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THE UNRELIABILITY OF OUTPUT-GAP ESTIMATES IN REAL TIME
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Abstract—We examine the reliability of alternative output detrending
methods, with special attention to the accuracy of real-time estimates of
the output gap. We show that ex post revisions of the estimated gap are of
the same order of magnitude as the estimated gap itself and that these
revisions are highly persistent. Although important, the revision of pub-
lished data is not the primary source of revisions in measured output gaps;
the bulk of the problem is due to the pervasive unreliability of end-of-
sample estimates of the trend in output. Multivariate methods that incor-
porate information from inflation to estimate the output gap are not more
reliable than their univariate counterparts.

I. Introduction

UNDERSTANDING macroeconomic fluctuations en-
tails the study of an economy’s output relative to its

trend or potential level. The difference between the two is
commonly referred to as the business cycle or the output
gap. Although macroeconomic analysis often takes mea-
surement of the output gap for granted, its construction is
subject to considerable uncertainty. As a practical matter,
empirical estimates of the output gap for any given method
may not be particularly reliable. This may pose an acute
difficulty for economic stabilization policy that requires
reliable estimates of the output gap in real time when policy
decisions are made.

Three distinct issues complicate measurement of the
output gap in real time. First, output data may be revised,
implying that output gaps estimated from real-time data
may differ from those estimated from data for the same
period published later. Second, as data on output in subse-
quent quarters become available, hindsight may clarify our
position in the business cycle even in the absence of data
revision. Third, the arrival of new data may instead make us
revise our model of the economy, which in turn revises our
estimated output gaps.

This paper investigates the relevance of these issues for
the measurement of the output gap in the United States since
the 1960s, using several well-known detrending methods.1

For each method, we examine the behavior of end-of-
sample output-gap estimates and of the revisions of these
estimates over time. We also decompose the revisions into
their various sources, including that due to revisions of the
underlying output data and that due to reestimation of the
process generating potential output.

Presuming that revisions improve our estimates, the total
amount of revision gives us a lower bound on the measure-
ment error thought to be associated with real-time output
gaps. This is informative when and if we find that revision
errors are relatively large, because we can conclude that the
total error of these estimators must be larger still. Further-
more, our results are quite general; they apply regardless of
whether output gaps are used to cyclically adjust budget
balances, to forecast inflation, or for other purposes, and do
not require a priori assumptions on the true structure of the
economy or on the true time series model generating ob-
served output.

II. Alternative Detrending Methods

A detrending method decomposes the log of real output,
qt, into a trend component�t and a cycle componentzt:

qt � �t � zt. (1)

Some methods use the data to estimate the trend�t, and
define the cyclical component as the residual. Others specify
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1 An early exposition of issues pertaining to estimating trends appeared
in the inaugural issue of this Review (Persons, 1919). The potential
quantitative relevance of the issues we investigate has been pointed out
before. Kuttner (1994) and St-Amant and van Norden (1998) pointed out
that differences between end-sample and mid-sample estimates of the
output gap can differ substantially for some commonly used methods for
estimating the output gap. Orphanides (1998, 2000) documented that the
errors in official estimates of the output gap available to policymakers
have indeed been substantial, and several authors, including Kuttner
(1992), McCallum and Nelson (1999), Orphanides (1998, 2001), and
Smets (1998), have elaborated on the policy implications of this issue.
This study is the first to assess and decompose the measurement errors
associated with several techniques and is the first to assess these tech-
niques with real-time data. This issue also closely relates to investigations
of uncertainty regarding estimation of theunemployment gap, that is, the
difference between the actual rate of unemployment and estimates of the
natural rate of unemployment. Staiger, Stock, and Watson (1997a,b)
document that these estimates are very imprecise, which parallels the
unreliability of the output gaps we discuss here.
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a dynamic structure for both the trend and cycle components
and estimate them jointly. We examine detrending methods
that fall into both categories.

A. Deterministic Trends

The first set of detrending methods we consider assume
that the trend in (the logarithm of) output is well approxi-
mated as a simple deterministic function of time. The linear
trend is the oldest and simplest of these models, and the
quadratic trend is a popular simple extension.

Because of the noticeable downturn in GDP growth after
1973, another simple deterministic technique is a breaking
linear trend that allows for the slowdown in that year. Our
implementation of the breaking-trend method will incorpo-
rate the assumption that the location of the break is fixed
and known. Specifically, we assume that a break in the trend
at the end of 1973 would have been incorporated in real
time from 1977 on. This conforms with the debate regarding
the productivity slowdown during the 1970s and evidence
(for example, Council of Economic Advisers, 1977) that it
would not have been reasonable to introduce the 1973 break
earlier but would be appropriate to do so as early as 1977.2

B. Unobserved-Components Models and the Hodrick-
Prescott Filter

Unobserved-components (UC) models offer a general
framework for decomposing output into an unobserved
trend and a cycle, allowing for an assumed dynamic struc-
ture for these components.

This framework can also nest smoothing splines, such the
popular filter proposed by Hodrick and Prescott (1997) (the
HP filter).3 We implement the HP filter, following Harvey
and Jaeger (1993) and King and Rebelo (1993), by writing
it in its unobserved-components form. Assuming that the
trend in (1) follows

�1 � L�2�t � �t, (2)

the HP filter is obtained from equations (1) and (2) under the
assumption thatzt and �t are mutually uncorrelated white
noise processes with a fixed relative varianceq. We setq to
correspond to the standard application of the HP filter with
a smoothing parameter of 1600.

UC models also permit more complex dynamics to be
estimated, and we examine two such alternatives, by Watson
(1986) and by Harvey (1985) and Clark (1987). The Watson
model modifies the linear level model to allow for greater

business cycle persistence. Specifically, it models the trend
as a random walk with drift, and the cycle as an AR(2)
process:

�t � � � �t�1 � �t, (3)

zt � �1 � zt�1 � �2 � zt�2 � �t. (4)

Here�t and�t are assumed to be i.i.d. mean-zero Gaussian
and mutually uncorrelated, and�, �1 and �2, and the vari-
ances of the two shocks are parameters to be estimated (five
in total).

The Harvey-Clark model similarly modifies the local
linear trend model:

�t � gt�1 � �t�1 � �t, (5)

gt � gt�1 � 	t, (6)

zt � �1 � zt�1 � �2 � zt�2 � �t. (7)

Here �t, 	t, and �t are assumed to be i.i.d., mean-zero,
Gaussian, and mutually uncorrelated processes, and�1 and
�2 and the variances of the three shocks are parameters to be
estimated (five in total).

C. Unobserved-Components Models with a Phillips Curve

Multivariate formulations of UC models attempt to refine
estimates of the output gap by incorporating information
from other variables linked to the gap. However, they also
introduce additional sources of misspecification and param-
eter uncertainty, which may offset potential improvements.
To examine this issue, we consider two models which add a
Phillips curve to the univariate formulations described
above: those of Kuttner (1994) and Gerlach and Smets
(1997).

Let 
t be the quarterly rate of inflation. The Kuttner
model adds the following Phillips-curve equation to the
Watson model:

�
t � �1 � �2 � �qt � �3 � zt�1 � et � �4 � et�1

� �5 � et�2 � �6 � et�3.
(8)

The Gerlach-Smets model modifies the Harvey-Clark model
by adding a similar Phillips curve:

�
t � 1 � 2 � zt � et � 3 � et�1 � 4 � et�2

� 5 � et�3.
(9)

In each case the shocket is assumed i.i.d., mean-zero, and
Gaussian. In the Gerlach-Smets model,et is also assumed
uncorrelated with shocks driving the dynamics of the trend
and cycle components of output in the model. Thus, by
adding the Phillips curve, the Gerlach-Smets model intro-
duces an additional six parameters that require estimation
({ 1, . . . , 5} and the variance ofet). The Kuttner model

2 We also investigated alternatives, including ones with a break of
unknown location and multiple breaks. Qualitatively, the results were
similar for the other alternatives. We also used Bai-Perron tests to
determine when an econometrician would have been able to detect the
change in trend and obtained similar conclusions.

3 The development of smoothing splines dates back to the work of
Whittaker (1923) and Henderson (1924), and discussion of its use for
measuring business cycles may be found in Orphanides and van Norden
(1999).
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also allows for a nonzero correlation betweenet and the
shock to the cycle,�t. Thus, it introduces eight additional
parameters that require estimation ({�1, . . . , �6}, the vari-
ance ofet, and its covariance with�t).

III. Data Sources and Revision Concepts

A. Data

Most of our data are taken from the real-time data set
compiled by Croushore and Stark (2001); we use the quar-
terly real-time variables for real output from 1965:1 to
1997:4. Construction of the series and its revision over time
is further described in Orphanides and van Norden (1999).
We use 2000:1 data as final data, recognizing, of course, that
“final” is very much an ephemeral concept in the measure-
ment of output. To implement the bivariate models, we also
use the quarterly rate of inflation in the consumer price
index (CPI) as available in 2000:1. CPI data do not gener-
ally undergo a revision similar to that for output data. We
therefore use this vintage of CPI data for all the analysis,
allowing us to focus our attention on the effects of revisions
in the output data.

B. Measuring the Revision of Output Gaps

We use our data with each of the detrending methods
described earlier to produce estimated output-gap series. We
apply each detrending method in a number of different ways
in order to estimate and decompose the extent of the
revisions in the estimated gap series.

The first of these estimates for each method simply takes
the last available vintage of data (2000:1) and detrends it.
The resulting series of deviations from trend constitutes our
final estimate of the output gap corresponding to that
method.

Thereal-time estimate of the output gap is constructed in
two stages. First, we detrend each and every vintage of data
available to construct an ensemble of output-gap series.
That is, in every quarter we apply the detrending method
with data as available during that quarter. Next, we use these
different vintages to construct a new series, which consists
of the latest available estimate of the output gap for each
point in time. The resulting real-time estimate represents the
most timely estimate of the output gap which could be
constructed in real time using the method employed.

The difference between the real-time and the final esti-
mate gives us the total revision in the estimated output gap
at each point in time. This revision may have several
sources, one of which is the ongoing revision of published
data. To isolate the importance of this factor, we define a
third output-gap measure, thequasi-real estimate. The quasi-
real estimate of the output gap is simply the rolling estimate
based on the final data series. That is, the gap at periodt is
calculated using only observations 1 throught to estimate

the long-run trend and the deviations around it. The differ-
ence between the real-time and the quasi-real series is
entirely due to the effects of data revision, since estimates in
the two series at any particular point in time are based on
data samples covering exactly the same period.

For UC models, we further decompose the revision in the
estimated gap by defining aquasi-final estimate. UC models
use the data in two distinct phases. First, they use the available
data sample to estimate the parameters of a time-series model
of output. Next, they use these estimated parameters to con-
struct filtered and smoothed estimates of the output gap. For
this class of models, smoothed estimates of the output gap are
used to construct the final series, whereas filtered estimates are
used for the quasi-final series.4

The difference between the quasi-final and the quasi-real
series reflects the use of different parameter estimates (full-
sample ones versus partial-sample ones) to filter the data.
The extent of the difference will reflect the importance of
parameter instability in the underlying UC model. The
difference between the quasi-final and the final series re-
flects the importance of ex post information in estimating
the output gap given the parameter values of the process
generating output.5

C. Standard Errors and Confidence Intervals

For the UC models, we compute standard errors and the
corresponding Gaussian confidence intervals for the estimates
of the output gaps and revisions. The Kalman filter and
smoother provide estimates of the mean squared error associ-
ated with the quasi-final (filtered) and final (smoothed) esti-
mates of the output gap. We use these to construct 95%
confidence intervals for these estimates of the gap and for their
revision. The Kalman-filter standard errors are appropriate for
gauging the size of the final–quasi-final revisions, in that both
estimates are conditioned on a given parameter vector. Because
these standard-error estimates ignore the effect of parameter
uncertainty on estimation of the gap, we also employ the
approximation suggested by Ansley and Kohn (1986) to com-
pute a comparable set of confidence intervals that capture this
uncertainty. We use the Ansley-Kohn errors and confidence
intervals to gauge the size of the total revisions. The Ansley-
Kohn standard errors approximate the uncertainty associated
with the final parameter estimates. In this respect, they are
typical of the reliability calculations found previously in the
output-gap literature. We stress, however, that these capture
neither the effects of data revision nor the presumably greater
parameter uncertainty found in the shorter samples available
for estimation in real time. A test statistic can also be con-
structed, in the spirit of Diebold and Mariano (1995), of the

4 In both cases, the UC model’s parameters are estimated using the full
sample of the same data, which is then used for filtering and smoothing.
The sole exception is the HP filter, for which no parameters are estimated.

5 St-Amant and van Norden (1998) argue that the degree to which the
subsequent behavior of output is informative about the output gap is
linked to the presence or absence of hysteresis in output.
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null hypothesis that the size of the revisions is consistent with
the estimated confidence intervals. Details on these calcula-
tions may be found in the Appendix.

IV. Results
Figure 1 compares the estimated business cycles for the

eight different methods mentioned in section 2. Real-time

FIGURE 1.—ESTIMATES OF THE BUSINESS CYCLE
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estimates are shown in the upper half of the figure, and final
estimates are shown in the lower half. The shaded regions
reflect recessions as dated by the National Bureau of Eco-
nomic Research (NBER). Several features are readily ap-
parent. The different methods have strong short-term co-
movements; most appear to be moving upwards or
downwards at roughly the same time. Further, the different
methods typically give rise to a wide range of estimates for
the output gap, though the range of final estimates is not as
wide as the range of real-time estimates.

A. Revision Size and Persistence

Figure 2 shows the total revision in the output gap for
each method, that is, the difference between the final and
real-time estimates. Table 1 provides descriptive statistics
on the various real-time, quasi-real, quasi-final, and final
estimates, and Table 2 provides similar statistics for the total
revision. Comparing the two tables, we see that the revi-
sions are of the same order of magnitude as the estimated
output gaps, although this varies somewhat across methods.
The last column of Table 2 reports the estimated first-order
autocorrelation coefficients for the revisions. All the revi-

sion series are highly persistent, with coefficients ranging
from 0.80 for the Gerlach-Smets model to 0.96 for the
quadratic trend.

It is worth noting that the statistical properties of these
revisions are broadly in line with those of the revisions of
“official” output-gap estimates for the United States. For
example, the revisions of Federal Reserve staff estimates of
the output gap for the 1980s and early 1990s reported in
Orphanides (1998) have a root mean square of 2.84%,
compared to a standard deviation of 2.44% for historical
estimates available at the end of 1994. The autocorrelation
of those revisions also exceeds 0.8.6

6 During the 1960s and 1970s, Federal Reserve staff relied on the
Council of Economic Advisers estimates of potential output to construct
estimates of the output gap. As shown in Orphanides (2000), the official
estimates for the 1960s and 1970s, produced and published by the Council
of Economic Advisors and Commerce Department, were subject to even
greater revision errors. Of course, such comparisons should be interpreted
with caution, as official estimates have been based on statistical method-
ologies that have evolved over time—presumably reflecting changes in
beliefs about how best to estimate the output gap—and also incorporate
judgemental considerations that cannot be fully captured with statistical
methods.

FIGURE 2.
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Table 3 presents some measures of the relative impor-
tance of the revision in each series. Column 1 presents the
correlation between the final and real-time series for each
method, which ranges from a low of 0.49 for the Hodrick-
Prescott filter to a high of 0.89 for the linear-trend and
Watson models. The next two columns,NS andNSR, pro-
vide two proxies for the noise-to-signal ratio in the real-time
estimates.NS (NSR) is the ratio of the standard deviation
(the root mean square) of the total revision to the standard
deviation of the final estimate of the gap.NSR therefore

captures the effects of persistent upward or downward
revisions and exceeds 1 for six out of the eight methods
reported.7 Even the best methods have rather large ratios by
these criteria.8 The last column provides the frequency with
which the real-time and final gaps were of opposite signs.
For five methods this frequency exceeds 40%, and for the
Kuttner and linear-trend models it is almost 50%. These
results show that the errors associated with real-time esti-
mates of the output gap are substantial. The ex post revi-
sions are of the same order of magnitude as the ex post
estimates of the gap, the estimation errors appear to contain
a highly persistent component of substantial size, and the
real-time estimates frequently misclassify the sign of the
gap.

B. Decomposition of Revisions

To help us understand the importance of different factors
in accounting for the total revision for each method, in
Figures 3 through 8 we plot the real-time estimate of the
output gap together with its total subsequent revision and
the components of that revision. Table 4 presents related
summary statistics.

Figure 3 shows results for the linear trend. As a guide to
subsequent figures for the other methods, we discuss this
figure in some detail. First, compare the total revision with
the real-time estimate. The fact that the revision is roughly
equal to the real-time estimate at the trough of the 1975
recession tells us that our final estimate of the output gap is
roughly zero. In other words, despite the extreme evidence
of recession in the real-time estimate, ex post we would
judge that the economy was operating roughly at potential at
that time, by this method.

To understand the source of these revisions, the graph
also shows the effects of data revision (measured as the
real-time estimate minus the quasi-real estimate). For ex-
ample, the total revision and data revision are roughly the
same in both graphs in late 1995, which means that nearly

7 The NSR value for the Federal Reserve staff estimates mentioned
earlier is 1.16.

8 Using the root mean square of the output gap as the benchmark for
comparison yields similar conclusions. These alternative ratios can be
constructed from Tables 1 and 2.

TABLE 1.—OUTPUT-GAP SUMMARY STATISTICS

Method MEAN SD MIN MAX COR

Hodrick-Prescott
Final 0.04 1.65 �4.67 3.60 1.00
Quasi-real �0.12 1.70 �3.96 3.79 0.55
Real-time �0.27 1.90 �6.63 3.84 0.49

Breaking trend
Final 0.18 2.58 �6.98 5.31 1.00
Quasi-real 0.56 2.79 �6.55 7.02 0.85
Real-time 0.21 3.15 �10.52 5.02 0.82

Quadratic trend
Final 0.30 2.72 �7.39 5.20 1.00
Quasi-real �0.70 2.71 �7.23 6.19 0.60
Real-time �0.96 3.03 �10.83 4.70 0.58

Linear trend
Final 1.30 3.87 �5.44 8.06 1.00
Quasi-real �2.65 3.49 �10.32 7.02 0.88
Real-time �3.45 3.98 �10.52 5.02 0.89

Watson
Final 0.45 2.37 �5.34 4.56 1.00
Quasi-final �0.26 2.19 �5.07 5.06 0.95
Quasi-real �1.71 2.37 �7.31 4.42 0.83
Real-time �2.08 2.61 �7.43 3.56 0.89

Kuttner
Final 1.20 3.63 �5.52 7.69 1.00
Quasi-final 0.78 3.51 �5.61 6.92 0.99
Quasi-real �1.63 2.79 �6.81 6.23 0.87
Real-time �2.37 3.16 �7.91 4.86 0.88

Harvey-Clark
Final 0.25 2.17 �5.51 4.06 1.00
Quasi-final �0.71 1.53 �4.62 3.21 0.89
Quasi-real �0.66 1.60 �4.14 3.41 0.81
Real-time �0.93 1.91 �6.99 3.02 0.77

Gerlach-Smets
Final 0.08 1.95 �5.37 3.51 1.00
Quasi-final �0.57 1.55 �4.85 3.30 0.92
Quasi-real �0.89 2.57 �13.17 1.95 0.56
Real-time �1.57 2.08 �11.05 0.90 0.75

The alternative detrending methods are as described in the text. The statistics shown for each variable
are: MEAN, the mean;SD, the standard deviation; andMIN and MAX, the minimum and maximum
values.COR denotes the correlation with the final estimate of the gap for that method. All statistics are
for 1966:1–1997:4.

TABLE 2.—SUMMARY REVISION STATISTICS:
FINAL VERSUS REAL-TIME ESTIMATES

Method MEAN SD RMS MIN MAX AR

Hodrick-Prescott 0.30 1.81 1.83 �3.48 3.44 0.93
Breaking trend �0.04 1.78 1.78 �5.24 5.93 0.85
Quadratic trend 1.25 2.64 2.91 �4.20 7.65 0.96
Linear trend 4.78 1.82 5.12 0.09 10.21 0.91
Watson 2.53 1.17 2.78 �0.11 5.18 0.89
Kuttner 3.57 1.75 3.97 �0.83 7.29 0.92
Harvey-Clark 1.17 1.39 1.82 �2.07 4.25 0.92
Gerlach-Smets 1.64 1.43 2.17 �1.42 6.33 0.80

The detrending method and statistics are as described in the notes to Table 1.RMS denotes the root
mean square of the revision series shown, andAR the first-order serial correlation of the series.

TABLE 3.—SUMMARY RELIABILITY INDICATORS

Method COR NS NSR OPSIGN

Hodrick-Prescott 0.49 1.10 1.11 0.41
Breaking trend 0.82 0.69 0.69 0.22
Quadratic trend 0.58 0.97 1.07 0.35
Linear trend 0.89 0.47 1.32 0.49
Watson 0.89 0.49 1.17 0.42
Kuttner 0.88 0.48 1.09 0.49
Harvey-Clark 0.77 0.64 0.84 0.34
Gerlach-Smets 0.75 0.73 1.11 0.41

The table shows measures evaluating the size, sign, and variability of the revisions for alternative
methods.COR denotes the correlation of the real-time and final estimates (from Table 1).NS denotes the
ratio of the standard deviation of the revision to that of the final estimate of the gap.NSR denotes the ratio
of the root mean square of the revision to the standard deviation of the final estimate of the gap.OPSIGN
denotes the frequency with which the real-time and final gap estimates have opposite signs.
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all of the revision in our estimated output gap for those
quarters was due to subsequent revisions in the published
data.

Looking at the whole sample period, the data revision
is typically less than�2% of output, and its variability
tends to be small compared to that of the total revision.

FIGURE 3.

FIGURE 4.
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This in turn means that most of the revision is due to the
addition of new points to our data sample. However, data
revisions still play a role, as can be confirmed by looking
at the summary statistics of the difference between the

quasi-real and real-time estimates of the output gap
shown in Table 4.

Figures 4, 5, and 6 show results for the breaking-trend,
quadratic-trend, and HP filter models. Again we note that

FIGURE 5.

FIGURE 6.
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the total revision is often close to the size of the real-time
output gap. Further, although the data revisions seem to play
a secondary role in explaining the total revision of the
real-time estimates, some exceptions are notable.

Figures 7 and 8 show results from the four estimated UC
models. The models are paired so that each figure shows
results from a univariate model (upper panel) and its mul-
tivariate counterpart that incorporates information from a

FIGURE 7.
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Phillips curve (lower panel). Figure 7 presents the Watson
and Kuttner models. The two models provide somewhat
similar real-time estimates of the gap. As with the models
discussed earlier, the total revision is frequently close to the
size of the real-time output gap, and the data revision only
accounts for a small part of the total. Instead, changing
parameter estimates play a large role and systematically
revise potential output downwards.

The revisions of the Watson and Kuttner models resemble
those of the linear-trend model seen in figure 3. This
suggests that these models’ performance suffers from their
common assumption of a constant long-term trend in output
growth. Given the secular decline in output growth over our
sample, this assumption leads to persistent downward revi-
sions in estimates of the “constant” trend rate of growth.

Note that the addition of the Phillips curve in the Kuttner
model does not enhance the reliability of the output-gap
estimates relative to the Watson model. The figure and Table
4 show that the total revision is both more biased and more
variable for the Kuttner model than for the Watson model.
Comparison of the standard deviation of the quasi-final–
quasi-real revisions for the two models indicates that the
error introduced by the estimation of the additional param-
eters required for the Kuttner model is substantial.

In Figure 8 we consider the results from the Harvey-Clark
and Gerlach-Smets models. For the Harvey-Clark model,
both parameter-revision and data-revision effects are rela-
tively minor. In contrast, the Gerlach-Smets model exhibits
much larger parameter revision, due in part to particularly
severe parameter instability in the quasi-real estimates of
the output gap. Again, the addition of the Phillips curve does
not appear to enhance the reliability of the resulting output-
gap estimates.

C. Turning Points

It is particularly interesting to know how the different
business cycle measures do around business cycle turning
points, since these are presumably periods when an accurate
and timely estimate of the output gap (and its changes)
would be of particular interest to policymakers. To help
assess this, we calculated a number of descriptive statistics
regarding the size or the revision in real-time estimates in
the three quarters centered about each of the NBER business
cycle peaks from 1966 to 1997. Results are shown in Table
5. We see that all methods seem to underestimate the output
gap in the real-time estimates at cyclical peaks, although the
degree to which this is true varies considerably from one
method to another. The linear-trend, Watson, and Kuttner
methods make the most severe underestimates, and all but
the breaking-trend method underestimate the gap by more
than 1.5% on average.

D. Revisions and Confidence Intervals

Figures 9 and 10 present the output-gap estimates and
their confidence intervals from the four estimated UC mod-
els. The upper and middle panels show quasi-final and final
estimates of the output gap with their corresponding 95%
confidence intervals. The lower panel shows the final–quasi-
final and total (final–real-time) revisions together with two
sets of confidence intervals, which alternatively ignore (Kal-
man) and include (Ansley-Kohn) the estimated effects of
parameter uncertainty.

Comparing confidence intervals for the Harvey-Clark and
Gerlach-Smets models in figure 9, we see that the Kalman
bands are somewhat narrower for the Gerlach-Smets model,
but the Ansley-Kohn bands are considerably wider, on
average.9 This suggests that, in the absence of parameter
uncertainty, incorporating information from the Phillips
curve based on the final data helps narrow the uncertainty of
the estimated output gaps. However, this narrowing is re-
versed when parameter uncertainty is taken into account.

Perhaps more importantly, both sets of confidence bands
include zero in virtually every quarter from 1966 to 1997.

9 For the 1966:1–1997:4 period shown in the figure, the average Kalman
standard errors for the quasi-final estimates from the Harvey-Clark and
Gerlach-Smets models are 2.32% and 1.93%, respectively. By contrast,
the corresponding average Ansley-Kohn standard errors are 2.46% and
8.78%.

TABLE 4.—DETAILED BREAKDOWN OF REVISION STATISTICS

Method MEAN SD RMS MIN MAX AR

Hodrick-Prescott
Final–real-time 0.30 1.81 1.83 �3.48 3.44 0.93
Final–quasi-real 0.16 1.59 1.60�3.49 3.12 0.97
Quasi-real–real-time 0.14 0.65 0.66�1.05 2.95 0.66

Breaking trend
Final–real-time �0.04 1.78 1.78 �5.24 5.93 0.85
Final–quasi-real �0.38 1.47 1.51 �3.96 1.99 0.92
Quasi-real–real-time 0.34 1.05 1.10�2.30 4.14 0.76

Quadratic trend
Final–real-time 1.25 2.64 2.91 �4.20 7.65 0.96
Final–quasi-real 1.00 2.44 2.63�1.80 5.27 0.99
Quasi-real–real-time 0.23 1.04 1.06�2.57 4.08 0.76

Linear trend
Final–real-time 4.78 1.82 5.12 0.09 10.21 0.91
Final–quasi-real 3.95 1.81 4.34 0.07 6.43 0.96
Quasi-real–real-time 0.80 1.21 1.44�1.67 4.14 0.79

Watson
Final–real-time 2.53 1.17 2.78 �0.11 5.18 0.89
Final–quasi-final 0.71 0.75 1.03 �0.68 2.17 0.94
Quasi-final–quasi-real 1.45 0.85 1.68�0.23 2.62 0.95
Quasi-real–real-time 0.37 1.13 1.19�1.96 3.54 0.86

Kuttner
Final–real-time 3.57 1.75 3.97 �0.83 7.29 0.92
Final–quasi-final 0.42 0.43 0.60 �0.63 1.29 0.91
Quasi-final–quasi-real 2.40 1.49 2.82�0.39 4.86 0.97
Quasi-real–real-time 0.74 0.86 1.14�1.06 3.45 0.83

Harvey-Clark
Final–real-time 1.17 1.39 1.82 �2.07 4.25 0.92
Final–quasi-final 0.96 1.08 1.44 �1.06 3.23 0.94
Quasi-final–quasi-real �0.05 0.37 0.37 �1.08 0.93 0.91
Quasi-real–real-time 0.27 0.61 0.66�0.81 2.85 0.84

Gerlach-Smets
Final–real-time 1.64 1.43 2.17 �1.42 6.33 0.80
Final–quasi-final 0.65 0.79 1.02 �0.88 2.57 0.93
Quasi-final–quasi-real 0.32 2.08 2.09�3.48 8.73 0.69
Quasi-real–real-time 0.68 1.94 2.05�7.88 5.67 0.61

See notes to Tables 1 and 2.
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This is true for both the final and quasi-final gaps and for
both models. Thus, these gap estimates are virtually never
significantly different from zero in this sample. The situa-
tion must be worse for real-time estimates, since these face
additional effects of parameter uncertainty and data revision
not allowed for in these bands.

Examining the revisions in the lower panel suggests
that neither the final plus quasi-final nor the total revi-
sions appear unusually large relative to their confidence
intervals. This impression is confirmed by the results in
table 6. The first two columns give theRMS revisions
(final–real-time, from table 2) and the mean of the Ansley-

FIGURE 8.
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Kohn standard errors for the revisions. The third column
reports the test statistic for the null hypothesis that these
revisions are consistent with these standard errors. The
statistic is approximately normally distributed, so that
rejection against the one-sided alternative that the revi-
sions are larger than expected requires large positive
values. For the Harvey-Clark and Gerlach-Smets models,
it shows no significant evidence that the revisions are
larger than one should expect.

TABLE 5.—REVISION STATISTICS AT NBER PEAKS:
FINAL VERSUS REAL-TIME ESTIMATES

Method MEAN SD RMS MIN MAX

Hodrick-Prescott 2.38 0.76 2.49 0.64 3.44
Breaking trend 0.67 0.55 0.86 �0.27 1.35
Quadratic trend 2.86 2.07 3.48 �0.95 5.20
Linear trend 5.40 1.38 5.56 3.57 7.50
Watson 2.83 1.25 3.08 1.19 4.86
Kuttner 4.37 1.29 4.55 2.11 6.58
Harvey-Clark 1.82 0.97 2.04 0.42 3.80
Gerlach-Smets 1.82 0.84 1.99 0.47 3.06

The revision is defined as the difference between the final and the real-time estimates. For each
method, the sample used to compute the revision statistics is limited to the three quarters centered around
each of the NBER peaks from 1966 to 1997. See also notes to Tables 1 and 2.

FIGURE 9.

The upper and middle panels show the quasi-final and final estimates of the output gap, and the bottom panel shows the total and final–quasi-final revisions for the indicated UC models. Two sets of 95% confidence
intervals are also shown. Kalman is based on the Kalman-filter variances assuming no parameter uncertainty. Ansley-Kohn is based on an approximationthat also incorporates parameter uncertainty.
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Figure 10 presents the corresponding estimates and con-
fidence bands for the Watson and Kuttner models.10 The
gaps for the Watson model are (with few exceptions) not
significantly different from zero. The Kuttner model gives
much more evidence of significant output gaps, including,
perhaps surprisingly, most of the first half of the 1990s.

The final–quasi-final revision falls within the Kalman
bands in virtually every quarter for both models. However,

10 The average Kalman (Ansley-Kohn) standard errors for the quasi-final
estimates from the Watson and Kuttner models are 1.81% (2.42%) and
1.83% (2.20%), respectively.

FIGURE 10.

See notes to Figure 9.

TABLE 6.—STANDARD ERRORS ANDTEST FORTOTAL REVISIONS

Method
Revision

RMS
MeanSE:

Ansley-Kohn
Revision Size
Test Statistic

Watson 2.79 1.88 2.84*
Kuttner 3.98 1.32 3.23*
Harvey-Clark 1.82 1.75 0.07
Gerlach-Smets 2.18 3.20 �1.25

The root mean square (RMS) of the total revisions is from Table 2. The mean standard error (SE) and
test statistic are computed for 1966:1–1997:4 as detailed in the Appendix. The test statistic is for the
hypothesis that the size of the revisions is consistent with the estimated standard errors against the
alternative that they are bigger, on average.

* Indicates rejection at the 0.1% significance level.
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the total revisions are frequently outside the Ansley-Kohn
bands. This is reflected by the test statistics in table 6, which
strongly reject the null in favor of the alternative that total
revisions are more volatile than these standard errors pre-
dict.11 This suggests that the calculated confidence intervals
understate the degree of uncertainty associated with real-
time estimates of the output gap for these two models.

V. Conclusions

We have examined the reliability of several detrending
methods for estimating the output gap in real time. In doing
so, we have focused on the extent to which output-gap
estimates are updated over time as more information arrives
and data are revised. This gives us results which are robust
to alternative assumptions about the structure of the econ-
omy and give lower bounds on the estimation error associ-
ated with any given method.

Our results suggest that the reliability of output-gap
estimates in real time tends to be quite low. The revisions
are of the same order of magnitude as the estimated output
gap itself for all the methods examined. The size of the
measurement error is compounded by a high degree of
persistence of the revisions. Although these results are based
on a mechanical application of simple models, they mirror
results based on the revision of output-gap series produced
by the Federal Reserve staff during the 1980s and early
1990s.

For UC models, we find that multivariate methods that
incorporate information from inflation to estimate the output
gap are not more reliable than their univariate counterparts.
Though the information from multivariate methods may be
useful in principle, their added complexity introduces addi-
tional sources of parameter uncertainty and instability
which may offset the potential improvement in real time.

Although important, the revision of published data does
not appear to be the primary source of revisions for the
methods we examined. Rather, the bulk of the problem is
due to the pervasive unreliability of end-of-sample esti-
mates of the output trend. Thus, even if the reliability of the
underlying real-time data were to improve, real-time esti-
mates of the output gap would remain unreliable.

Our findings suggest that output-gap mismeasurement
may pose a serious policy problem, one that can be espe-
cially acute for economic stabilization policy. Policy exper-
iments in macroeconometric models suggest that a strong
systematic policy response to the output gap could greatly
stabilize economic fluctuations—provided a reliable mea-
sure of the output gap is available for policymakers to use.12

However, policy actions based on incorrect measures of the
output gap can inadvertently cause instability. Policy design
based on the erroneous presumption of reliability can lead to

flawed policy recommendations.13 In light of the unreliabil-
ity of real-time estimates of the output gap, great caution is
required in their use.
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APPENDIX: CONFIDENCE INTERVALS
FOR UC MODELS

A. Revisions

Let St�� denote the estimate of the unobserved state vectorSt condi-
tional on the parameter vector� of the UC model as well as on all data
available through time�. Since we do not observe�, we replace it by its
maximum likelihood estimator�̂. For convenience, we will refer toSt�t(�̂)
as thefiltered estimateSt�t, and toSt�T(�̂) as thesmoothed estimateSt�T. For
a given�̂, the revision in this estimate may be defined asRt�T � St�T �
St�t.14

If we havePt�t � Var (St�t � St) and Pt�T � Var (St�T � St), then it
follows that

Pt�t � Var �St�t � St� � Var ��St�t � St�T� � �St�T � St��,

Pt�t � Var �Rt�T� � Pt�T � Cov �St�t � St�T, St�T � St�

(A.1)

Provided this last term is zero, the variance of the revision must be

Var �Rt�T� � Pt�t � Pt�T. (A.2)

St�t � St�T will be orthogonal toSt�T � St, becauseSt�T incorporates all
information available up to timeT.15 In what follows, we use equation
(A.2) as the basis of our calculations for the confidence intervals sur-
rounding revisionsRt�T.

B. Standard Errors

If � were known,Pt�t(� ) and Pt�T(� ) might be calculated using the
usual Kalman-filter equations. In reality, however, we have only�̂, and its
estimation uncertainty therefore adds to the uncertainty in our estimated
output gaps. We therefore require estimates ofPt�t(�̂) � Pt�t(� ) and
Pt�T(�̂) � Pt�T(� ).

Hamilton (1986) suggests a Bayesian simulation approach to the
problem. It drawsn i.i.d. parameter vectors�i from a multivariate normal
distribution N(�̂, �̂�),16 then uses the simulated values of (1/n)
¥ i�1

n (St�t(�̂) � St�t(�i))2 and (1/n)¥ i�1
n (St�T(�̂) � St�T(�i))2 as estimates of

Pt�t(�̂) � Pt�t(� ) andPt�T(�̂) � Pt�T(� ).17 Alternatively, Ansley and Kohn
(1986) suggest using the first-order approximation.18

Pt�t��̂� � Pt�t�� � � � d

d�
St�t�� �����̂� �̂�� d

d�
St�t�� �����̂� �,

Pt�T��̂� � Pt�T�� � � � d

d�
St�T�� �����̂� �̂�� d

d�
St�T�� �����̂� �.

(A.3)

Quenneville and Singh (2000) stress that both of these methods are simply
approximations, but their simulations suggest that the Ansley-Kohn ap-
proach performs better in small samples.19 We experimented with both
methods but found the Hamilton approach problematic in our case. For
some parameter draws with some models, the output gap became explo-
sive, generating extremely large standard errors or numeric overflows. For
these reasons, the results we report are based exclusively on the Ansley-
Kohn method.

As noted in equation (A.2), the implied variability ofRt�T is simply the
difference of the variances of the filtered and smoothed estimates. When
� is known, the Kalman filter guarantees that this difference is always
positive semidefinite. The same cannot be said of the approximations
above forPt�t(�̂) andPt�T(�̂); neither Hamilton’s nor Ansley and Kohn’s
method guaranteesPt�t(�̂) � Pt�T(�̂).20 However, a logical extension
which guarantees this result is to simply use

Var �Rt�T� � �Pt�t��� � Pt�T���� �
d

d�
�St�T��� � St�t��������̂�̂�

�
d

d�
�St�T��� � St�t���������̂. (A.4)

Accordingly, (A.4) is used to generate the implied confidence intervals
for the revisions under the null hypothesis thatRt�T � N(0, Var (Rt�T)).

C. Test Statistics

Equation (A.4) allows us to construct a confidence interval for the
revision at any specific point in time. We also wish to test whether the
variability of Rt�T over the entire observed sample is consistent with what
we would expect from our UC model and its parameter estimates. One
way to test this would be to standardize the revisions by their estimated
standard errors�t�T � �Var (Rt�T) and test the variance of the resulting
process. A problem here is thatRt�T is almost certain to be serially
correlated.Wecorrectforthisusingaheteroskedasticity-andautocorrelation-
consistent (HAC) estimator along the same lines as Diebold and Mariano
(1995). Specifically, we construct the test statistic

D � �1

T �
t�1

T

�Rt�T/�t�T�
2 � 1���1, (A.5)

which has an asymptotic standard normal distribution under the null
hypothesis thatE(Rt�T) � 0 and E(Rt�T

2) � �t�T
2. Here, � is a HAC

estimate of the standard deviation of (Rt�T/�t�T)2. Approximatep-values
for D were simply calculated using the standard normal cdf. For the
results reported in Table 6, we computed the statistic using eight lags and
a Bartlett kernel. We found similar results using a Parzen kernel and using
lag truncation parameters from 5 to 10.

14 If �̂ is fixed at its full-sample (final) estimate, this corresponds to the
revision from the quasi-final to the final estimate of the state vector.

15 More generally, this would continue to hold if we replacedSt�t(�̂) with
St�t(� ) andSt�T(�̂) with St�T(� ) for any arbitrary�.

16 �̂� is simply the estimated variance-covariance matrix of�̂ about its
true value�.

17 See Hamilton (1994, section 13.7, pp. 397–399) for a more detailed
exposition.

18 See Harvey (1989, p. 149). These derivatives are typically not avail-
able in closed form, but may be easily computed numerically.

19 Quenneville and Singh (2000) and Pfeffermann and Tiller (2000) both
suggest more sophisticated approximations. However, the former’s simu-
lations show that their method works only about as well as Ansley and
Kohn’s, while the latter method is too computationally intensive to be
practical in our context.

20 In practice, this proved to be a problem for both methods, although the
problem was more common for the Hamilton method.
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