FURTHER MODEL-BASED ESTIMATES OF U.S. TOTAL MANUFACTURING PRODUCTION CAPITAL AND TECHNOLOGY, FOR 1949-2005

> Baoline Chen Bureau of Economic Analysis

> > Peter A. Zadrozny Bureau of Labor Statistics

2008 world Congress on National Accounts and Economic Performance Measures for Nations May 13~17, 2008

Measuring the Nation's Economy.

OUTLINE

- I. MOTIVATION
- **II. HOW WE PROCEED**
- **III. STRUCTURAL ECONOMIC MODEL**
- **IV. ESTIMATION STRATEGY**
- **V. ESTIMATION RESULTS**
- **VI. CONCLUSION**

1. INTRODUCTION

• Conventional estimates of capital and technology (k, τ) in U.S. industries are based on limited theoretical and sample information.

Examples:

- k stock estimates are based mostly on depreciation schedules
- τ stock follows exogenous processes or to be Solow residuals

• These estimates ignore *dynamic interactions* over business cycles among (k, τ) and other variables, useful information for estimating (k, τ)

INTRODUCTION (cont.)

- We propose and illustrate an econometric method for jointly estimating (k, τ), which has the following advantages:
 - (k, τ) are endogenous, being determined by firms' joint decisions on investment, i, research, r, and other inputs and outputs
 - Use correlations implied by the model between
 - unobserved (k, τ) and
 - observed prices and quantities of inputs and outputs

to estimate unobserved (k, τ)

• Use all theoretical restrictions and sample information to estimate (k, τ)

II. HOW WE PROCEED

1. STEPS OF THE ESTIMATION PROCESS:

- Specify a structural dynamic economic model of an industry, including the representative firm's dynamic optimization problem
- Solve the firm's dynamic optimization problem
- Set up reduced-form system and use it to obtain ML estimates of structural parameters:
 - Set up the reduced form in a state-space format
 - Use Kalman filter to "correctly ignore" missing observations on (k, τ) in estimation
- Compute KF estimates of (k, τ).

HOW WE PROCEED (cont.)

- Thus, we use the KF in two ways:
 - Estimate the model
 - Use the estimated model to estimate unobserved k and τ
- 2. COMPARISON WITH CONVENTIONAL APPROACH:
- a. Conventionally:

- k is estimated based on observed i flows and assumed or estimated depreciation schedules
- τ is assumed to be an exogenous process or is determined residually as the Solow residual
- \blacklozenge k and τ are estimated separately, not under unifying principles

HOW WE PROCEED (cont.)

a. <u>This study</u>:

 Uses system-wide identifying restrictions, involving all variables in the model, to jointly estimate (k, τ) stocks

Two identification conditions:

- Parameter identification condition of determining unique values of the model's structural parameters, which requires a concave likelihood function at MLE
- Filtering identification condition of estimating unobserved variables, using the estimated model and the data, which requires a reconstructible state vector

III. STRUCTURAL ECONOMIC MODEL

1. GENERAL DESCRIPTION:

www.bea.do

- View a competitive industry in terms of a representative firm
- <u>A sophisticated output supply side</u>: explicitly describe and solve the representative firm's dynamic optimization problem
 - Firm uses (k, ℓ , m) to produce output, investment and research (q, i, r), as 3 "outputs" in a production function with:

CET = constant elasticity of output transformation CES = constant elasticity of input substitution

- Concave-to-origin transformation curves for (q, i, r) imply convex adjustment costs on (k, τ) through (i, r).
- A simple output demand side: static demand curve

<u>Resulting industry equilibrium</u>: a dynamic, stochastic, simultaneousequations system

2. VARIABLES IN THE MODEL:

- Endogenous Variables:
 - p_q = Price of output
 - ℓ = Labor input
 - i = Investment-in-capital output
 - k = Capital input

- q = Produced and sold output
- m = Materials input
- r = Research-in-technology output
- τ = Technology input

- Exogenous Variables:
 - P_i = Price of investment p_ℓ = Price of labor

p_r = Price of research p_m= Price of materials

Disturbances:

- ξ = output-demand state
- ϵ 's = structural disturbances

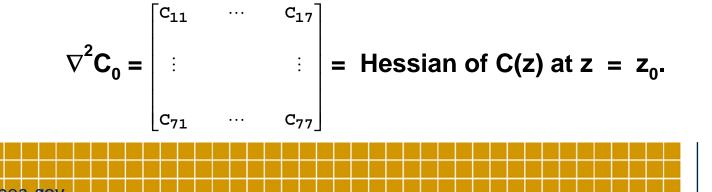
- 3. FIRM'S DYNAMIC OPTIMIZATION PROBLEM
- a. <u>CET/CES production function</u>:

$$[\gamma_1 \cdot \mathbf{q}^{\rho} + \gamma_2 \cdot \mathbf{i}^{\rho} + \gamma_3 \cdot \mathbf{r}^{\rho}]^{1/\rho} = \tau \cdot [\alpha_1 \cdot \mathbf{k}^{\beta} + \alpha_2 \cdot \ell^{\beta} + \alpha_3 \cdot \mathbf{m}^{\beta}]^{1/\beta},$$

where
$$\gamma_i \ge 0$$
, $\Sigma_i \gamma_i = 1$, $\rho > 1$, $\alpha_i \ge 0$, $\Sigma_i \alpha_i = 1$, $\beta < 1$.

- ρ > 1 => CET = (ρ 1)⁻¹ > 0 => concave-to-origin output transformation curves
- β < 1 => CES = (β 1)⁻¹ < 0 => convex-to-origin input isoquants

b. Restricted variable cost function:


• Dual description of the production function:

$$C(z) = \min_{\{\ell, m\}} p_{\ell} \cdot \ell + p_{m} \cdot m,$$

subject to the CET/CES production function, for given

$$z = (q, i, r, k, \tau, p_{\ell}, p_{m})^{T}$$
.

• Use quadratic approximation $C(z) \cong (1/2)z^T \cdot \nabla^2 C_0 \cdot z$, where

c. Output inverse demand curve:

 $\mathbf{p}_{qt} = -\eta \cdot \mathbf{q}_t + \mathbf{d}_t + \xi_t,$

where $\eta > 0$ is the slope, $d_t \sim AR(2)$ is demand state .

d. <u>Representative firm's REAL PROFIT FUNCTION:</u>

$$\pi_{t} = -(1/2)\eta \cdot (q_{t})^{2} + q_{t} \cdot \xi_{t} - (1/2)(z_{t})^{T} \cdot \nabla^{2}C_{0} \cdot z_{t} - p_{it} \cdot i_{t} - p_{rt} \cdot r_{t}.$$

e. Firm maximizes its EXPECTED PRESENT VALUE:

 $\max_{\{p_{qt}, q_{t}, \ell_{t}, m_{t}, i_{t}, r_{t}\}} V_{t} = E_{t} \sum_{k=0}^{\infty} \delta^{k} \pi_{t} + k_{t},$

for predetermined (k_t, τ_t) and exogenous (p_{it}, p_{rt}, p_{ℓt}, p_{mt}, ξ_t) processes.

4. SOLVE FIRM'S DYNAMIC OPTIMIZATION PROBLEM:

• Eliminate $(p_{qt}, q_t, \ell_t, m_t)$ so that the problem reduces to:

$$\max_{\{\mathsf{K}\}} \mathsf{V}_{\mathsf{t}} = \mathsf{E}_{\mathsf{t}} \sum_{k=0}^{\infty} \delta^{k} \pi_{\mathsf{t}+\mathsf{k}},$$

subject to the linear decision rule

$$\mathbf{u}_{t} = \mathbf{K} \cdot \mathbf{x}_{t-1},$$

and to exogenous output-demand and input-price processes, where

$$u_{t} = (i_{t}, r_{t})^{T} = \underline{\text{control vector}},$$

$$x_{t} = (k_{t}, \tau_{t}, p_{it}, p_{rt}, p_{\ell t}, p_{mt}, \xi_{t})^{T} = \underline{\text{state vector}}.$$

Compute K by solving an algebraic matrix Riccati equation

IV. ESTIMATION STRATEGY

- 1. Assemble 13 equations in 8 endogenous and 5 exogenous variables from model solution as <u>dynamic simultaneous</u> <u>equations system</u>.
- 8 endogenous variable equations:
 - Output inverse demand:

$$\mathbf{p}_{qt} = -\eta \cdot \mathbf{q}_t + \xi_t.$$

www.bea.do

Output, labor, and materials decision rules:

$$\begin{aligned} \mathbf{q}_{t} &= -\mathbf{c}\mathbf{0}[\mathbf{c}_{12}\cdot\mathbf{i}_{t} + \mathbf{c}_{13}\cdot\mathbf{r}_{t} + \mathbf{c}_{14}\cdot\mathbf{k}_{t} + \mathbf{c}_{15}\cdot\tau_{t} + \mathbf{c}_{16}\cdot\mathbf{p}_{\ell t} + \mathbf{c}_{17}\cdot\mathbf{p}_{m t} - \xi_{t}] + \varepsilon_{q t}, \\ \ell_{t} &= \mathbf{c}_{16}\cdot\mathbf{q}_{t} + \mathbf{c}_{26}\cdot\mathbf{i}_{t} + \mathbf{c}_{36}\cdot\mathbf{r}_{t} + \mathbf{c}_{46}\cdot\mathbf{k}_{t} + \mathbf{c}_{56}\cdot\tau_{t} + \mathbf{c}_{66}\cdot\mathbf{p}_{\ell t} + \mathbf{c}_{67}\cdot\mathbf{p}_{m t} + \varepsilon_{\ell t}, \\ \mathbf{m}_{t} &= \mathbf{c}_{17}\cdot\mathbf{q}_{t} + \mathbf{c}_{27}\cdot\mathbf{i}_{t} + \mathbf{c}_{37}\cdot\mathbf{r}_{t} + \mathbf{c}_{47}\cdot\mathbf{k}_{t} + \mathbf{c}_{57}\cdot\tau_{t} + \mathbf{c}_{67}\cdot\mathbf{p}_{\ell t} + \mathbf{c}_{77}\cdot\mathbf{p}_{m t} + \varepsilon_{m t}. \end{aligned}$$

ESTIMATION STRATEGY (cont.)

Investment and research decision rules:

$$\mathbf{i}_{t} = \mathbf{K}_{11} \cdot \mathbf{k}_{t-1} + \mathbf{K}_{12} \cdot \tau_{t-1} + \mathbf{K}_{13} \cdot \mathbf{p}_{i,t-1} + \mathbf{K}_{14} \cdot \mathbf{p}_{r,t-1} + \mathbf{K}_{15} \cdot \mathbf{p}_{\ell,t-1} + \mathbf{K}_{16} \cdot \mathbf{p}_{m,t-1}$$

$$\mathbf{r}_{t} = \mathbf{K}_{21} \cdot \mathbf{k}_{t-1} + \mathbf{K}_{22} \cdot \tau_{t-1} + \mathbf{K}_{23} \cdot \mathbf{p}_{i,t-1} + \mathbf{K}_{24} \cdot \mathbf{p}_{r,t-1} + \mathbf{K}_{25} \cdot \mathbf{p}_{\ell,t-1} + \mathbf{K}_{26} \cdot \mathbf{p}_{m,t-1} + \mathbf{K}_{27} \cdot \xi_{t-1} + \varepsilon_{rt}$$

Capital and technology accumulation:

$$\mathbf{k}_{t} = \phi_{k} \cdot \mathbf{k}_{t-1} + \mathbf{i}_{t} + \varepsilon_{kt},$$

$$\tau_t = \phi_r \cdot \tau_{t-1} + r_t + \varepsilon_{\tau t}$$

ESTIMATION STRATEGY (cont.)

€_{mt}•

- <u>5 Exogenous AR(2) processes:</u>
 - Output-demand state:

$$\xi_t = \phi_{q1} \cdot \xi_{t-1} + \phi_{q2} \cdot \xi_{t-2} + \varepsilon_{qt}$$

Input prices:

www.bea.do

$$p_{it} = \phi_{i1} \cdot p_{i,t-1} + \phi_{i2} \cdot p_{i,t-2} + \varepsilon_{it},$$

$$p_{rt} = \phi_{r1} \cdot p_{r,t-1} + \phi_{r2} \cdot p_{r,t-2} + \varepsilon_{rt},$$

$$p_{\ell t} = \phi_{\ell 1} \cdot p_{\ell,t-1} + \phi_{\ell 2} \cdot p_{\ell,t-2} + \varepsilon_{\ell t},$$

$$p_{mt} = \phi_{m1} \cdot p_{m,t-1} + \phi_{m2} \cdot p_{m,t-2} + \varepsilon_{\ell t},$$

ESTIMATION STRATEGY (cont.)

2. Add a VAR(1) correction for each autocorrelated disturbance and restate the 13 equations as a VAR(2):

$$\mathbf{y}_{t} = \mathbf{B}_{1} \cdot \mathbf{y}_{t-1} + \mathbf{B}_{2} \cdot \mathbf{y}_{t-2} + \zeta_{t},$$

$$\mathbf{y} = (\mathbf{p}_{\mathbf{q}}, \mathbf{q}, \ell, \mathbf{m}, \mathbf{i}, \mathbf{r}, \mathbf{k}, \tau, \mathbf{p}_{\mathbf{i}}, \mathbf{p}_{\mathbf{r}}, \mathbf{p}_{\ell}, \mathbf{p}_{\mathbf{m}}, \xi)^{\mathsf{T}}.$$

= 13×1 vector of all variables in the model,

and

$$\zeta_{t} = (\zeta_{pqt}, \zeta_{qt}, \zeta_{\ell}, \zeta_{mt}, \zeta_{it}, \zeta_{rt}, \zeta_{kt}, \zeta_{\tau t} \zeta_{pit}, \zeta_{prt}, \zeta_{p_{\ell}t}, \zeta_{pmt}, \zeta_{dt})$$

= 13x1 vector of disturbances (6 AR(1) and 7 iid).

Use KF to "correctly ignore" missing observations on (k, τ) during MLE.

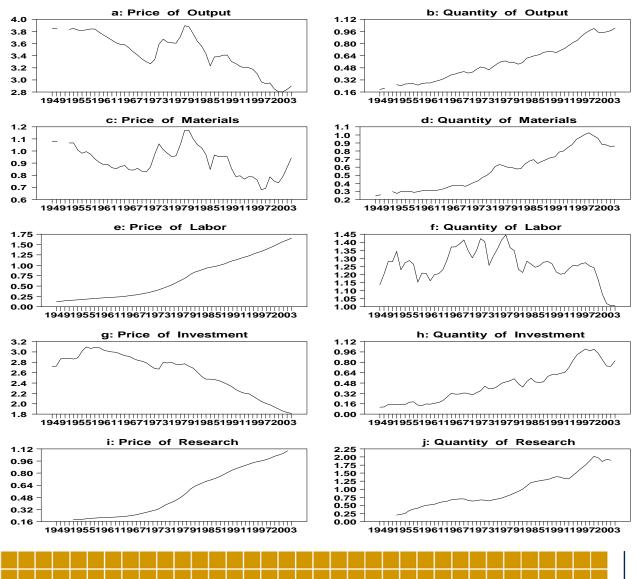
V. ESTIMATION RESULTS

• Parameters to be estimated using MLE:

 $\vartheta = (\vartheta_1, \vartheta_2)$


Where

$$\begin{split} \vartheta_{1} &= \left(\delta, \,\alpha_{1}, \,\alpha_{2}, \,\gamma_{1}, \,\gamma_{2}, \,\sigma_{pq}^{2}, \,\sigma_{\ell}^{2}, \,\sigma_{m}^{2}\right) \\ \vartheta_{2} &= \left(\phi_{pi,1}, \,\phi_{pr,1}, \,\phi_{p\ell,1}, \,\phi_{pm,1}, \,\phi_{pi,2}, \,\phi_{pr,2}, \,\phi_{p\ell,2}, \,\phi_{pm,2}, \,\sigma_{pi}^{2}, \,\sigma_{pr}^{2}, \,\sigma_{p\ell}^{2}, \,\sigma_{pm}^{2}, \\ \theta_{pq}, \,\theta_{q}, \,\theta_{\ell}, \,\theta_{m}, \,\theta_{i}, \,\theta_{r}, \,\eta, \,\beta, \,\rho, \,\phi_{k1}, \,\phi_{\tau 1}, \,\phi_{q1}, \,\phi_{q2}, \,\sigma_{q}^{2}, \,\sigma_{i}^{2}, \,\sigma_{r}^{2}, \,\sigma_{k}^{2}, \,\sigma_{\tau}^{2}, \,\sigma_{d}^{2}\right) \end{split}$$


Data

- U.S. total manufacturing data on prices and quantities of output and inputs
 - Investment data and GDP deflator from BEA
 - Research data from NSF
 - All other variables from BLS
 - Sample: 1949 2005
 - SIC DATA: 1949 2001
 - NAICS DATA: 1987 2005
 - Data from 1987 2001 are derived using average growth rates of the two series.

Figure 1: U.S. manufacturing prices and quantities of output and inputs, (1947-2003)

Variables	Param	eter Esti	Fit Statistics		
	• • • • • • • • • •	\$.,2	$ \overline{\lambda} $	R^2	Q
Pi	1.37 (10.5)	356 (2.61)	1.02	.988	6.76 (.563)
P _r	1.90 (28.2)	900 (13.1)	.999	.999	17.6 (.124)
₽ℓ	1.88 (25.6)	874 (11.7)	1.03	.999	13.3 (.101)
P _m	1.16 (8.34)	319 (2.32)	.712	.812	4.40 (.820)

Table 2: ML Estimates of Remaining Structural Parameters

Production Function Parameters

$$\hat{\beta}$$
 = -5.48 (CES = -.182), $\hat{\rho}$ = 275 (CET = .004)

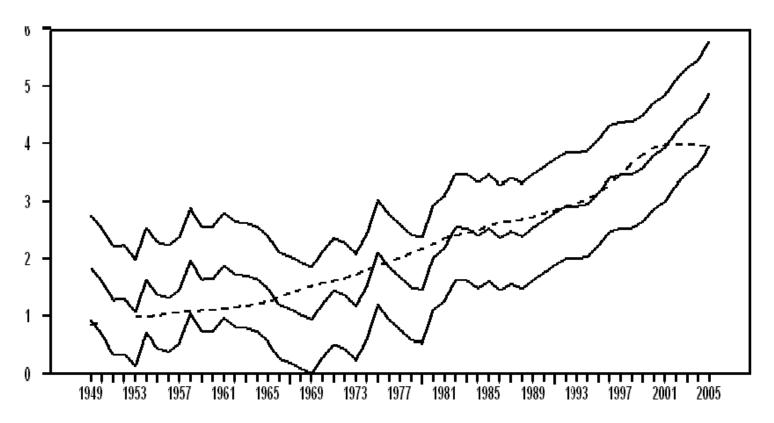
Output-Demand Curve Parameters $\hat{\eta}$ = .869, $\hat{\phi}_{d1}$ = 1.18, $\hat{\phi}_{d2}$ = -.367

Capital and Technology Equation Coefficients $\hat{\phi}_{k1}$ = .610, $\hat{\phi}_{10}$ = .789, $\hat{\phi}_{\tau 1}$ = .043, $\hat{\phi}_{r0}$ = .304

Residual Autocorrelation Coefficients $\hat{\theta}_{pq}$ = .999, $\hat{\theta}_{q}$ = .675, $\hat{\theta}_{\ell}$ = .999, $\hat{\theta}_{m}$ = .999, $\hat{\theta}_{i}$ = .848, $\hat{\theta}_{r}$ = .982

Structural Disturbance Standard Deviations $\hat{\sigma}_{\rm q}$ = .144, $\hat{\sigma}_{\rm i}$ = .246, $\hat{\sigma}_{\rm r}$ = .106, $\hat{\sigma}_{\rm k}$ = .995, $\hat{\sigma}_{\tau}$ = .001, $\hat{\sigma}_{\rm d}$ = .207

Reduced-Form Equation Fit Statistics $R_{pq}^2 = .932, R_q^2 = .942, R_\ell^2 = .651, R_i^2 = .938, R_r^2 = .990$ $Q_{pq} = 2.52, Q_q = 2.55, Q_\ell = 13.1, Q_i = 13.6, Q_r = 12.9$ (.989) (.990) (.218) (.194) (.230)


Table 3: Structural Variance Decomposition of the Estimated Model

	σ_{q}^{2}	σ_{i}^{2}	σ_r^2	σ_k^2	σ_{τ}^2	$\sigma_{\tt pi}^2$	σ_{pr}^2	$\sigma_{\mathtt{p}\ell}^2$	σ_{pm}^2	σ_{d}^{2}
S _{10,pq,j}	4.5	2.8	.7	.2	.0	5.2	.1	.0	3.0	83.5
S _{10,q,j} .	19.4	12.2	3.1	.8	.2	27.5	.7	.0	15.9	20.2
S _{10,ℓ,j}	.9	3.9	.0	92.7	.2	.0	.0	.0	1.6	.1
S _{10,m,j}	.9	3.9	.0	92.7	.8	.0	.0	.0	1.6	.1
S _{10,i,j}	.0	44.5	.1	14.3	.1	17.5	.4	.0	11.5	11.6
S _{10,r,j}	.0	.0	5.4	1.1	.2	39.3	1.0	.1	25.8	27.1
S _{10,k,j}	.0	4.0	.0	95.3	.0	.3	.0	.0	.2	.2
S _{10,τ,j}	.0	.0	1.9	1.1	1.6	39.9	1.1	.1	26.5	27.8
<u></u> 5 _{10,j}	1.3	5.2	.7	69.6	.4	7.4	.2	.0	5.4	9.8

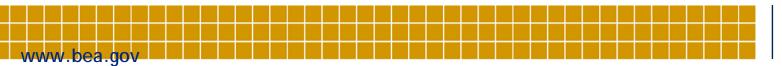


Figure 2-a: Model-Based and Standard Capital Stock Estimates for U.S. Total Manufacturing, 1949-2005

Model-Based and Standard Estimates of Capital Stock

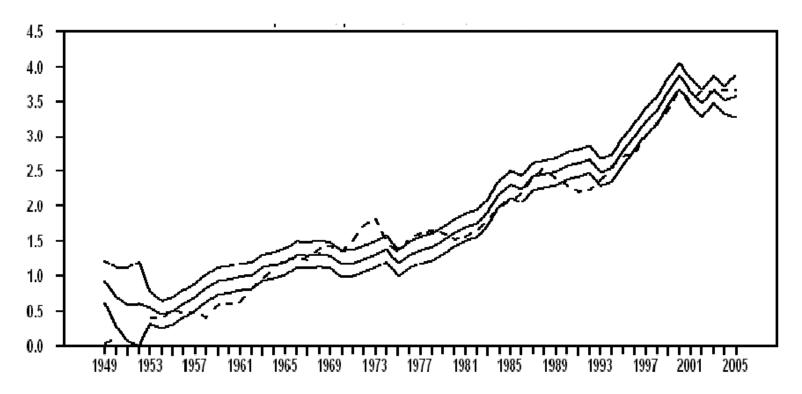

Solid lines depict model-based capital estimates and 2-standard-error confidence bounds produced by the Kalman filter. Dashed lines depict standard capital stock estimates produced by BLS.

Figure 2-b: Model-Based and Standard Technology (TFP) Estimates for U.S. Total Manufacturing, 1949-2005

Model-Based and Standard Estimates of Technology

Solid lines depict model-based technology estimates and 2-standard-error confidence bounds produced by the Kalman filter. Dashed lines depict standard technology estimates as total factor productivity produced by BLS.

Conventional versus Filtered Estimates

1. <u>1949 ~ 2000</u>

- Similar trends of model based and standard k and τ
- 2. <u>2000 ~ 2005</u>
 - Diverge paths of model-based and standard k τ
 - Model-based k continues to grow; standard k levels off
 - Model-based τ declines and levels off; standard τ continue to grow
- 3. <u>1949 ~ 2005</u>

- Model-based k is noisy and uncertain; standard k is smooth
- Model-based τ is smooth and certain; standard τ is more noisy
- (i, k) explain growth more than (r, τ)

VI. CONCLUSION

- Proposed filtered estimates of (k, τ) are feasible:
 - Results show two identification conditions of <u>parameter</u> <u>identification in MLE</u> and <u>state reconstructibility</u> in k and τ estimation hold numerically.
 - Proposed method uses more information:
 - Use more sample information of correlations among more observed variables;
 - Uses theoretical information of correlations among all variables in the model, as implied by the model
- Good overall fit gives (k, τ) estimates credibility
 - Extension: Includes time varying variables like interest rates and taxes

