical) materials
consumed in the production process, which could be sub-classified into raw
materials, semi-fabricates, and auxiliary products. Third, S is the class of
all the business services which are consumed for maintaining the production
process. Though it is not at all a trivial task to define precisely all the
intermediate inputs and to classify them, it can safely be assumed that at
the end of each accounting period there is a quantity and a price associated
with each of those inputs.

Then, for each accounting period, production cost is defined as the sum
of primary and intermediate input cost. Though this is usually not executed,
there are good reasons to exclude R&D expenditure from production cost, the
reason being that such expenditure is not related to the current production
process but to a future one. Put otherwise, by performing R&D, production
units try to shift the technology frontier. When it then comes to explaining
productivity change, the non-exclusion of R&D expenditure might easily lead
to a sort of double-counting error.3

At the output side, the letter Y denotes the class of commodities, goods
and/or services, which are produced by the unit. Though in some industries,
such as services industries or industries producing mainly unique goods, def-
initional problems are formidable, it can safely be assumed that for each
accounting period there are data on quantities produced. For units operat-

3The big problem seems to be the separation of the R&D part of labour input.
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ing on the market there are also prices. The sum of quantities times prices
then provides the production revenue, and, apart from taxes on production,
revenue minus cost yields profit.

Profit is an important financial performance measure. A somewhat less
obvious, but equally useful, measure is ‘profitability’, defined as revenue di-
vided by cost. Profitability gives, in monetary terms, the quantity of output
per unit of input, and is thus a measure of return to aggregate input (and in
some older literature called ‘return to the dollar’).

Monitoring the unit’s performance over time is here understood to mean
monitoring the development of its profit or its profitability. Both measures
are, by nature, dependent on price and quantity changes, at the two sides of
the unit. If there is (price) inflation and the unit’s profit has increased then
that mere fact does not necessarily mean that the unit has been performing
better. Also, though general inflation does not influence the development of
profitability, differential inflation does. If output prices have increased more
than input prices then any increase of profitability does not necessarily imply
that the unit has been performing better. Thus, for measuring the economic
performance of the unit one wants to get rid of the effect of price changes.

Profit and profitability are different, but equivalent concepts. The first
is a difference measure, the second is a ratio measure. Change of a variable
through time, which will be our main focus, can also be measured by a
difference or a ratio. Apart from technical details — such as, that a ratio
does not make sense if the variable changes sign or becomes equal to zero
— these two ways of measuring change are equivalent. Thus there appear to
be a number of ways of mapping the same reality in numbers, and differing
numbers do not necessarily imply differing realities.

Profit change stripped of its price component will be called real profit
change, and profitability change stripped of its price component will be called
real profitability change.4 Another name for real profit (-ability) change is
(total factor) productivity change. Thus, productivity change can be mea-
sured as a ratio (namely as real profitability change) or as a difference (namely
as real profit change). At the economy level, productivity change can be re-
lated to some measure of overall welfare change. A down-to-earth approach
would use the National Accounts to establish a link between labour pro-
ductivity change and real-income-per-capita change. A more sophisticated

4Note that real change means nominal change deflated by some price index, not neces-
sarily being a (headline) CPI.
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approach, using economic models and assumptions, was provided by Basu
and Fernald (2002).

For a non-market unit the story must be told somewhat differently. For
such a unit there are no output prices; hence, there is no revenue. Though
there is cost, like for market units, there is no profit or profitability. National
accountants usually resolve the problem here by defining the revenue of a
non-market unit to be equal to its cost, thereby setting profit equal to 0
or profitability equal to 1.5 But this leaves the problem that there is no
natural way of splitting revenue change through time in real and monetary
components. This can only be done satisfactorily when there is some output
quantity index that is independent from the input quantity index.6

It is useful to remind the reader that the notions of profit and profitability,
though conceptually rather clear, are difficult to operationalize. One of the
reasons is that cost includes the cost of owned capital assets, the measurement
of which exhibits a substantial number of degrees of freedom, as we will see
in the remainder of this paper. Also, labour cost includes the cost of self-
employed persons, for which wage rates and hours of work usually must be
imputed. It will be clear that all these, and many other, uncertainties spill
over to operational definitions of the profit and profitability concepts.

2.1 Notation

Let us now introduce some notation to define the various concepts we are
going to use. As stated, at the output side we have M items, each with their
price (received) ptm and quantity ytm, where m = 1, ...,M , and t denotes an
accounting period (say, a year). Similarly, at the input side we have N items,
each with their price (paid) wtn and quantity xtn, where n = 1, ..., N . To avoid
notational clutter, simple vector notation will be used throughout. All the
prices and quantities are assumed to be positive, unless stated otherwise.
The ex post accounting point-of-view will be used; that is, quantities and
monetary values of the so-called flow variables (output and labour, energy,
materials, services inputs) are realized values, complete knowledge of which
becomes available not before the accounting period has expired. Similarly,
the cost of capital input is calculated ex post. This is consistent with official
statistical practice.

5This approach goes back to Hicks (1940).
6See the insightful paper by Douglas (2006). Though written from a New Zealand

perspective, its theme is generic.
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The unit’s revenue, that is, the value of its (gross) output, during the
accounting period t is defined as

Rt ≡ pt · yt ≡
M∑
m=1

ptmy
t
m, (1)

whereas its production cost is defined as

Ct ≡ wt · xt ≡
N∑
n=1

wtnx
t
n. (2)

The unit’s profit (disregarding taxes on production) is then given by its
revenue minus its cost; that is,

Rt − Ct = pt · yt − wt · xt. (3)

The unit’s profitability (also disregarding taxes on production) is defined as
its revenue divided by its cost; that is,

Rt/Ct = pt · yt/wt · xt. (4)

Notice that profitability expressed as a percentage (Rt/Ct − 1) equals the
ratio of profit to cost ((Rt − Ct)/Ct). Given positive prices and quantities,
it will always be the case that Rt > 0 and Ct > 0. Thus, profitability
Rt/Ct > 0, but profit Rt − Ct can be positive, negative, or zero.

As stated, we are concerned with intertemporal comparisons. Moreover, in
this paper only bilateral comparisons will be considered, say comparing a
certain period t to another, adjacent or non-adjacent, period t′. Without
loss of generality it may be assumed that period t′ precedes period t. To
further simplify notation, the two periods will be labelled by t = 1 (which
will be called the comparison period) and t′ = 0 (which will be called the
base period).

2.2 Productivity index

The development over time of profitability is, rather naturally, measured by
the ratio

R1/C1

R0/C0
. (5)
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How to decompose this into a price and a quantity component? By noticing
that

R1/C1

R0/C0
=
R1/R0

C1/C0
(6)

we see that the question reduces to the question how to decompose the rev-
enue ratio R1/R0 and the cost ratio C1/C0 into two parts. The natural
answer is to grab from the economic statistician’s toolkit a pair of price and
quantity indices that satisfy the Product Test:

p1 · y1

p0 · y0
= P (p1, y1, p0, y0)Q(p1, y1, p0, y0). (7)

A good choice is the Fisher price and quantity index, since these indices sat-
isfy not only the basic axioms (see Appendix A), but also a number of other
relatively important requirements (such as the Time Reversal Test). Thus we
are using here the ‘instrumental’ or ‘axiomatic’ approach for selecting mea-
sures for aggregate price and quantity change, an approach that goes back to
Fisher (1922); see Balk (1995) for a survey and Balk (2008) for an up-to-date
treatment. When the time distance between the periods 1 and 0 is not too
large, then any index that is a second order differential approximation to the
Fisher index may instead be used.7

Throughout this paper, when it comes to solving problems such as (7) we
will assume that Fisher indices are used. Thus, in particular,

R1

R0
= P F (p1, y1, p0, y0)QF (p1, y1, p0, y0)

≡ PR(1, 0)QR(1, 0), (8)

where the second line serves to define our shorthand notation. In the same
way we decompose

C1

C0
= P F (w1, x1, w0, x0)QF (w1, x1, w0, x0)

≡ PC(1, 0)QC(1, 0). (9)

7Note, however, that this is not unproblematic. For instance, when the Törnqvist
price index PT (.) is used, then the implicit quantity index (p1 · y1/p0 · y0)/PT (.) does not
necessarily satisfy the Identity Test A3’.

10



Of course, the dimensionality of the indices in expressions (8) and (9) will
usually be different.

The number of items distinguished at the output side (M) and the in-
put side (N) of a production unit can be very high. To accommodate this,
(detailed) classifications are used, by which all the items are allocated to hi-
erarchically organized (sub-)aggregates. The calculation of output and input
indices then proceeds in stages. Theoretically, it suffices to distinguish only
two stages. At the first stage one calculates indices for the subaggregates at
some level, and at the second stage these subaggregate indices are combined
to aggregate indices.

Consequentially, in expressions (8) and (9) instead of one-stage also two-
stage Fisher indices may be used; that is, Fisher indices of Fisher indices
for subaggregates (see Appendix A for precise definitions). Since the Fisher
index is not consistent-in-aggregation, a decomposition by two-stage Fisher
indices will in general numerically differ from a decomposition by one-stage
Fisher indices. Fortunately, one-stage and two-stage Fisher indices are second-
order differential approximations of each other (as shown by Diewert 1978).

Using the two relations (8) and (9), the profitability ratio can be decom-
posed as

R1/C1

R0/C0
=
R1/R0

C1/C0
=

PR(1, 0)

PC(1, 0)

QR(1, 0)

QC(1, 0)
. (10)

The (total factor) productivity index (IPROD), for period 1 relative to
period 0, is now defined by

IPROD(1, 0) ≡ QR(1, 0)

QC(1, 0)
. (11)

Thus IPROD(1, 0) is the real or quantity component of the profitability
ratio. Put otherwise, it is the ratio of an output quantity index to an input
quantity index; IPROD(1, 0) is the factor with which the output quantities
on average have changed relative to the factor with which the input quantities
on average have changed. If the ratio of these factors is larger (smaller) than
1, there is said to be productivity increase (decrease).8

8This approach follows Diewert (1992), Diewert and Nakamura (2003), and Balk
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Notice that, using (8) and (9), there appear to be three other, equivalent
representations of the productivity index, namely

IPROD(1, 0) =
(R1/R0)/PR(1, 0)

(C1/C0)/PC(1, 0)
(12)

=
(R1/R0)/PR(1, 0)

QC(1, 0)
(13)

=
QR(1, 0)

(C1/C0)/PC(1, 0)
. (14)

Put in words, we are seeing here respectively a deflated revenue index di-
vided by a deflated cost index, a deflated revenue index divided by an input
quantity index, and an output quantity index divided by a deflated cost
index.

Further, if the revenue change equals the cost change, R1/R0 = C1/C0

(for which zero profit in the two periods is a sufficient condition), then it
follows that

IPROD(1, 0) =
PC(1, 0)

PR(1, 0)
; (15)

that is, the productivity index is equal to an input price index divided by
an output price index. In general, however, the dual productivity index
PC(1, 0)/PR(1, 0) will differ from the primal one, QR(1, 0)/QC(1, 0).

The foregoing definitions are already sufficient to provide an example of sim-
ple but useful analysis. Consider relation (13), and rewrite this as

R1/R0 = IPROD(1, 0)×QC(1, 0)× PR(1, 0). (16)

Recall that revenue change through time is only interesting in so far it differs
from general inflation. Hence, it makes sense to deflate the revenue ratio,
R1/R0, by a general inflation measure such as the (headline) Consumer Price
Index (CPI). Doing this, the last equation can be written as

R1/R0

CPI1/CPI0
= IPROD(1, 0)×QC(1, 0)× PR(1, 0)

CPI1/CPI0
. (17)

(2003a).
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Lawrence, Diewert and Fox (2006) basically use this relation to decompose
‘real’ revenue change into three factors: productivity change, input quantity
change (which can be interpreted as measuring change of the unit’s size),
and ‘real’ output price change respectively.

This is an example of what is called growth accounting. The relation
between index number techniques and growth accounting techniques can,
more general, be seen as follows. Recall the generic definition (11), and
rewrite this expression as follows

QR(1, 0) = IPROD(1, 0)×QC(1, 0). (18)

Using logarithms, this multiplicative expression can be rewritten as

lnQR(1, 0) = ln IPROD(1, 0) + lnQC(1, 0). (19)

For index numbers in the neighbourhood of 1 the logarithms thereof reduce
to percentages, and the last expression can be interpreted as saying that
the percentage change of output volume equals the percentage change of in-
put volume plus the percentage change of productivity. Growth accounting
economists like to work with equations expressing output volume growth in
terms of input volume growth plus a residual that is interpreted as produc-
tivity growth, thereby suggesting that the last two factors cause the first.
However, productivity change cannot be considered as an independent factor
since it is defined as output quantity change minus input quantity change.
Put otherwise, a growth accounting table is nothing but an alternative way
of presenting productivity growth and its contributing factors. And decom-
position does not imply anything about causality.

For a non-market unit expression (11) cannot be used because there are no
output prices available for use in the output quantity index. But if there
is some prices-free output quantity index Q(y1, y0), then the (total factor)
productivity index, for period 1 relative to period 0, is naturally defined by
Q(y1, y0)/QC(1, 0). An alternative expression is obtained by replacing the in-
put quantity index by the deflated cost index, Q(y1, y0)/[(C1/C0)/PC(1, 0)].

2.3 Productivity indicator

Let us now turn to profit and its development through time. This is naturally
measured by the difference

13



(R1 − C1)− (R0 − C0). (20)

Of course, such a difference makes only sense when the two money amounts
involved, profit from period 0 and profit from period 1, are deflated by some
general inflation measure (such as the headline CPI). In the remainder of
this paper, when discussing difference measures, such a deflation is tacitly
presupposed.

How to decompose the profit difference into a price and a quantity com-
ponent? By noticing that

(R1 − C1)− (R0 − C0) = (R1 −R0)− (C1 − C0), (21)

we see that the question reduces to the question how to decompose revenue
change R1 −R0 and cost change C1 −C0 into two parts. We now grab from
the economic statistician’s toolkit a pair of price and quantity indicators that
satisfy the analogue of the Product Test:

p1 · y1 − p0 · y0 = P(p1, y1, p0, y0) +Q(p1, y1, p0, y0). (22)

A good choice is the Bennet (1920) price and quantity indicator, since these
indicators satisfy not only the basic axioms (see Appendix A), but also a num-
ber of other relatively important requirements (such as the Time Reversal
Test) (see Diewert 2005). But any indicator that is a second order differential
approximation to the Bennet indicator may instead be used. Thus,

R1 −R0 = PB(p1, y1, p0, y0) +QB(p1, y1, p0, y0)

≡ PR(1, 0) +QR(1, 0), (23)

and similarly,

C1 − C0 = PB(w1, x1, w0, x0) +QB(w1, x1, w0, x0)

≡ PC(1, 0) +QC(1, 0). (24)

Notice that the dimensionality of the Bennet indicators in these two decom-
positions is in general different.

The Bennet indicators are difference analogues to Fisher indices. Their
aggregation properties, however, are much simpler. The Bennet price or
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quantity indicator for an aggregate is equal to the sum of the subaggregate
indicators.

Using indicators, the profit difference can be written as

(R1 − C1)− (R0 − C0) =

PR(1, 0) +QR(1, 0)− [PC(1, 0) +QC(1, 0)] =

PR(1, 0)− PC(1, 0) +QR(1, 0)−QC(1, 0). (25)

The first two terms at the right-hand side of the last equality sign provide the
price component, whereas the last two terms provide the quantity component
of the profit difference. Thus, based on this decomposition, the (total factor)
productivity indicator (DPROD) is defined by

DPROD(1, 0) ≡ QR(1, 0)−QC(1, 0); (26)

that is, an output quantity indicator minus an input quantity indicator.
Notice that productivity change is now measured as an amount of money. An
amount larger (smaller) than 0 indicates productivity increase (decrease).9

The equivalent expressions for difference-type productivity change are

DPROD(1, 0) = [R1 −R0 − PR(1, 0)]− [C1 − C0 − PC(1, 0)] (27)

= [R1 −R0 − PR(1, 0)]−QC(1, 0) (28)

= QR(1, 0)− [C1 − C0 − PC(1, 0)], (29)

which can be useful in different situations. Notice further that, if R1−R0 =
C1 − C0 then

DPROD(1, 0) = PC(1, 0)− PR(1, 0). (30)

For a non-market production unit, a productivity indicator is difficult to
define. Though one might be able to construe an output quantity indicator,
it is hard to see how, in the absence of output prices, such an indicator could
be given a money dimension.

9This approach follows Balk (2003a).
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2.4 Partial productivity measures

The productivity index IPROD(1, 0) and indicator DPROD(1, 0) bear the
adjective ‘total factor’ because all the inputs are taken into account. To
define partial productivity measures, in ratio or difference form, additional
notation is necessary.

All the items at the input side of our production unit are assumed to
be allocatable to the five, mutually disjunct, categories mentioned earlier,
namely capital (K), labour (L), energy (E), materials (M), and services (S).
The entire input price and quantity vectors can then be partitioned as wt =
(wtK , w

t
L, w

t
E, w

t
M , w

t
S) and xt = (xtK , x

t
L, x

t
E, x

t
M , x

t
S) respectively. Energy,

materials and services together form the category of intermediate inputs,
that is, inputs which are acquired from other production units or imported.
Capital and labour are called primary inputs. Consistent with this distinction
the price and quantity vectors can also be partitioned as wt = (wtKL, w

t
EMS)

and xt = (xtKL, x
t
EMS), or as wt = (wtK , w

t
L, w

t
EMS) and xt = (xtK , x

t
L, x

t
EMS).

Since monetary values are additive, total production cost can be decomposed
in a number of ways, such as

Ct =
∑
n∈K

wtnx
t
n +

∑
n∈L

wtnx
t
n +

∑
n∈E

wtnx
t
n +

∑
n∈M

wtnx
t
n +

∑
n∈S

wtnx
t
n

≡ Ct
K + Ct

L + Ct
E + Ct

M + Ct
S (31)

≡ Ct
K + Ct

L + Ct
EMS

≡ Ct
KL + Ct

EMS.

Now, using as before Fisher indices, the labour cost ratio can be decomposed
as

C1
L

C0
L

= P F (w1
L, x

1
L, w

0
L, x

0
L)QF (w1

L, x
1
L, w

0
L, x

0
L)

≡ PL(1, 0)QL(1, 0). (32)

Then the labour productivity index (ILPROD) for period 1 relative to pe-
riod 0 is defined by

ILPROD(1, 0) ≡ QR(1, 0)

QL(1, 0)
; (33)
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that is, the ratio of an output quantity index to a labour input quantity
index.

In precisely the same way one can define the capital productivity index

IKPROD(1, 0) ≡ QR(1, 0)

QK(1, 0)
(34)

and the other partial productivity indices IkPROD for k = E,M, S. The
ratio

ILPROD(1, 0)

IKPROD(1, 0)
=
QK(1, 0)

QL(1, 0)
(35)

is called the index of ‘capital deepening’. Loosely speaking, this index mea-
sures the change of the quantity of capital input per unit of labour input.

The relation between total factor and partial productivity indices is as
follows. Let QC(1, 0) be a two-stage Fisher index, that is

QC(1, 0) ≡ QF (Qk(1, 0), C1
k , C

0
k ; k = K,L,E,M, S) (36)

where all the Qk(1, 0) are Fisher indices. It is straightforward to check that
then

IPROD(1, 0) =
QR(1, 0)

QC(1, 0)

=
QR(1, 0)

(
∑
kQk(1, 0)C0

k/C
0)

1/2
(
∑
kQk(1, 0)−1C1

k/C
1)
−1/2

=

(∑
k

Qk(1, 0)

QR(1, 0)

C0
k

C0

)−1/2 (∑
k

QR(1, 0)

Qk(1, 0)

C1
k

C1

)1/2

=

(∑
k C

0
k(IkPROD(1, 0))−1

C0

)−1/2 (∑
k C

1
kIkPROD(1, 0)

C1

)1/2

, (37)

which is not a particularly simple relation. If instead as second-stage quantity
index the Cobb-Douglas functional form was chosen, that is,

QC(1, 0) ≡
∏
k

Qk(1, 0)αk where
∑
k

αk = 1 (αk > 0), (38)

then it appears that
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ln IPROD(1, 0) =
∑
k

αk ln IkPROD(1, 0). (39)

This is a very simple relation between total factor productivity change and
partial productivity change. Notice, however, that this simplicity comes
at a cost. Definition (38) implies for the relation between aggregate and
subaggregate input price indices that

PC(1, 0) =
∏
k

Pk(1, 0)αk
C1/C0∏

k(C
1
k/C

0
k)
αk
. (40)

Such an index does not necessarily satisfy the fundamental Identity Test A3;
that is, if all the prices in period 1 are the same as in period 0 then PC(1, 0)
does not necessarily deliver as outcome 1.

Let us now turn to partial productivity indicators. Using the Bennet in-
dicators, the labour cost difference between periods 0 and 1 is decomposed
as

C1
L − C0

L = PB(w1
L, x

1
L, w

0
L, x

0
L) +QB(w1

L, x
1
L, w

0
L, x

0
L)

≡ PL(1, 0) +QL(1, 0). (41)

In the same way one can decompose the capital, energy, materials, and ser-
vices cost difference. However, since costs are additive, it turns out that the
total factor productivity indicator can be written as

DPROD(1, 0) = QR(1, 0)−
∑

k=K,L,E,M,S

Qk(1, 0). (42)

By definition, the left-hand side is real profit change. The right-hand side
gives the contributing factors. The contribution of category k to real profit
change is simply measured by the amountQk(1, 0). A positive amount, which
means that the aggregate quantity of input category k has increased, means
a negative contribution to real profit change.

3 Different models, similar measures

The previous section laid out the basic features of what is known as the
KLEMS model of production. This framework is currently used by the U. S.
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Bureau of Labor Statistics and Statistics Canada for productivity measures at
the industry level of aggregation (see Dean and Harper 2001, and Harchaoui
et al. 2001 respectively). The KLEMS model, or, as I will denote it, the
KLEMS-Y model delivers gross-output based total or partial productivity
measures. However, there are more models in use, differing from the KLEMS-
Y model by their input and output concepts. Since these models presuppose
revenue as measured independently from cost, they are not applicable to
non-market units.

3.1 The KL-VA model

The first of these models uses value added (VA) as its output concept. The
production unit’s value added (VA) is defined as its revenue minus the costs
of energy, materials, and services; that is

V At ≡ Rt − Ct
EMS

= pt · yt − wtEMS · xtEMS. (43)

The value added concept subtracts the total cost of intermediate inputs from
the revenue obtained, and in doing so essentially conceives the unit as pro-
ducing value added (that is, money) from the two primary input categories
capital and labour. It is assumed that V At > 0.

Although gross output, represented by yt, is the natural output concept,
the value added concept is important when one wishes to aggregate single
units to larger entities. Gross output consists of deliveries to final demand
and intermediate destinations. The split between these two output categories
depends very much on the level of aggregation. Value added is immune to this
problem. It enables one to compare (units belonging to) different industries.
From a welfare-theoretic point of view the value-added concept is important
because value added can be conceived as the income (from production) that
flows into society.

In this input-output model the counterpart to profitability is the ratio of
value added to primary inputs cost, V At/Ct

KL, and the natural starting point
for defining a productivity index is to consider the development of this ratio
through time. Since (V A1/C1

KL)/(V A0/C0
KL) = (V A1/V A0)/(C1

KL/C
0
KL),

we need a decomposition of the value-added ratio and a decomposition of
the primary inputs cost ratio.
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The question how to decompose a value-added ratio in a price and a
quantity component cannot be answered unequivocally. There are several
options here, the technical details of which are deferred to Appendix B.
Suppose, however, that a satisfactory decomposition is somehow available;
that is,

V A1

V A0
= PV A(1, 0)QV A(1, 0). (44)

Using one- or two-stage Fisher indices, the primary inputs cost ratio is de-
composed as

C1
KL

C0
KL

= P F (w1
KL, x

1
KL, w

0
KL, x

0
KL)QF (w1

KL, x
1
KL, w

0
KL, x

0
KL)

≡ PKL(1, 0)QKL(1, 0). (45)

The value-added based (total factor) productivity index for period 1 relative
to period 0 is then defined as

IPRODV A(1, 0) ≡ QV A(1, 0)

QKL(1, 0)
. (46)

This index measures the ‘quantity’ change of value added relative to the
quantity change of primary input; or, can be seen as the index of real value
added relative to the index of real primary input.

This is by far the most common model. It is used by the U. S. Bureau of
Labor Statistics, Statistics Canada, Australian Bureau of Statistics, Statis-
tics New Zealand, and the Swiss Federal Statistical Office in their official
productivity statistics.

In the KL-VA model the counterpart to profit is the difference of value added
and primary inputs cost, V At − Ct

KL, and the natural starting point for
defining a productivity indicator is to consider the development of this dif-
ference through time. However, since costs are additive, we see that, by using
definition (43),

V At − Ct
KL = Rt − Ct

EMS − Ct
KL

= Rt − Ct. (47)
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Thus, profit in the KL-VA model is the same as profit in the KLEMS-Y
model, and the same applies to the price and quantity components of profit
differences. Using Bennet indicators, one easily checks that

DPRODV A(1, 0) ≡ QV A(1, 0)−QKL(1, 0)

= QR(1, 0)−QC(1, 0)

= DPROD(1, 0); (48)

that is, the productivity indicators are the same in the two models. This,
however, does not hold for the productivity indices. One usually finds that
IPRODV A(1, 0) 6= IPROD(1, 0). Balk (2003b) showed that if profit is zero
in both periods, that is, Rt = Ct (t = 0, 1), then approximately

ln IPRODV A(1, 0) = D(1, 0) ln IPROD(1, 0), (49)

where D(1, 0) ≥ 1 is the (mean) Domar-factor (= ratio of revenue over value
added). Usually expression (49) is, in a continuous-time setting, derived
under a set of strong neo-classical assumptions (see, for instance, Gollop
(1979), Jorgenson et al. (2005, p. 298) or Schreyer (2001, p. 143)), so that
it seems to be some deep economic-theoretical result. From the foregoing
it may be concluded, however, that the inequality of the value-added based
productivity index and the gross-output based productivity index is only
due to the mathematics of ratios and differences. There is no underlying
economic phenomenon.

The value-added based labour productivity index for period 1 relative to
period 0 is defined as

ILPRODV A(1, 0) ≡ QV A(1, 0)

QL(1, 0)
, (50)

where QL(1, 0) was defined by expression (32). The index defined by ex-
pression (50) measures the ‘quantity’ change of value added relative to the
quantity change of labour input; or, can be seen as the index of real value
added relative to the index of real labour input.

Recall that the labour quantity index QL(1, 0) is here defined as a Fisher
index, acting on the prices and quantities of all the types of labour that are
being distinguished. Suppose that the units of measurement of the various
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types are in some sense the same; that is, the quantities of all the types are
measured in hours, or in full-time equivalent jobs, or in some other common
unit. Then one frequently considers, instead of the Fisher quantity index,
the Dutot or simple sum quantity index,

QD
L (1, 0) ≡

∑
n∈L

x1
n/
∑
n∈L

x0
n. (51)

The simple value-added based labour productivity index, defined as

ILPRODD
V A(1, 0) ≡ QV A(1, 0)

QD
L (1, 0)

, (52)

has the alternative interpretation as an index of real value added per unit of
labour. As such this measure frequently figures at the left-hand side (thus, as
explanandum) in a growth accounting equation. However, for deriving such
a relation nothing spectacular is needed, as will now be shown.

Consider the definition of the value-added based total factor productivity
index, (46), and rewrite this as

QV A(1, 0) = IPRODV A(1, 0)×QKL(1, 0). (53)

Dividing both sides of this equation by the Dutot labour quantity index, and
applying definition (52), one obtains10

ILPRODD
V A(1, 0) = IPRODV A(1, 0)× QKL(1, 0)

QL(1, 0)
× QL(1, 0)

QD
L (1, 0)

. (54)

Taking logarithms and, on the assumption that all the index numbers are in
the neighbourhood of 1, interpreting these as percentages, the last equation
can be interpreted as: (simple) labour productivity growth equals total factor
productivity growth plus ‘capital deepening’ plus ‘labour quality’ growth.
Again, productivity change is measured as a residual and, thus, the three
factors at the right-hand side of the last equation can in no way be regarded
as causal factors.

If, continuing our previous example, the primary inputs quantity index
was defined as a two-stage index of the form

QKL(1, 0) ≡ QK(1, 0)αQL(1, 0)1−α (0 < α < 1), (55)

10This is a discrete time version of expression (23) of Baldwin, Gu and Yan (2007).
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where the reader recognizes the simple Cobb-Douglas form, then the index
of ‘capital deepening’ reduces to the particularly simple form

QKL(1, 0)

QL(1, 0)
=

[
QK(1, 0)

QL(1, 0)

]α
. (56)

The ‘labour quality’ index, QL(1, 0)/QD
L (1, 0), basically measures composi-

tional shift or structural change among the labour types in the class L, since
it is a ratio of two quantity indices.

3.2 The K-CF model

The next model uses cash flow (CF) as its output concept.11 The unit’s
cash flow is defined as its revenue minus the costs of labour and intermediate
inputs; that is

CF t ≡ Rt − Ct
LEMS (57)

= pt · yt − wtLEMS · xtLEMS

= V At − Ct
L.

This input-output model basically sees cash flow as the return to capital
input. It is assumed that CF t > 0. Of course, if there is no owned capital
(that is, all capital assets are leased), then Ct

K = 0, and this model does not
make sense.

The counterpart to profitability is now the ratio of cash flow to capital
input cost, CF t/Ct

K , and the natural starting point for defining a produc-
tivity index is to consider the development of this ratio through time. Since
(CF 1/C1

K)/(CF 0/C0
K) = (CF 1/CF 0)/(C1

K/C
0
K), we need a decomposition

of the cash-flow ratio and a decomposition of the capital input cost ratio.
Decomposing a cash-flow ratio in a price and a quantity component is

structurally similar to decomposing a value-added ratio (see Appendix B).
Thus, suppose that a satisfactory decomposition is somehow available; that
is,

CF 1

CF 0
= PCF (1, 0)QCF (1, 0). (58)

11Cash flow is also called gross profit. The National Accounts term is ‘gross operating
surplus’.
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Using Fisher indices, the capital input cost ratio is decomposed as

C1
K

C0
K

= P F (w1
K , x

1
K , w

0
K , x

0
K)QF (w1

K , x
1
K , w

0
K , x

0
K)

≡ PK(1, 0)QK(1, 0). (59)

The cash-flow based (total factor) productivity index for period 1 relative to
period 0 is then defined as

IPRODCF (1, 0) ≡ QCF (1, 0)

QK(1, 0)
. (60)

This index measures the change of the quantity component of cash flow
relative to the quantity change of capital input; or, can be seen as the index
of real cash flow relative to the index of real capital input.

In the K-CF model the counterpart to profit is the difference of cash flow
and capital input cost, CF t−Ct

K , and the natural starting point for defining
a productivity indicator is to consider the development of this difference
through time. However, since costs are additive, we see that

CF t − Ct
K = Rt − Ct

LEMS − Ct
K

= Rt − Ct. (61)

Thus, profit in the K-CF model is the same as profit in the KLEMS-Y model,
and the same applies to the price and quantity components of profit differ-
ences. Using Bennet indicators, one easily checks that

DPRODCF (1, 0) ≡ QCF (1, 0)−QK(1, 0)

= QR(1, 0)−QC(1, 0)

= DPROD(1, 0); (62)

that is, the productivity indicators are the same in the two models. This,
however, does not hold for the productivity indices. In general it will be the
case that IPRODCF (1, 0) 6= IPROD(1, 0). Following the reasoning of Balk
(2003b) it is possible to show that, if profit is zero in both periods, that is,
Rt = Ct (t = 0, 1), then approximately
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ln IPRODCF (1, 0) = E(1, 0) ln IPROD(1, 0), (63)

where E(1, 0) ≥ 1 is the ratio of mean revenue over mean cash flow. Since
CF t ≤ V At, it follows that E(1, 0) ≥ D(1, 0).

4 Capital input cost

The K-CF model provides a good point of departure for a discussion of the
measurement of capital input cost. Cash flow, as defined in the foregoing, is
the (ex post measured) monetary balance of all the flow variables. Capital
input cost is different, since capital is a stock variable. Basically, capital input
cost is measured as the difference between the book values of the production
unit’s owned capital stock at beginning and end of the accounting period
considered.

Our notation must therefore be extended. The beginning of period t
is denoted by t−, and its end by t+. Thus a period is an interval of time
t = [t−, t+], where t− = (t−1)+ and t+ = (t+1)−. Occasionally, the variable
t will also be used to denote the midpoint of the period.

All the assets are supposed to be economically born at midpoints of pe-
riods, whether this has occurred inside or outside the production unit under
consideration. Thus the age of an asset of type i at (the midpoint of) period
t is a non-negative integer number j = 0, ..., Ji. The age of this asset at the
beginning of the period is j − 0.5, and at the end j + 0.5. The economically
maximal service life of asset type i is denoted by Ji.

The opening stock of capital assets is the inheritance of past investments
and desinvestments; hence, consists of cohorts of assets of various types, each
cohort comprising a number of assets of the same age. By (Netherlands’
National Accounts) convention, assets that are discarded (normally retired
or prematurely scrapped) or sold during a certain period t are supposed to be
discarded or sold at the end of that period; that is, at t+. Second-hand assets
that are acquired during period t from other production units are supposed
to be acquired at the beginning of the next period, (t + 1)−. However, all
other acquisitions of second-hand assets and those of new assets are supposed
to happen at the midpoint of the period, and to be immediately operational.

Hence, all the assets that are part of the opening stock remain active
through the entire period [t−, t+]. The period t investments are supposed to
be active through the second half of period t, that is, [t, t+]. Put otherwise,
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the stock of capital assets at t, the midpoint of the period, is the same as
the stock at t−, the beginning of the period, but 0.5 period older. At the
midpoint of the period the investments, of various age, are added to the
stock. Notice, however, that the closing stock at t+, the end of the period,
is not necessarily identical to the opening stock at (t + 1)−, because of the
convention on sale, acquisition, and discard of assets.

Let Kt
ij denote the quantity (number) of asset type i (i = 1, ..., I) and

age j (j = 1, ..., Ji) at the midpoint of period t. These quantities are non-
negative; some of them might be equal to 0. Further, let I tij denote the
(non-negative) quantity (number) of asset type i (i = 1, ..., I) and age j
(j = 0, ..., Ji) that is added to the stock at the midpoint of period t. The
following relations are useful to keep in mind:

Kt−

i,j−0.5 = Kt
ij (j = 1, ..., Ji) (64)

I ti0 = Kt+

i,0.5 (65)

I tij +Kt
ij = Kt+

i,j+0.5 (j = 1, ..., Ji) (66)

K
(t+1)−

i,(j+1)−0.5 = Kt+

i,j+0.5 +Bt+ (j = 1, ..., Ji − 1) (67)

K
(t+1)−

i,(Ji+1)−0.5 = 0, (68)

where Bt+ denotes the balance of sale, acquisition, and discard at t+. We
are now ready to define the concept of user cost for assets that are owned by
the production unit.12

The first distinction that must be made is between assets that are part
of the opening stock of a period, and investments that are made during this
period. Consider an asset of type i that has age j at the midpoint of period t.
Its price (or valuation) at the beginning of the period is denoted by P t−

i,j−0.5,

and its price (or valuation) at the end of the period by P t+

i,j+0.5. For the time
being, we consider such prices as being given, and postpone their precise
definition to the next section. The prices are assumed to be non-negative;
some might be equal to 0. In any case, P t+

i,Ji+0.5 = 0; that is, an asset that
has reached its economically maximal age in period t is valued with a zero
price at the end of this period.

12If there were no transactions in second-hand assets, then the number of assets Kt
ij

would be equal to the number of new investments of j periods earlier, It−j
i0 , adjusted for

the probability of survival.
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The (ex post) unit user cost over period t of an opening stock asset of
type i that has age j at the midpoint of the period is then defined as

utij ≡ rtP t−

i,j−0.5 +
(
P t−

i,j−0.5 − P t+

i,j+0.5

)
+ τ tij (j = 1, ..., Ji). (69)

There are three components here. The first, rtP t−
i,j−0.5, is the price (or valua-

tion) of this asset at the beginning of the period, when its age is j−0.5, times
an interest rate. This component reflects the premium that must be paid to
the owner of the asset to prevent that it be sold, right at the beginning of
the period, and the revenue used for immediate consumption; it is therefore
also called the price of ‘waiting’.13 Another interpretation is to see this com-
ponent as the actual or imputed interest cost to finance the monetary capital
that is tied up in the asset; it is then called ‘opportunity cost’. Anyway,
it is a sort of remuneration which, since there might be a risk component
involved, is specific for the production unit.14

The second part of expression (69), P t−
i,j−0.5 − P t+

i,j+0.5, is the value change
of the asset between beginning and end of the accounting period. It is called
(nominal) time-series depreciation, and combines the effect of the progress
of time, from t− to t+, with the effect of ageing, from j − 0.5 to j + 0.5.
In general, the difference between the two prices (valuations) comprises the
effect of exhaustion, deterioration, and obsolescence.

The third component, τ tij, denotes the specific tax(es) that is (are) levied
on the use of an asset of type i and age j during period t.

Unit user cost as defined in expression (69) is also called ‘rental price’,
because it can be considered as the rental price that the owner of the asset
as owner would charge to the owner as user. Put otherwise, unit user cost is
like a lease price.

Let us now turn to the unit user cost of an asset of type i and age j that
is acquired at the midpoint of period t. To keep things simple, this user cost
is, analogous to expression (69), defined as

vtij ≡ (1/2)rtP t
i,j +

(
P t
i,j − P t+

i,j+0.5

)
+ (1/2)τ tij (j = 0, ..., Ji). (70)

The difference with the previous formula is that here the second half of the

13According to Rymes (1983) this naming goes back to Pigou.
14The System of National Accounts 1993 prescribes that for non-market units belonging

to the government sector the interest rate rt must be set equal to 0.
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period instead of the entire period is taken into account.15

Total user cost over all asset types and ages, for period t, is then naturally
defined by

Ct
K ≡

I∑
i=1

Ji∑
j=1

utijK
t
ij +

I∑
i=1

Ji∑
j=0

vtijI
t
ij. (71)

The set of quantities {Kt
ij, I

t
ij; i = 1, ..., I; j = 0, ..., Ji} represents the so-

called productive capital stock of the production unit. This is an enumeration
of the assets that make production possible. The total value of these assets
at the midpoint of period t can be calculated as

I∑
i=1

Ji∑
j=1

P t
i,jK

t
ij +

I∑
i=1

Ji∑
j=0

P t
i,jI

t
ij. (72)

This value is called the net (or wealth) capital stock.
We are now able to connect the variables in expression (71) with the

notation introduced in the foregoing expression (31). We see that the set K
consists of two subsets, corresponding respectively to the type-age classes of
assets that are part of the opening stock and the type-age classes of assets
that are acquired later. The dimension of the first set is

∑I
i=1 Ji, and the

dimension of the second set is
∑I
i=1(1 + Ji). The input prices wtn (n ∈ K)

are given by expression (69) and (70) respectively, while the quantities xtn
(n ∈ K) are given by Kt

ij and I tij respectively.
If all the variables occurring in expression (71) were observable, then our

story would almost end here. However, this is not the case. Though the
quantity variables are in principle observable, the price variables are not.
To start with, the expressions (69) and (70) contain prices (valuations) for
all asset types and ages, but, except for new assets and where markets for
second-hand assets exist, these prices are not observable. Thus, we need
models.

15The factor (1/2)rt is meant as an approximation to (1 + rt)1/2 − 1, and the factor
(1/2)τ t

ij as an approximation to ((1 + τ t
ij/P t−

i,j−0.5)
1/2 − 1)P t

i,j .
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5 The relation between asset price and unit

user cost

Consider expression (69) and rewrite it in the form

utij − τ tij = (1 + rt)P t−

i,j−0.5 − P t+

i,j+0.5 (j = 1, ..., Ji). (73)

For any asset that is not prematurely discarded it will be the case that its
value at the end of period t is equal to its value at the beginning of period

t + 1; formally, P t+

i,j+0.5 = P
(t+1)−

i,(j+1)−0.5. Substituting this into expression (73),
and rewriting again, one obtains

P t−

i,j−0.5 =
1

1 + rt

(
P

(t+1)−

i,(j+1)−0.5 + utij − τ tij
)

(j = 1, ..., Ji). (74)

This expression links the price of an asset at the beginning of period t with
its price at the beginning of period t + 1, being then 1 period older. But a
similar relation links its price at the beginning of period t+ 1 with its price
at the beginning of period t+ 2, being then again 1 period older,

P
(t+1)−

i,(j+1)−0.5 =
1

1 + rt+1

(
P

(t+2)−

i,(j+2)−0.5 + ut+1
i,j+1 − τ t+1

i,j+1

)
(j = 1, ..., Ji). (75)

This can be continued until

P
(t+Ji−j)−
i,Ji−0.5 =

1

1 + rt+Ji−j

(
P

(t+Ji−j+1)−

i,Ji+0.5 + ut+Ji−j
i,Ji

− τ t+Ji−j
i,Ji

)
(j = 1, ..., Ji),

(76)

since we know that P
(t+Ji−j+1)−

i,Ji+0.5 = P
(t+Ji−j)+
i,Ji+0.5 = 0. Substituting expression

(75) into (74), etcetera, one finally obtains

P t−

i,j−0.5 = (77)

utij − τ tij
1 + rt

+
ut+1
i,j+1 − τ t+1

i,j+1

(1 + rt)(1 + rt+1)
+ ...+

ut+Ji−j
i,Ji

− τ t+Ji−j
i,Ji

(1 + rt)...(1 + rt+Ji−j)
.

This is a materialization of the so-called fundamental asset price equilibrium
equation. Notice, however, that there was no equilibrium — whatever that
may mean — assumed here, and there are no other economic behavioural
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assumptions involved; it is a purely mathematical result. Expressions (73)
and (77) are dual. The first derives the (ex tax) unit user cost from discounted
asset prices, while the second derives the asset price as the sum of discounted
future (ex tax) unit user costs; the discounting is executed by means of future
interest rates.

A mathematical truth like expression (77), however, is not immediately
helpful in the real world. At the beginning, or even at the end of period t
most if not all of the data that are needed for the computation of the asset
prices P t−

i,j−0.5 and P t+

i,j+0.5 are not available. Thus, in practice, expression (77)
must be filled in with expectations, and these depend on the point of time
from which one looks at the future. A rather natural vantage point is the
beginning of period t; thus, the operator E t− placed before a variable means
that the expected value of the variable at t− is taken. Modifying expression
(77), the price at the beginning of period t of an asset of type i and age
j − 0.5 is given by

P t−

i,j−0.5 ≡ (78)

E t−(utij − τ tij)

1 + E t−rt
+

E t−(ut+1
i,j+1 − τ t+1

i,j+1)

(1 + E t−rt)(1 + E t−rt+1)
+ ...+

E t−(ut+Et−Ji−j
i,Et−Ji

− τ t+Et−Ji−j
i,Et−Ji

)

(1 + E t−rt)...(1 + E t−rt+Et−Ji−j)
.

Notice in particular that in this expression the economically maximal age, as
expected at the beginning of period t, E t−Ji, occurs. Put otherwise, at the
beginning of period t the remaining economic lifetime of the asset is expected
to be E t−Ji − j − 0.5 periods. For each of the coming periods there is an
expected (ex tax) rental, and the (with expected interest rates) discounted
rentals are summed. This sum constitutes the price (value) of the asset

Similarly, the price at the end of period t of an asset of type i and age
j + 0.5 is given by

P t+

i,j+0.5 = P
(t+1)−

i,(j+1)−0.5 ≡ (79)

E (t+1)−(ut+1
i,j+1 − τ t+1

i,j+1)

1 + E (t+1)−rt+1
+

E (t+1)−(ut+2
i,j+2 − τ t+2

i,j+2)

(1 + E (t+1)−rt+1)(1 + E (t+1)−rt+2)
+ ...+
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E (t+1)−(ut+E(t+1)−Ji−j
i,E(t+1)−Ji

− τ t+E(t+1)−Ji−j
i,E(t+1)−Ji

)

(1 + E (t+1)−rt+1)...(1 + E (t+1)−rt+E(t+1)−Ji−j)
.

Notice that this price depends on the economically maximal age, as expected
at the beginning of period t+1 (which is the end of period t), E (t+1)−Ji, which
may or may not differ from the economically maximal age, as expected one
period earlier, E t−Ji. The last mentioned expected age plays a role in the
price at the end of period t of an asset of type i and age j + 0.5, as expected
at the beginning of this period,

E t−P t+

i,j+0.5 ≡ (80)

E t−(ut+1
i,j+1 − τ t+1

i,j+1)

1 + E t−rt+1
+

E t−(ut+2
i,j+2 − τ t+2

i,j+2)

(1 + E t−rt+1)(1 + E t−rt+2)
+ ...+

E t−(ut+Et−Ji−j
i,Et−Ji

− τ t+Et−Ji−j
i,Et−Ji

)

(1 + E t−rt+1)...(1 + E t−rt+Et−Ji−j)
.

Expression (80) was obtained from expression (78) by deleting its first term
as well as the first period discount factor 1 + E t−rt. This reflects the fact
that at the end of period t the asset’s remaining lifetime has become shorter
by one period. Generally one may expect that E t−P t+

i,j+0.5 ≤ P t−
i,j−0.5.

Expression (79) differs from expression (80) in that expectations are at
(t + 1)− instead of t−. Since one may expect that, due to technological
progress, the remaining economic lifetime of any asset shortens, that is,
E (t+1)−Ji ≤ E t−Ji, expression (79) contains fewer terms than expression (80).
Generally one may expect that P t+

i,j+0.5 ≤ E t−P t+

i,j+0.5; that is, the actual price
of an asset at the end of a period is less than or equal to the price as expected
at the beginning.

Armed with these insights we return to the unit user cost expressions (69)
and (70). Natural decompositions of these two expressions are

utij = (81)

rtP t−

i,j−0.5 +
(
P t−

i,j−0.5 − E t−P t+

i,j+0.5

)
+(

E t−P t+

i,j+0.5 − P t+

i,j+0.5

)
+ τ tij (j = 1, ..., Ji),
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and

vtij = (82)

(1/2)rtP t
i,j +

(
P t
i,j − E tP t+

i,j+0.5

)
+(

E tP t+

i,j+0.5 − P t+

i,j+0.5

)
+ (1/2)τ tij (j = 0, ..., Ji).

As before, the first term at either right-hand side represents the price of
waiting. The second term, between brackets, is called anticipated time-series
depreciation, and could be decomposed into the anticipated effect of time (or,
anticipated revaluation) and the anticipated effect of ageing (or, anticipated
cross-section depreciation). The third term, also between brackets, is called
unanticipated revaluation. We will come back to these terms later.

The underlying idea is that, at the beginning of each period or, in the case
of investment, at the midpoint, economic decisions are based on anticipated
rather than realized prices. The fourth term in the two decompositions is
again the tax term. It is here assumed that with respect to waiting and tax
anticipated and realized prices coincide.

Substituting expressions (81) and (82) into expression (71), one obtains
the following aggregate decomposition,

Ct
K = (83)

I∑
i=1

Ji∑
j=1

rtP t−

i,j−0.5K
t
ij +

I∑
i=1

Ji∑
j=0

(1/2)rtP t
i,jI

t
ij +

I∑
i=1

Ji∑
j=1

(
P t−

i,j−0.5 − E t−P t+

i,j+0.5

)
Kt
ij +

I∑
i=1

Ji∑
j=0

(
P t
i,j − E tP t+

i,j+0.5

)
I tij +

I∑
i=1

Ji∑
j=1

(
E t−P t+

i,j+0.5 − P t+

i,j+0.5

)
Kt
ij +

I∑
i=1

Ji∑
j=0

(
E tP t+

i,j+0.5 − P t+

i,j+0.5

)
I tij +

I∑
i=1

Ji∑
j=1

τ tijK
t
ij +

I∑
i=1

Ji∑
j=0

(1/2)τ tijI
t
ij.

On the first line after the equality sign we have the aggregate cost of waiting,

Ct
K,w ≡ rt

 I∑
i=1

Ji∑
j=1

P t−

i,j−0.5K
t
ij +

I∑
i=1

Ji∑
j=0

(1/2)P t
i,jI

t
ij

 . (84)
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Notice that the part between brackets differs slightly from expression (72).
It can be interpreted as the value of the production unit’s productive capital
stock as used during period t.

On the second line after the equality sign in expression (83) we have the
aggregate cost of anticipated time-series depreciation,

Ct
K,e ≡

I∑
i=1

Ji∑
j=1

(
P t−

i,j−0.5 − E t−P t+

i,j+0.5

)
Kt
ij +

I∑
i=1

Ji∑
j=0

(
P t
i,j − E tP t+

i,j+0.5

)
I tij. (85)

On the third line we have the aggregate cost of unanticipated revaluation,

Ct
K,u ≡

I∑
i=1

Ji∑
j=1

(
E t−P t+

i,j+0.5 − P t+

i,j+0.5

)
Kt
ij +

I∑
i=1

Ji∑
j=0

(
E tP t+

i,j+0.5 − P t+

i,j+0.5

)
I tij.

(86)
Finally, on the fourth line we have the aggregate cost of tax,

Ct
K,tax ≡

I∑
i=1

Ji∑
j=1

τ tijK
t
ij +

I∑
i=1

Ji∑
j=0

(1/2)τ tijI
t
ij. (87)

Thus, capital input cost can rather naturally be split into four meaning-
ful components. As will be detailed in the next section, this leads to four
additional input-output models.

6 More models

6.1 The KL-NVA model

The first two models are variants of the KL-VA model. The idea here is that
the (ex post) cost of time-series depreciation plus tax should be treated like
the cost of intermediate inputs, and subtracted from value added. Hence,
the output concept is called net value added, and defined by

NV At ≡ V At −
(
Ct
K,e + Ct

K,u + Ct
K,tax

)
. (88)

The remaining input cost is the sum of labour cost, Ct
L, and waiting cost of

capital, Ct
K,w. It is assumed that NV At > 0.
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Some argue that this model is to be preferred from a welfare-theoretic
point of view. If the objective is to hold owned capital (including investments
during the accounting period) in terms of money intact, then depreciation
— whether expected or not — and tax should be treated like intermediate
inputs (so Spant 2003). This model was also strongly defended by Rymes
(1983). Apart from land, he considered labour and waiting as the only pri-
mary inputs, and connected this with a Harrodian model of technological
change.

The counterpart to profitability in this model is

NV At

Ct
K,w + Ct

L

,

and the problem is to decompose the ratios NV A1/NV A0 and (C1
K,w +

C1
L)/(C0

K,w +C0
L) into price and quantity components. The decomposition of

the net-value-added ratio is structurally similar to the decomposition of the
value-added ratio (see Appendix B). Hence, let a solution be given by

NV A1

NV A0
= PNV A(1, 0)QNV A(1, 0). (89)

Using one- or two-stage Fisher indices, the input cost ratio can be decom-
posed as

C1
K,w + C1

L

C0
K,w + C0

L

= PKwL(1, 0)QKwL(1, 0). (90)

The net-value-added based (total factor) productivity index for period 1 rel-
ative to period 0 is then defined as

IPRODNV A(1, 0) ≡ QNV A(1, 0)

QKwL(1, 0)
. (91)

In general it will be the case that IPRODNV A(1, 0) 6= IPROD(1, 0). Fol-
lowing the reasoning of Balk (2003b) it is possible to show that, if profit is
zero in both periods, that is, Rt = Ct (t = 0, 1), then approximately

ln IPRODNV A(1, 0) = D′(1, 0) ln IPROD(1, 0), (92)

where D′(1, 0) ≥ 1 is the ratio of mean revenue over mean net value added.
Since NV At ≤ V At, it follows that D′(1, 0) ≥ D(1, 0).
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The counterpart to profit in the KL-NVA model is NV At− (Ct
K,w +Ct

L), but
one easily checks that

NV At − (Ct
K,w + Ct

L) = Rt − Ct. (93)

Thus, profit in the KL-NVA model is the same as profit in the KLEMS-Y
model, and the same applies to their price and quantity components. Hence,
there is nothing really new here.

6.2 The KL-NNVA model

Diewert, Mizobuchi and Nomura (2005), Diewert and Lawrence (2006) and
Diewert and Wykoff (forthcoming) suggested to consider unanticipated reval-
uation, which is the unanticipated part of time-series depreciation, as a sort
of profit, that must be added to profit as result of “normal” operations of
the production unit. Following this suggestion, the output concept becomes

NNV At ≡ V At −
(
Ct
K,e + Ct

K,tax

)
, (94)

which could be called normal net value added. As inputs are considered
labour, Ct

L, and waiting cost of capital, Ct
K,w. It is assumed that NNV At >

0.
The counterpart to profitability now is

NNV At

Ct
K,w + Ct

L

,

and the problem is to decompose the ratios NNV A1/NNV A0 and (C1
K,w +

C1
L)/(C0

K,w +C0
L) into price and quantity components. The decomposition of

the normal-net-value-added ratio is structurally similar to the decomposition
of the value-added ratio (see Appendix B). Hence, let a solution be given by

NNV A1

NNV A0
= PNNV A(1, 0)QNNV A(1, 0). (95)

The decomposition of the input cost ratio was given by expression (90). The
normal-net-value-added based (total factor) productivity index for period 1
relative to period 0 is then defined as

IPRODNNV A(1, 0) ≡ QNNV A(1, 0)

QKwL(1, 0)
. (96)

35



In general it will be the case that IPRODNNV A(1, 0) 6= IPRODNV A(1, 0).
The counterpart to profit in the KL-NNVA model is NNV At − (Ct

K,w +
Ct
L). However, one easily checks that

NNV At − (Ct
K,w + Ct

L) = Rt − Ct + Ct
K,u. (97)

Hence, the KL-NNVA model really differs from the KLEMS-Y model.

6.3 The K-NCF model

The last two models are variants of the K-CF model. Here also the idea is
that the (ex post) cost of time-series depreciation plus tax should be treated
like the cost of intermediate inputs, and subtracted from cash flow. Hence,
the output concept is called net cash flow, and defined by

NCF t ≡ CF t −
(
Ct
K,e + Ct

K,u + Ct
K,tax

)
. (98)

The remaining input cost is the waiting cost of capital, Ct
K,w. It is assumed

that NCF t > 0.
The counterpart to profitability now is NCF t/Ct

K,w, and the problem is to
decompose the ratios NCF 1/NCF 0 and C1

K,w/C
0
K,w into price and quantity

components. The decomposition of the net-cash-flow ratio is structurally
similar to the decomposition of the value-added ratio (see Appendix B).
Hence, let a solution be given by

NCF 1

NCF 0
= PNCF (1, 0)QNCF (1, 0). (99)

Using Fisher indices, the waiting cost of capital ratio can be decomposed as

C1
K,w

C0
K,w

= PKw(1, 0)QKw(1, 0). (100)

The net-cash-flow based (total factor) productivity index for period 1 relative
to period 0 is then defined as

IPRODNCF (1, 0) ≡ QNCF (1, 0)

QKw(1, 0)
. (101)

In general it will be the case that IPRODNCF (1, 0) 6= IPROD(1, 0). Fol-
lowing the reasoning of Balk (2003b) it is possible to show that, if profit is
zero in both periods, that is, Rt = Ct (t = 0, 1), then approximately
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ln IPRODNCF (1, 0) = E ′(1, 0) ln IPROD(1, 0), (102)

where E ′(1, 0) ≥ 1 is the ratio of mean revenue over mean net cash flow.
Since NCF t ≤ CF t, it follows that E ′(1, 0) ≥ E(1, 0).

The counterpart to profit in the K-NCF model is NCF t − Ct
K,w, but one

easily checks that

NCF t − Ct
K,w = Rt − Ct. (103)

Thus, profit in the K-NCF model is the same as profit in the KLEMS-Y
model, and the same applies to their price and quantity components. Hence,
there is nothing really new here.

6.4 The K-NNCF model

A variant of the K-NCF model is obtained by considering unanticipated
revaluation, which is the unanticipated part of time-series depreciation, as a
sort of profit, that must be added to profit as result of “normal” operations
of the production unit. Hence, the output concept becomes

NNCF t ≡ CF t −
(
Ct
K,e + Ct

K,tax

)
, (104)

which could be called normal net cash flow. It is assumed that NNCF t > 0.
The only input category is the waiting cost of capital, Ct

K,w.16

The counterpart to profitability now is NNCF t/Ct
K,w, and the problem

is to decompose the ratios NNCF 1/NNCF 0 and C1
K,w/C

0
K,w into price and

quantity components. The decomposition of the normal-net-cash-flow ratio
is structurally similar to the decomposition of the value-added ratio (see
Appendix B). Hence, let a solution be given by

NNCF 1

NNCF 0
= PNNCF (1, 0)QNNCF (1, 0). (105)

The decomposition of the input cost ratio was given by expression (100). The
normal-net-value-added based (total factor) productivity index for period 1
relative to period 0 is then defined as

16In the model of Hulten and Schreyer (2006) total (= unanticipated plus anticipated)
revaluation is added to profit. This is consistent with SNA93’s prescription for non-market
units.
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IPRODNNCF (1, 0) ≡ QNNCF (1, 0)

QKw(1, 0)
. (106)

In general it will be the case that IPRODNNCF (1, 0) 6= IPRODNCF (1, 0).
The counterpart to profit in the K-NNCF model is NNCF t−Ct

K,w. How-
ever, one easily checks that

NNCF t − Ct
K,w = Rt − Ct + Ct

K,u. (107)

Hence, the K-NNCF model really differs from the KLEMS-Y model.

7 The rate of return

It is useful to recall the various models in their order of appearance. We are
using thereby the notation introduced gradually. Further, let Πt ≡ Rt − Ct

denote profit. The KLEMS-Y model is governed by the following accounting
identity, where input categories are placed left and output categories are
placed right of the equality sign:

Ct
K,w + Ct

K,e + Ct
K,u + Ct

K,tax + Ct
L + Ct

E + Ct
M + Ct

S + Πt = Rt. (108)

The KL-VA model is then seen to be governed by

Ct
K,w + Ct

K,e + Ct
K,u + Ct

K,tax + Ct
L + Πt = Rt − (Ct

E + Ct
M + Ct

S). (109)

The KL-NVA model is governed by

Ct
K,w + Ct

L + Πt = Rt − (Ct
K,e + Ct

K,u + Ct
K,tax + Ct

E + Ct
M + Ct

S), (110)

while the KL-NNVA model is governed by

Ct
K,w + Ct

L + Π∗t = Rt − (Ct
K,e + Ct

K,tax + Ct
E + Ct

M + Ct
S), (111)

with Π∗t ≡ Πt + Ct
K,u. Clearly, the profit concept is different here.

Similarly, departing from expression (108), the K-CF model is seen to be
governed by
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Ct
K,w + Ct

K,e + Ct
K,u + Ct

K,tax + Πt = Rt − (Ct
L + Ct

E + Ct
M + Ct

S). (112)

The K-NCF model is governed by

Ct
K,w + Πt = Rt − (Ct

K,e + Ct
K,u + Ct

K,tax + Ct
L + Ct

E + Ct
M + Ct

S), (113)

while the K-NNCF model is governed by

Ct
K,w + Π∗t = Rt − (Ct

K,e + Ct
K,tax + Ct

L + Ct
E + Ct

M + Ct
S). (114)

The last two expressions provide an excellent point of departure for a discus-
sion of the interest rate rt, which determines the aggregate cost of waiting
or opportunity cost Ct

K,w according to expression (84). Using definition (98)
and expression (84), the accounting identity of the K-NCF model can be
rewritten as

rt

 I∑
i=1

Ji∑
j=1

P t−

i,j−0.5K
t
ij +

I∑
i=1

Ji∑
j=0

(1/2)P t
i,jI

t
ij

+ Πt = NCF t. (115)

Recall that the part between brackets can be interpreted as the (value of
the) production unit’s capital stock as used during period t. Provided that
NCF t ≥ Πt ≥ 0 the last equation then says that, apart from profit, net
cash flow provides the return to the (owner of the) capital stock. This is the
reason why rt is also called the ‘rate of return’.

In principle, the value of the capital stock as well as the net cash flow
are empirically determined. That leaves an equation with two unknowns,
namely the rate of return rt and profit Πt.

Setting Πt = 0 and solving equation (115) for rt delivers the so-called
‘endogenous’, or ‘internal’, or ‘balancing’, rate of return. This solution is,
of course, specific for the production unit. Net cash flow is calculated ex
post, since it contains total time-series depreciation. Thus, the endogenous
rate of return as calculated from expression (115) is also an ex post concept.
The alternative is to specify some reasonable, exogenous value for the rate
of return, say the annual percentage of headline CPI change plus something.
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Then, of course, profit follows from equation (115) and will in general be
unequal to 0.

Alternatively, using definition (104), the accounting identity of the K-
NNCF model can be rewritten as

rt

 I∑
i=1

Ji∑
j=1

P t−

i,j−0.5K
t
ij +

I∑
i=1

Ji∑
j=0

(1/2)P t
i,jI

t
ij

+ Π∗t = NNCF t. (116)

Now, provided that NNCF t ≥ Π∗t ≥ 0, normal net cash flow is seen as the
return to the (owner of the) capital stock. Setting Π∗t = 0 and solving equa-
tion (116) for rt delivers what can be called the ‘normal endogenous’ rate of
return. In a sense this rate absorbs not only profit from normal productive
operations but also the sum of all unanticipated asset revaluations. Alter-
natively, one can specify some reasonable, exogenous value for the rate of
return. Then, of course, Π∗t follows from equation (116), and by subtracting
the sum of all unanticipated asset revaluations, Ct

K,u, one obtains ‘normal’
profit.

The two expressions (115) and (116) and their underlying models are po-
lar cases. In the first all unanticipated revaluations (that is, the whole of
Ct
K,u) are considered as intermediate cost, whereas in the second they are

considered as profit. Clearly, positions in between these two extremes are
thinkable. For some asset types unanticipated revaluations might be con-
sidered as intermediate cost and for the remaining types these revaluations
might be considered as profit.

This is a good moment to draw a number of conclusions. First, we have
considered a number of input-output models: KLEMS-Y, KL-VA, KL-NVA,
KL-NNVA, K-CF, K-NCF, and K-NNCF respectively. All these models lead
to different (total factor) productivity indices. However, most of these differ-
ences are artefacts, caused by a different mixing of subtraction and division.17

Thus, it depends on purpose and context of a study which particular model
is chosen for the presentation of results. When productivity indicators are
compared, the real difference turns up, namely between the KL-NNVA and
K-NNCF models on the one hand and the rest on the other hand.

17Rymes (1983) would single out the KL-NVA model as the “best” one, but this is
clearly not backed by the argument presented here.
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Second, there is no single concept of the endogenous rate of return. There
is rather a continuum of possibilities, depending on the way one wants to deal
with unanticipated revaluations.

Third, an endogenous rate of return, of whatever variety, can only be
calculated ex post. Net cash flow as well as normal net cash flow require for
their computation that the accounting period has expired.

Fourth, as the name suggests, a total factor productivity index or indi-
cator suggests that all the inputs and outputs are correctly observed. Un-
observed inputs and outputs and measurement errors lead to a distorted
profit figure and have impact on the interpretation of total factor productiv-
ity change. Since an endogenous rate of return can be said to absorb profit,
the extent of undercoverage has also implications for the interpretation of
the rate of return (see also Schreyer forthcoming). Put otherwise, since an
endogenous rate of return closes the gap between the input and the output
side of the production unit, it is influenced by all sorts of measurement errors.

The question whether to use, for a certain production unit, an endogenous
or an exogenous rate of return belongs, according to Diewert (2006), to the
list of still unresolved issues. The practice of official statistical agencies is
varied, as a brief survey learns.

The U. S. Bureau of Labor Statistics uses endogenous rates (see Dean and
Harper 2001), as does Statistics Canada (see Harchaoui et al. 2001). The
Australian Bureau of Statistics uses, per production unit considered, the
maximum of the endogenous rate and a certain exogenous rate (set equal to
the annual percentage change of the CPI plus 4 percent) (see Roberts 2006).
Statistics New Zealand uses endogenous rates (according to their Sources and
Methods 2006 publication). The Swiss Federal Statistical office has the most
intricate system: per production unit the simple mean of the endogenous
rate and a certain exogenous rate is used as the final exogenous rate (see
Rais and Sollberger 2006). Concerning the endogenous rates, however, these
sources are not clear as to which concept is used precisely.

The fact that an endogenous rate of return can only be calculated ex post
seems to imply that ex ante unit user costs can only be based on exogenous
values for the rate of return. This, of course, implies some arbitrariness.
However, since the anticipated unit user costs serve as data in economic
decision processes, it is not unimportant to consider the question whether
there is a sense in which such unit user costs can be based on an endogenous
rate of return. This is a topic considered by Oulton (2007). The rather simple
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model he is using already makes clear that a fair amount of mental acrobatics
is needed to combine the concept of endogeneity with that of anticipation.
Let us consider the situation in our set-up.

The (at the beginning of period t) anticipated unit user cost for an asset
of type i and age j over period t is, based on expressions (78) and (80), given
by

E t−utij = (117)

(E t−rt)P t−

i,j−0.5 +
(
P t−

i,j−0.5 − E t−P t+

i,j+0.5

)
+ E t−τ tij (j = 1, ..., Ji).

These unit user costs concern assets that are available at the beginning of
period t. There are, however, also investments to be made. In our set-up
these investments happen at the midpoint of each period. Then, compare
expression (82), the (at the midpoint of period t) anticipated unit user cost
for an asset of type i and age j over the second half of period t is given by

E tvtij = (118)

((1/2)E trt)P t
i,j +

(
P t
i,j − E tP t+

i,j+0.5

)
+ (1/2)E tτ tij (j = 0, ..., Ji).

Anticipated total user cost over period t is now equal to

ECt
K ≡ (119)

(E t−rt)
I∑
i=1

Ji∑
j=1

P t−

i,j−0.5K
t
ij + (E trt)

I∑
i=1

Ji∑
j=0

(1/2)P t
i,j Î

t
ij +

I∑
i=1

Ji∑
j=1

(
P t−

i,j−0.5 − E t−P t+

i,j+0.5

)
Kt
ij +

I∑
i=1

Ji∑
j=0

(
P t
i,j − E tP t+

i,j+0.5

)
Î tij +

I∑
i=1

Ji∑
j=1

(E t−τ tij)Kt
ij +

I∑
i=1

Ji∑
j=0

(1/2)(E tτ tij)Î tij,

where the quantities Î tij (i = 1, ..., I; j = 0, ..., Ji) are as yet to be determined.
Thus, given asset prices, expected asset prices, and expected amounts of
tax-per-unit, expression (119) contains

∑I
i=1(1 + Ji) unknown investment

quantities, in addition to the two rate of return terms, E t−rt and E trt. Now
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this expression corresponds to the left-hand side of the accounting identity
of the K-CF model. For the right-hand side we need the anticipated value of
period t’s cash flow. Based on past experience, at the beginning of period t
the production unit may have expectations about its output prices, and the
prices of its labour, energy, materials, and services inputs. The corresponding
quantities, however, are as yet to be determined. Taken together, we are
having here a single equation with many unknowns and, except under heroic,
simplifying assumptions, it seems difficult to get an undubitable solution for
the required, endogeneous rate of return.

Finally, the concept of an endogenous rate of return does not make sense for
non-market units, since there is no accounting identity based on independent
measures at the input and the output side.

8 Implementation issues

There remain a number of implementation issues to discuss. For this, the
reader is invited to return to expression (83). To ease the presentation, a
period is now set equal to a year.

The quantities {Kt
ij; i = 1, ..., I; j = 1, ..., Ji} and {I tij; i = 1, ..., I; j =

0, ..., Ji} are usually not available. Instead, as is the case in the Netherlands,
the Perpetual Inventory Method generates estimates of the opening stock
of assets at period t − 1 prices {P t−1

i,j−0.5K
t
ij = P t−1

i,j−0.5K
t−
i,j−0.5; i = 1, ..., I; j =

1, ..., Ji}, and the Investment Survey generates estimates of mid-period values
{P t

ijI
t
ij; i = 1, ..., I; j = 0, ..., Ji}.

Models for time-series depreciation are briefly discussed in Appendix C.
The time-series depreciation of an asset of type i and age j that is available
at the beginning of period t is in practice frequently modelled as

P t+

i,j+0.5

P t−
i,j−0.5

=
PPI t

+

i

PPI t
−
i

(1− δij), (120)

where PPI ti denotes the Producer Price Index (or a kindred price index)
that is applicable to new assets of type i, and δij is the annual cross-section
depreciation rate that is applicable to an asset of type i and age j. This de-
preciation rate ideally comes from an empirically estimated age-price profile.

Thus, time-series depreciation is modelled as a simple, multiplicative func-
tion of two, independent factors. The first, PPI t

+

i /PPI
t−
i , which is 1 plus
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the annual rate of price change of new assets of type i, concerns the effect
of the progress of time on the value of an asset of type i and age j. The
second, 1− δij > 0, concerns the effect of ageing by one year on the value of
an asset of type i and age j. Ageing by one year causes the value to decline
by δij × 100 percent.

Similarly, anticipated time-series depreciation is modelled as

E t−P t+

i,j+0.5

P t−
i,j−0.5

= E t−
(
PPI t

+

i

PPI t
−
i

)
(1− δij). (121)

In this expression, instead of the annual rate of price change of new assets,
as observed ex post, the annual rate as expected at the beginning of period t
is taken.

But what to expect? There are, of course, several options here. The first
that comes to mind is to use some past, observed rate of change of PPIi or
a more general PPI. Second, one could assume that expectedly the rate of
price change of new assets is equal to the rate of change of a (headline) CPI,
and use the ‘realized expectation’:

E t−
(
PPI t

+

i

PPI t
−
i

)
=
CPI t

+

CPI t−
. (122)

Under the last assumption anticipated time-series depreciation is measured
as

E t−P t+

i,j+0.5

P t−
i,j−0.5

=
CPI t

+

CPI t−
(1− δij), (123)

and, combining expressions (120) and (123), unanticipated revaluation is
measured by

E t−P t+

i,j+0.5

P t−
i,j−0.5

−
P t+

i,j+0.5

P t−
i,j−0.5

=

(
CPI t

+

CPI t−
− PPI t

+

i

PPI t
−
i

)
(1− δij). (124)

Similar expressions hold for assets that are acquired at the midpoint of period
t, except that we must make a distinction between new and used assets. The
time-series depreciation for an asset of type i and age j is modelled as

P t+

i,0.5

P t
i,0

=
PPI t

+

i

PPI ti
(1− δi0)
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P t+

i,j+0.5

P t
i,j

=
PPI t

+

i

PPI ti
(1− δij/2) (j = 1, ..., Ji). (125)

The anticipated time-series depreciation is measured by

E tP t+

i,0.5

P t
i,0

=
CPI t

+

CPI t
(1− δi0)

E tP t+

i,j+0.5

P t
i,j

=
CPI t

+

CPI t
(1− δij/2) (j = 1, ..., Ji), (126)

and unanticipated revaluation is measured by

E tP t+

i,0.5

P t
i,0

−
P t+

i,0.5

P t
i,0

=

(
CPI t

+

CPI t
− PPI t

+

i

PPI ti

)
(1− δi0) (127)

E tP t+

i,j+0.5

P t
i,j

−
P t+

i,j+0.5

P t
i,j

=

(
CPI t

+

CPI t
− PPI t

+

i

PPI ti

)
(1− δij/2) (j = 1, ..., Ji).

An important question is in which circumstances the unit user costs utij
and vtij become non-positive? Consider, for instance, expression (81), and
substitute expressions (123) and (124). This yields

utij
P t−
i,j−0.5

= rt + 1− CPI t
+

CPI t−
(1− δij) +

(
CPI t

+

CPI t−
− PPI t

+

i

PPI t
−
i

)
(1− δij) +

τ tij
P t−
i,j−0.5

= rt + 1− PPI t
+

i

PPI t
−
i

(1− δij) +
τ tij

P t−
i,j−0.5

. (128)

Hence, utij ≤ 0 if and only if

PPI t
+

i

PPI t
−
i

≥
1 + rt + τ tij/P

t−
i,j−0.5

1− δij
. (129)

In certain, extreme cases this could indeed happen. Consider assets with a
very low cross-sectional depreciation rate (such as certain buildings or land)
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and a very high revaluation rate (or rate of price increase). A low interest-
plus-tax rate then could lead to negative unit user costs. Put otherwise, when
the ex post revaluation (as measured by a PPI) more than offsets interest
plus tax plus depreciation then the unit user cost of such an asset becomes
negative.

If the unanticipated revaluation is deleted from the user cost, that is, unit
user cost is measured by

utij
P t−
i,j−0.5

= rt + 1− CPI t
+

CPI t−
(1− δij) +

τ tij
P t−
i,j−0.5

, (130)

then utij ≤ 0 if and only if

CPI t
+

CPI t−
≥

1 + rt + τ tij/P
t−
i,j−0.5

1− δij
. (131)

The likelihood that such a situation will occur is small. For this to happen,
expected revaluation (as measured by a CPI) must more than offset interest
plus tax plus depreciation.

9 The Netherlands’ system in perspective

Against the backdrop of the preceding analysis I now briefly review the
Netherlands’ system of productivity statistics, as laid out in Van den Bergen
et al. (2007). Basically the system is built on the KLEMS-Y and KL-VA
models.

Revenue R (or the value of gross output), value added V A, and inter-
mediate inputs cost CEMS is obtained from National Accounts’ supply and
use tables at current and previous year prices. The level of detail is a cross-
classification of 120 industries and 275 commodity groups. When it comes to
consolidation, imputations must be made for trade and transport margins.
The reason is that inter-industry deliveries of these margins are not recorded,
but must be estimated from column and row totals.

The quantity indices QR(t, t− 1), QV A(t, t− 1), and QEMS(t, t− 1) are,
for the time being and to be consistent with National Accounts’ practice,
chosen as Laspeyres.

Labour cost, CL, is based on a cross-classification of two types (employees
and self-employed workers) and 49 industries. The unit of measurement is
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an hour worked. It is assumed that, with some exceptions, in each industry
self-employed workers have the same annual income as employees. Again,
the quantity index QL(t, t− 1) is Laspeyres.

The cost of capital input, CK , is based on a cross-classification of 20
asset types by 60 industries by 18 institutional sectors. Beginning of year
estimates of the available capital stock are generated by a version of the
Perpetual Inventory Method, whereas the annual Investment Survey delivers
the values of additions to and subtractions of the capital stock. User cost
is calculated according to expression (71), with (69) and (70) substituted,
except that at the level of asset type (and age) the tax (plus subsidies)
components are not known. Thus, the tax (plus subsidies) component must
be inserted at a higher level of aggregation. Wherever necessary, beginning
and end of year price index numbers are approximated by geometric means
of adjacent year (average) annual price index numbers. For instance, PPI t

+

i

is approximated by (PPI tiPPI
t+1
i )1/2. The quantity index QK(t, t − 1) is

Laspeyres. All the operational details are discussed by Balk and Van den
Bergen (2006).

The interest rate rt is set equal to the so-called Internal Reference Rate,
which is the interest rate that banks charge to each other, plus 1.5 percent.
For all the assets, unanticipated revaluation is retained as part of their unit
user cost.18

Tying the various strands together, the gross output based total factor
productivity index is computed as

IPROD(t, t− 1) =
QR(t, t− 1)

Ct−1
K QK(t,t−1)+Ct−1

L QL(t,t−1)+Ct−1
EMSQEMS(t,t−1)

Ct−1
K +Ct−1

L +Ct−1
EMS

, (132)

and the value-added based total factor productivity index as

IPRODV A(t, t− 1) =
QV A(t, t− 1)

Ct−1
K QK(t,t−1)+Ct−1

L QL(t,t−1)

Ct−1
K +Ct−1

L

. (133)

A number of sensitivity analyses were carried out to gauge the influence of
assumptions on outcomes. I review the main results:

18The only, by SNA93 conventions motivated, exception concerns the asset type ’transfer
of property rights’.
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1. Changing the index formula, from Laspeyres to Paasche and Fisher,
did not lead to remarkable adjustments.

2. For all the assets, unanticipated revaluation was excluded from their
unit user cost, which means that it was added to profit. This led to small,
immaterial differences between the TFP index numbers.

3. Varying the exogenous interest rate, for instance by setting it equal to
the annual rate of change of the headline CPI plus 4 percent, also caused
relatively small changes.

4. Using endogenous interest rates, computed according to expression
(115), had considerably more impact. The endogenous rates themselves
showed a substantial variability, both cross-sectionally (over industries) and
intertemporally. Moreover, there appeared to be a strong dependence on the
imputation method used for the compensation of self-employed workers. The
resulting TFP index numbers varied wildly, especially in agriculture and the
mining industry.

10 Conclusion

After measurement comes explanation. Depending on the initial level of ag-
gregation, there appear to be two main directions. The first is disaggregation:
the explanation of productivity change at an aggregate level (economy, sec-
tor, industry) by productivity change at lower level (firm, plant) and other
factors, collectively subsumed under the heading of re-allocation (expansion,
contraction, entry, and exit of units). This topic was reviewed by Balk (2003a,
Section 6). As the example of Balk and Hoogenboom-Spijker (2003) demon-
strates, this type of research is of economic-statistical nature, and there are
no neoclassical assumptions involved.

The second direction is concerned with the decomposition of productivity
change into factors such as technological change, technical efficiency change,
scale effects, input- and output-mix effects, and chance. The basic idea can
be explained as follows.

To start with, for each time period t the technology to which the pro-
duction unit under consideration has access is defined as the set St of all the
input-output quantity combinations which are feasible during t. Such a set is
assumed to have nice properties like being closed, bounded, and convex. Of
particular interest is the subset of St, called its frontier, consisting of all the
efficient input-output combinations. An input-output quantity combination
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is called efficient when output cannot be increased without increasing some
input and input cannot be decreased without decreasing some output.

From base period to comparison period our production unit moves from
(x0, y0) ∈ S0 to (x1, y1) ∈ S1, and these two input-output combinations are
not necessarily efficient. Decomposition of productivity change means that
between these two points some hypothetical path must be constructed, the
segments of which can be given a distinct interpretation.

In particular, we consider the projection of (x0, y0) on the frontier of S0,
and the projection of (x1, y1) on the frontier of S1. Comparing the base
period and comparison period distance between the original points and their
projections provides a measure of efficiency change.

Two more points are given by projecting (x0, y0) also on the frontier
of S1, and (x1, y1) also on the frontier of S0. The distance between the
two frontiers at the base and comparison period projection points provides
a (local) measure of technological change. And, finally, moving over each
frontier (which is a surface in N +M -dimensional space) from a base period
to a comparison period projection point provides measures of the scale and
input-output mix effects.

The construction of all those measures is discussed by Balk (2004). Since
there is no unique path connecting the two observations, there is no unique
decomposition either.

And here come the neoclassical assumptions, at the end of the day rather
than at its beginning. Suppose that the production unit always stays on the
frontier, that its input- and output-mix is optimal at the, supposedly given,
input and output prices, and that the two technology sets exhibit constant
returns to scale, then productivity change reduces to technological change
(see Balk (1998, Section 3.7) for a formal proof). The technology sets are
thereby supposed to reflect the true state of nature, which rules out chance
as a factor also contributing to productivity change.
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Appendix A: Indices and indicators

The basic measurement tools used are price and quantity indices and indi-
cators. The first are ratio-type measures, and the second are difference-type
measures. What, precisely, are the requirements for good tools?

Indices

A price index is a positive, continuously differentiable function P (p, y, p′, y′) :
<4N

++ → <++ that correctly indicates any increase or decrease of the ele-
ments of the price vectors p or p′, conditional on the quantity vectors y
and y′. A quantity index is a positive, continuously differentiable function
Q(p, y, p′, y′) : <4N

++ → <++ that correctly indicates any increase or decrease
of the elements of the quantity vectors y or y′, conditional on the price vec-
tors p and p′. The number N is called the dimension of the price or quantity
index.

Any particular realization of P (p, y, p′, y′) orQ(p, y, p′, y′) will be called an
index number. In the interest of readability, however, price and quantity in-
dices are generally presented in the form of index numbers for a certain period
1 relative to an other period 0. In the sequel it will not be stated explicitly
that all the requirements are supposed to hold for all (p1, y1, p0, y0) ∈ <4N

++.
The basic requirements on price and quantity indices are:

A1. Monotonicity in prices. P (p1, y1, p0, y0) is increasing in comparison
period prices p1

n and decreasing in base period prices p0
n (n = 1, ..., N).

A1’. Monotonicity in quantities. Q(p1, y1, p0, y0) is increasing in com-
parison period quantities y1

n and decreasing in base period quantities
y0
n (n = 1, ..., N).

A2. Linear homogeneity in comparison period prices. Multiplication
of all comparison period prices by a common factor leads to multiplica-
tion of the price index number by this factor; that is, P (λp1, y1, p0, y0) =
λP (p1, y1, p0, y0) (λ > 0).

A2’. Linear homogeneity in comparison period quantities. Multipli-
cation of all comparison period quantities by a common factor leads to
multiplication of the quantity index number by this factor; that is,
Q(p1, λy1, p0, y0) = λQ(p1, y1, p0, y0) (λ > 0).
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A3. Identity test. If all the comparison period prices are equal to the cor-
responding base period prices, then the price index number must be
equal to 1: P (p0, y1, p0, y0) = 1.

A3’. Identity test. If all the comparison period quantities are equal to the
corresponding base period quantities, then the quantity index number
must be equal to 1: Q(p1, y0, p0, y0) = 1.

A4. Homogeneity of degree 0 in prices. Multiplication of all compari-
son and base period prices by the same factor does not change the price
index number; that is, P (λp1, y1, λp0, y0) = P (p1, y1, p0, y0) (λ > 0).

A4’. Homogeneity of degree 0 in quantities. Multiplication of all com-
parison period and base period quantities by the same factor does
not change the quantity index number; that is, Q(p1, λy1, p0, λy0) =
Q(p1, y1, p0, y0) (λ > 0).

A5. Dimensional invariance. The price index is invariant to changes in
the units of measurement of the commodities: for any diagonal matrix
Λ with elements of <++ it is required that P (p1Λ, y1Λ−1, p0Λ, y0Λ−1) =
P (p1, y1, p0, y0).

A5’. Dimensional invariance. The quantity index is invariant to changes
in the units of measurement of the commodities: for any diagonal ma-
trix Λ with elements of <++, it is required thatQ(p1Λ, y1Λ−1, p0Λ, y0Λ−1)
= Q(p1, y1, p0, y0).

Product test. P (p1, y1, p0, y0)Q(p1, y1, p0, y0) = p1 · y1/p0 · y0.

Any function P (p1, y1, p0, y0) that satisfies axiom A5 can be written as a
function of only 3N variables, namely the price relatives p1

n/p
0
n, the com-

parison period values v1
n ≡ p1

ny
1
n, and the base period values v0

n ≡ p0
ny

0
n

(n = 1, ..., N).
Similarly, any function Q(p1, y1, p0, y0) that satisfies axiom A5’ can be

written as a function of only 3N variables, namely the quantity relatives
y1
n/y

0
n, the comparison period values v1

n ≡ p1
ny

1
n, and the base period values

v0
n ≡ p0

ny
0
n (n = 1, ..., N).

Some simple examples might be useful to illustrate the first of the forego-
ing two statements. Consider the Laspeyres price index as function of prices
and quantities,
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PL(p1, y1, p0, y0) ≡ p1 · y0/p0 · y0,

and notice that this index can be written as a function of price relatives and
(base period) values,

PL(p1, y1, p0, y0) =
N∑
n=1

(p1
n/p

0
n)v

0
n/

N∑
n=1

v0
n.

Similarly, the Paasche price index

P P (p1, y1, p0, y0) ≡ p1 · y1/p0 · y1

can be written as a function of price relatives and (comparison period) values,

P P (p1, y1, p0, y0) =

(
N∑
n=1

(p0
n/p

1
n)v

1
n/

N∑
n=1

v1
n

)−1

.

Finally, the Fisher price index, defined as the geometric mean of the Laspeyres
and Paasche indices, reads

P F (p1, y1, p0, y0) =

[∑N
n=1(p

1
n/p

0
n)v

0
n/
∑N
n=1 v

0
n∑N

n=1(p
0
n/p

1
n)v

1
n/
∑N
n=1 v

1
n

]1/2

.

Such functional forms are useful for the definition of two-stage indices. Let
the aggregate under consideration be denoted by A, and let A be partitioned
arbitrarily into K subaggregates Ak,

A = ∪Kk=1Ak, Ak ∩ Ak′ = ∅ (k 6= k′).

Each subaggregate consists of a number of items. Let Nk ≥ 1 denote the
number of items contained in Ak (k = 1, ..., K). Obviously N =

∑K
k=1Nk.

Let (p1
k, y

1
k, p

0
k, y

0
k) be the subvector of (p1, y1, p0, y0) corresponding to the

subaggregate Ak. Recall that vtn ≡ ptny
t
n is the value of item n at period t.

Then V t
k ≡

∑
n∈Ak

vtn (k = 1, ..., K) is the value of subaggregate Ak at period
t, and V t ≡ ∑

n∈A v
t
n =

∑K
k=1 V

t
k is the value of aggregate A at period t.

Let P (.), P (1)(.), ..., P (K)(.) be price indices of dimension K,N1, ..., NK

respectively that satisfy A1,...,A5. Then the price index defined by
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P ∗(p1, y1, p0, y0) ≡ P (P (k)(p1
k, y

1
k, p

0
k, y

0
k), V

1
k , V

0
k ; k = 1, ..., K) (134)

is of dimension N and also satisfies A1,...,A5. The index P ∗(.) is called a
two-stage index. The first stage refers to the indices P (k)(.) for the subag-
gregates Ak (k = 1, ..., K). The second stage refers to the index P (.) that
is applied to the subindices P (k)(.) (k = 1, ..., K). A two-stage index such
as defined by expression (134) closely corresponds to the calculation practice
at statistical agencies. All the subindices are usually of the same functional
form, for instance Laspeyres or Paasche indices. The aggregate, second-stage
index may or may not be of the same functional form. This could be, for
instance, a Fisher index.

If the functional forms of the subindices P (k)(.) (k = 1, ..., K) and the
aggregate index P (.) are the same, then P ∗(.) is called a two-stage P (.)-
index. Continuing the example, the two-stage Laspeyres price index reads

P ∗L(p1, y1, p0, y0) ≡
K∑
k=1

PL(p1
k, y

1
k, p

0
k, y

0
k)V

0
k /

K∑
k=1

V 0
k ,

and one simply checks that the two-stage and the single-stage Laspeyres
price indices coincide. However, this is the exception rather than the rule.
For most indices, two-stage and single-stage variants do not coincide.

Similarly, let Q(.), Q(1)(.), ..., Q(K)(.) be quantity indices of dimension
K,N1, ..., NK respectively that satisfy A1’,...,A5’. Then the quantity in-
dex defined by

Q∗(p1, y1, p0, y0) ≡ Q(Q(k)(p1
k, y

1
k, p

0
k, y

0
k), V

1
k , V

0
k ; k = 1, ..., K) (135)

is of dimension N and also satisfies A1’,...,A5’. The index Q∗(.) is called a
two-stage index.

Indicators

Provided that certain reasonable requirements are satisfied, the continuous
functions P(p, y, p′, y′) : <4N

++ → < and Q(p, y, p′, y′) : <4N
++ → < will be

called price indicator and quantity indicator respectively. Notice that these
functions may take on negative or zero values. The basic requirements are:
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AA1. Monotonicity in prices. P(p1, y1, p0, y0) is increasing in compar-
ison period prices p1

n and decreasing in base period prices p0
n (n =

1, ..., N).

AA1’. Monotonicity in quantities. Q(p1, y1, p0, y0) is increasing in com-
parison period quantities y1

n and decreasing in base period quantities
y0
n (n = 1, ..., N).

AA3. Identity test. If all the comparison period prices are equal to the
corresponding base period prices, then the price indicator must deliver
the outcome 0: P(p0, y1, p0, y0) = 0.

AA3’. Identity test. If all the comparison period quantities are equal to
the corresponding base period quantities, then the quantity indicator
must deliver the outcome 0: Q(p1, y0, p0, y0) = 0.

AA4. Homogeneity of degree 1 in prices. Multiplication of all compar-
ison and base period prices by a common factor changes the price indi-
cator outcome by this factor; that is, P(λp1, y1, λp0, y0) = λP(p1, y1, p0, y0)
(λ > 0).

AA4’. Homogeneity of degree 1 in quantities. Multiplication of all com-
parison period and base period quantities by a common factor changes
the quantity indicator outcome by this factor; that is,Q(p1, λy1, p0, λy0) =
λQ(p1, y1, p0, y0) (λ > 0).

AA5. Dimensional invariance. The price indicator is invariant to changes
in the units of measurement of the commodities: for any diagonal ma-
trix Λ with elements of <++, it is required that P(p1Λ, y1Λ−1, p0Λ, y0Λ−1)
= P(p1, y1, p0, y0).

AA5’. Dimensional invariance. The quantity indicator is invariant to
changes in the units of measurement of the commodities: for any diago-
nal matrix Λ with elements of <++, it is required thatQ(p1Λ, y1Λ−1, p0Λ, y0Λ−1)
= Q(p1, y1, p0, y0).

Analogue of the Product test. P(p1, y1, p0, y0) + Q(p1, y1, p0, y0) = p1 ·
y1 − p0 · y0.
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Any function P(p1, y1, p0, y0) that satisfies axiom AA5 can be written as a
function of only 3N variables, namely the price relatives p1

n/p
0
n, the com-

parison period values v1
n ≡ p1

ny
1
n, and the base period values v0

n ≡ p0
ny

0
n

(n = 1, ..., N).
Similarly, any function Q(p1, y1, p0, y0) that satisfies axiom AA5’ can be

written as a function of only 3N variables, namely the quantity relatives
y1
n/y

0
n, the comparison period values v1

n ≡ p1
ny

1
n, and the base period values

v0
n ≡ p0

ny
0
n (n = 1, ..., N).

Also here some simple examples might be useful. Consider the Laspeyres
price indicator as function of prices and quantities,

PL(p1, y1, p0, y0) ≡ (p1 − p0) · y0,

and notice that this indicator can be written as a function of price relatives
and (base period) values,

PL(p1, y1, p0, y0) =
N∑
n=1

(p1
n/p

0
n − 1)v0

n.

Similarly, the Paasche price indicator

PP (p1, y1, p0, y0) ≡ (p1 − p0) · y1

can be written as a function of price relatives and (comparison period) values,

PP (p1, y1, p0, y0) =
N∑
n=1

(1− p0
n/p

1
n)v

1
n.

Finally, the Bennet price indicator is usually defined by

PB(p1, y1, p0, y0) ≡ (1/2)(p1 − p0) · (y0 + y1),

but can be written as

PB(p1, y1, p0, y0) = (1/2)

[
N∑
n=1

(p1
n/p

0
n − 1)v0

n +
N∑
n=1

(1− p0
n/p

1
n)v

1
n

]
.

The Bennet price indicator for an aggregate is a simple sum of Bennet price
indicators for its subaggregates:

PB(p1, y1, p0, y0) =
K∑
k=1

PB(p1
k, y

1
k, p

0
k, y

0
k),

and a similar relation holds for quantity indicators.
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Appendix B: Decompositions of the value added

ratio

For the logarithm of the value added ratio we get by repeated application of
the logarithmic mean19 L(a, b),

ln

(
V A1

V A0

)
=

V A1 − V A0

L(V A1, V A0)
= (136)

R1 −R0

L(V A1, V A0)
− C1

EMS − C0
EMS

L(V A1, V A0)
=

L(R1, R0) ln(R1/R0)

L(V A1, V A0)
− L(C1

EMS, C
0
EMS) ln(C1

EMS/C
0
EMS)

L(V A1, V A0)
.

For R1/R0 recall expression (8), and decompose the ratio C1
EMS/C

0
EMS by

one- or two-stage Fisher indices as

C1
EMS

C0
EMS

= P F (w1
EMS, x

1
EMS, w

0
EMS, x

0
EMS)Q

F (w1
EMS, x

1
EMS, w

0
EMS, x

0
EMS)

≡ PEMS(1, 0)QEMS(1, 0). (137)

Then the logarithm of the value added ratio can be expressed as

ln

(
V A1

V A0

)
= (138)

L(R1, R0) ln(PR(1, 0)QR(1, 0))

L(V A1, V A0)
−

L(C1
EMS, C

0
EMS) ln(PEMS(1, 0)QEMS(1, 0))

L(V A1, V A0)
.

This can simply be rearranged to

V A1

V A0
=

PR(1, 0)φ

PEMS(1, 0))ψ
QR(1, 0)φ

QEMS(1, 0))ψ
, (139)

19For any two strictly positive real numbers a and b their logarithmic mean is defined
by L(a, b) = (a− b)/ ln(a/b) if a 6= b and L(a, a) = a.
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where φ ≡ L(R1, R0)/L(V A1, V A0), that is, mean revenue over mean value
added, and ψ ≡ L(C1

EMS, C
0
EMS)/L(V A1, V A0), that is, mean intermediate

inputs cost over mean value added. Thus, value added price and quantity
indices can rather naturally be defined by

PV A(1, 0) ≡ PR(1, 0)φ

PEMS(1, 0))ψ
(140)

QV A(1, 0) ≡ QR(1, 0)φ

QEMS(1, 0))ψ
. (141)

These indices are Consistent-in-Aggregation, but they fail the Equality Test.
The reason is that

φ− ψ =
L(R1, R0)− L(C1

EMS, C
0
EMS)

L(V A1, V A0)
≤ 1, (142)

because L(a, 1) is a concave function.
An alternative is to define PV A(1, 0) as a Fisher-type index of the subindices

PR(1, 0) and PEMS(1, 0); that is,

PV A(1, 0) ≡

 R0

V A0PR(1, 0)− C0
EMS

V A0 PEMS(1, 0)

R1

V A1 (PR(1, 0))−1 − C1
EMS

V A1 (PEMS(1, 0))−1

1/2

. (143)

The numerator is a Laspeyres-type double deflator, and the denominator is
the inverse of a Paasche-type double deflator. Similarly, QV A(1, 0) is defined
as a Fisher-type index of the subindices QR(1, 0) and QEMS(1, 0). These
indices satisfy the Equality Test, but fail the Consistency-in-Aggregation
Test.
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Appendix C: Decompositions of time-series de-

preciation

Time-series depreciation of an asset of type i and age j over period t is,
according to expression (69), defined by P t−

i,j−0.5−P t+

i,j+0.5, which is the (nom-
inal) value change of the asset between beginning and end of the period.
This value change combines the effect of the progress of time, from t− to t+,
with the effect of ageing, from j − 0.5 to j + 0.5. Since value change is here
measured as a difference, a natural decomposition of time-series depreciation
according to these two effects is

P t−

i,j−0.5 − P t+

i,j+0.5 = (144)

(1/2)
[
(P t−

i,j−0.5 − P t+

i,j−0.5) + (P t−

i,j+0.5 − P t+

i,j+0.5)
]
+

(1/2)
[
(P t−

i,j−0.5 − P t−

i,j+0.5) + (P t+

i,j−0.5 − P t+

i,j+0.5)
]
.

This decomposition is symmetric. The first term at the right-hand side of
the equality sign measures the effect of the progress of time on an asset of
unchanged age; this is called revaluation. The revaluation, as measured here,
is the arithmetic mean of the revaluation of a j− 0.5 periods old asset and a
j + 0.5 periods old asset, and may be said to hold for a j periods old asset.

The second term concerns the effect of ageing, which is measured by the
price difference of two, otherwise identical, assets that differ precisely one
period in age. This is called Hicksian or cross-section depreciation. The
arithmetic mean is taken of cross-section depreciation at beginning and end
of the period, and, hence, may be said to hold at the midpoint of period t.

Since the Perpetual Inventory Method combines the beginning-of-period
price with the corresponding cohort quantities, expression (144) is rewritten
as

1−
P t+

i,j+0.5

P t−
i,j−0.5

= (145)

(1/2)
[
(P t−

i,j−0.5 − P t+

i,j−0.5) + (P t−
i,j+0.5 − P t+

i,j+0.5)
]

P t−
i,j−0.5

+

(1/2)
[
(P t−

i,j−0.5 − P t−
i,j+0.5) + (P t+

i,j−0.5 − P t+

i,j+0.5)
]

P t−
i,j−0.5

.
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At the left-hand side of this expression we have P t+

i,j+0.5/P
t−
i,j−0.5 as an inverse

ratio-type measure of time-series depreciation. Considered as a decomposi-
tion of this ratio, however, expression (145) is not symmetric. A symmetrical
decomposition is given by

P t+

i,j+0.5

P t−
i,j−0.5

=

P t+

i,j−0.5

P t−
i,j−0.5

P t+

i,j+0.5

P t−
i,j+0.5

1/2 P t+

i,j+0.5

P t+
i,j−0.5

P t−
i,j+0.5

P t−
i,j−0.5

1/2

. (146)

The first term at the right-hand side of the equality sign measures revalu-
ation. The second term measures cross-section depreciation. As one sees,
revaluation depends on age, and cross-section depreciation depends on time.
In the usual model, these two dependencies are assumed away. Revaluation
is approximated by P t+

i /P t−
i , the price change of a new asset of type i from

beginning to end of period t. Cross-section depreciation is approximated by
1− δij, where δij is the percentage of annual depreciation that applies to an
asset of type i and age j. The specific formulation highlights the fact that
ageing usually diminishes the value of an asset.

Under these two assumptions, the basic time-series depreciation model
for an asset of type i and age j, over period t, is given by

P t+

i,j+0.5

P t−
i,j−0.5

=
P t+

i

P t−
i

(1− δij) (j = 1, ..., Ji). (147)

For assets that are acquired at the midpoint of period t one must distinguish
between new and used assets. Over the second half of period t, the model
reads

P t+

i,0.5

P t
i,0

=
P t+

i

P t
i

(1− δi0)

P t+

i,j+0.5

P t
i,j

=
P t+

i

P t
i

(1− δij/2) (j = 1, ..., Ji), (148)

where (1− δij/2) serves as an approximation to (1− δij)
1/2. The percentage

of annual depreciation, δij, ideally comes from an empirically estimated age-
price profile for asset-type i. Under a geometric profile one specifies δi0 = δi/2
and δij = δi (j = 1, ..., Ji).
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