Do Intangible Assets Explain High U.S. Foreign Direct Investment Returns?

Benjamin Bridgman*
Bureau of Economic Analysis

July 1, 2008

Abstract

U.S. investors abroad receive a higher return on their assets than their counterparts that invest in the United States. I examine the degree to which excluding intangible assets from the measurement of foreign direct investment can account for this gap. Using a growth accounting framework, I estimate intangible capital stocks for foreign-owned affiliates. Accounting for intangible assets reduces the long-run gap in returns since U.S. affiliates abroad hold a relatively large share of their assets as intangible capital. American owned foreign affiliates are taxed at the relatively high U.S. corporate rate, giving them an incentive to hold more intangible assets relative to those owned by other countries. I find that multinational tax policy is quantitatively consistent with both the size and the persistence of the gap.

*I thank Dennis Fixler, Ralph Kozlow, Ellen McGrattan, Obie Whichard, Dan Yorgason and seminar participants at the 2007 APET meetings, 2008 Midwest Macro Meetings and 2nd World Congress on Index Measures for comments and Andrew Miller, Anna Rahkman and Chris Zwicker for research assistance. The views expressed in this paper are solely those of the author and not necessarily those of the U.S. Bureau of Economic Analysis or the U.S. Department of Commerce. Address: Department of Commerce, Bureau of Economic Analysis, Washington, DC 20230. email: Benjamin.Bridgman@bea.gov. Tel. (202) 606-9991. Fax (202) 606-5366.
1 Introduction

Measured U.S. net investment position is negative and has been so for over two decades. However, as shown in Figure 1, U.S. net earnings on foreign-owned assets has been positive despite the fact that the net investment position has been growing more negative over this period.

Figure 1: U.S. Net Investment Position and Net Income on Foreign-Owned Assets, 1976-2006

The reason for the continued positive return is that American investors receive higher returns on their investments abroad than their foreign counterparts do on their U.S. investments. The average inward return on foreign assets between 1982 and 2004 was 4.5 percent compared to 5.7 percent for outward investment\(^1\). American investors also receive higher returns on U.S. investments than foreigners.

The gap in returns is most severe in direct investment. As can be seen from Figure 2, the gap is due to a large gap in returns for FDI. From 1982 to 2004, outward

\(^1\)In the paper, “inward” and “outward” are defined from the perspective of the United States.
direct investment earned a 7.6 percent return compared to 2.2 for inward FDI. Non-FDI assets do not show a gap, with inward investment earning an average return of 5.2 percent compared to 4.9 for outward investment. The gap in rates of return on foreign investment has been a long standing puzzle. For example, foreign manufacturing firms in the United States have had lower returns than U.S. firms since at least 1951 (Laster & McCauley 1994). In no year do foreign firms have a higher return and the gap has widened with time. Other authors that have analyzed this issue include Landefeld, Lawson & Weinberg (1992), Laster & McCauley (1994), Mataloni (2000), and Hung & Mascaro (2004).

This gap has generated a great deal of interest recently. While returns need not be equal across countries at any given time, the size and persistence of the gap make it seem quite anomalous. Understanding the nature of the gap is important for analyzing a number of economic issues, such as whether the U.S. current account deficit is sustainable.

Many explanations of this puzzle have been advanced. These include risk compensation, the use of transfer pricing and other methods to avoid taxation (Hines 1999), the use of the dollar as an international standard (Gourinchas & Rey 2006), and provision of liquidity (Caballero, Farhi & Gourinchas 2008), among others. Hausmann & Sturzenegger (2007) suggest that the “dark matter” they use to explain the gap comes from three sources: risk compensation, implicit payment for financial services, and unmeasured intangible capital. This paper explores how much of the gap can be attributed to differences in intangible asset holdings that result from MNC corporate income taxation.

The national income and product accounts do not include most intangible assets, while they do pick up the returns to these assets. Therefore, measured returns are likely to be overstated for countries that invest more in intangible capital relative to those that invest in tangible capital. Portfolio investment captures intangible capital since the price of a share includes the value of its intangible assets (Lev & Sougiannis 1996). Since there is no market price, non-traded firms are valued by a proxy: the purchase price of physical assets adjusted for country specific asset price changes.

The way that MNCs are taxed give an incentive for U.S. based MNCs to hold
more of their assets as intangibles. Since intangible investments are expensed while tangible investments are not, corporate income taxes give an incentive to shift asset holdings into intangibles. The United States has had relatively high corporate income taxes. In addition, the United States taxes the worldwide profits of its MNCs at the U.S. rate, with a credit for payments abroad. Therefore they are subject to a repatriation
tax when profits are returned from lower tax jurisdictions. Since this tax payment is a purely domestic transaction, it is not counted in the balance of payments accounts.

I use a growth accounting framework similar to that used by McGrattan & Prescott (2005) to calculate the contribution of the taxation of MNCs on the returns gap through the accumulation of intangible capital.

I find that worldwide taxation accounts for between a third to three quarters of the returns gap in FDI returns. Applying the results to the overall asset portfolio, the overall gap in returns is reduced by at least a half. The results suggest that intangibles are a first order cause of the gap in returns.

I also apply the model to the United Kingdom, which has developed a situation similar to the United States (a negative international investment position with positive returns due to higher outward FDI returns). The UK is also a worldwide taxation country. I find that intangibles are quantitatively important for the UK, accounting for nearly half the gap in FDI asset returns.

This paper is part of a growing literature examining the rates return puzzle, many of which have been discussed above. It is closest to McGrattan & Prescott (2008), which also uses a growth accounting framework to examine global imbalances. This paper differs in emphasis. McGrattan & Prescott (2008) ask whether the U.S. current account deficit is sustainable. In their simulations, they generate the gap in returns from differential openness to foreign investment, while this paper examines tax policy. Kapicka (2008) uses a similar framework to identify the degree of openness to intangible “technology capital.” This paper differs from these papers since it does have movement of intangibles across countries. The impact of openness is discussed below.

Hausmann & Sturzenegger (2007) also examine adding intangible assets, which they colorfully refer to as “Dark Matter.” They revalue assets assuming all assets return a reference rate of 5 percent. This paper differs in approach. I use a growth accounting methodology to examine the degree to which the rate of return gap puzzle can be explained by intangible assets.

The rest of the paper is organized as follows: Section 2 discusses intangible assets. Section 3 presents the model. Section 4 presents the theoretical results while Section 5 presents the empirical results. Section 6 discusses the UK case and Section 7 the
2 Why Intangible Capital?

In this paper, I investigate the how much of the gap can be explained by unmeasured intangible assets. There are a number of reasons to believe intangible assets may help resolve the puzzle.

The intangible assets explanation is specific to FDI. Returns to portfolio investment do not show the large gap that direct investment does. When valuing portfolio investment, the market takes into account both tangible and intangible assets owned by the firm. This is not true for direct investment. (By using stock market indices to revalue the book value of assets, BEA methodology will capture changes in the relative holding of intangible assets. However, it will not capture persistent differences in the the relative holding of assets types.)

Omitting intangibles can generate very high rates of return on assets. For example, the return on tangible assets for intangible intensive companies such as Coca Cola is around 80 percent. Multinational companies (MNCs) account for most R&D expenditures, suggesting that omitting intangibles may be particularly distorting to the valuation of foreign-owned affiliates.

There is reason to believe that U.S. MNCs hold more of their assets as intangibles. Doms & Jensen (1998) find that U.S. MNC’s manufacturing plants are more productive (as measured by total factor productivity) and pay higher wages than foreign-owned U.S. plants. This superior performance is consistent with U.S. MNCs holding relatively higher portfolios of intangible assets. Girma, Thompson & Wright (2002) also find that U.S. owned plants in the United Kingdom are the most productive and pay higher wages.

Also, the United States is not the only country to show a gap. Meissner & Taylor (2006) finds that gaps occur in many countries. As mentioned above, the United Kingdom has developed a situation similar to the United States. Therefore, general explanations are more likely relative to those that are specific to the United States, such as the Exorbitant Privilege.
2.1 Alternative Explanations

A number of theories have been put forward to explain the gap. I consider each in turn.

Higher rates of return may be a reflection of the higher risk that U.S. investments face. The United States is a mature market and investors looking for higher returns may look abroad (Hausmann & Sturzenegger 2007). Hung & Mascaro (2004) examine whether the countries U.S. MNCs invest in are risky by looking at their bond ratings. They find that the risk gap is small since most investment is in developed countries with similar risk profiles. However, individual projects that they invest in may be riskier.

The return gap may reflect transfer pricing to reduce profits in high tax countries (Hines 1999). While identifying this effect is difficult, attempts to do so have found only minor revenue losses on the order of one percent of tax liabilities (U.S. Department of the Treasury Internal Revenue Service 1999, Bernard, Jensen & Schott 2006).

Gourinchas & Rey (2006) suggest that the higher return reflects the “Exorbitant Privilege,” a willingness of foreigners to hold dollar denominated assets since the dollar is an important international currency. This theory does not explain why the gap appears in other countries or why it only affects FDI.

A related theory is that the gap reflects unmeasured exports of U.S. financial services that arise from the United States’s superior financial depth (Hausmann & Sturzenegger 2007, Caballero et al. 2008). Curcuru, Dvorak & Warnock (2008) find that there is no gap in portfolio assets once revisions in the data are properly accounted for and that the gap only exists in FDI assets.

McGrattan & Prescott (2008) also argue that the returns reflect differential investments in intangible capital, but identify the cause as less financial openness in the United States. This paper is similar in that it also identifies intangibles as the source of the gap, though the mechanism for the difference is taxation rather than financial openness. This explanation is discussed in more detail below.

2.2 What are Intangible Assets?

The intangible assets identified in this paper are those that are created and held by the firm. It does not include intangible public capital such as rule of law and political
stability. (Such intangible capital figures prominently in World Bank (2006)). While these may affect returns, intangible capital is identified in the model using the incentives of firms to accumulate such capital. There are a number of different such intangible assets. They include patents, trademarks, trade secrets, and knowledge about organizing a firm (organization capital).

Although investment in intangible capital is accepted as a legitimate investment activity by national accountants, it is generally excluded due to the difficulty in measuring its production and depreciation. The 1993 System of National Accounts manual, which contains the basic methodology for computing national accounts for most countries in the world, says of R&D that “[i]n order to classify such activities as investment type it would be necessary to have clear criteria for delineating them from other activities, to be able to identify and classify the assets produced, to be able to value such assets in an economically meaningful way and to know the rate at which they depreciate over time. In practice, it is difficult to meet all these requirements. By convention, therefore, all the outputs produced by research and development ... are treated as being consumed as intermediate inputs even though some of them may bring future benefits.”

Some intangible assets have been added to the U.S. national accounts. The most notable is computer software. The United States also produces periodic R&D satellite accounts (Okubo, Robbins, Moylan, Sliker, Schultz & Mataloni 2006), but does not currently incorporate it into the main accounts (Carson, Grimm & Moylan 1994).

3 Model

3.1 Households

There are I countries, each with a representative household with preferences represented by the utility function:

$$\sum_{t=0}^{\infty} \beta^t u(c^i(t))$$

(1)

where $c^i(t)$ is per capita consumption in country i. Each household is endowed with n^i units of labor in each period. The price of consumption in country i is p^i. Lowercase
variables refer to per capita quantities while uppercase variables are aggregates. Each
country grows at the common growth rate γ_N.

3.2 Production

Each country has a representative multinational that has foreign affiliates in all other
countries. Output of country i’s parent is denoted by y_i. There are foreign-owned
affiliates in each country j, owned by the parent company in country i, whose output is
denoted by y_j^i. Output is produced by a Cobb-Douglas production function:

$$y_j^i \leq K_m^{\alpha_m} K_u^{\alpha_u} (A(t) * N)^{1-\alpha_m-\alpha_u}$$

(2)

where K_m and K_u is tangible (measured) and intangible (unmeasured) capital respectively, N_j^i is labor used and A is labor augmenting technological change. Output can be
used for investment or consumption:

$$C_j^i(t) + X_{m,j}^i + X_{u,j}^i \leq Y_j^i$$

(3)

The inputs into production, capital and labor, are immobile. Consumption can
be costlessly traded to any country. The common productivity trend is given by $A(t) =
(1 + \gamma_A)^t$.

The laws of motion for capital are:

$$K_{m,j}^i(t + 1) \leq K_{m,j}^i(t)(1 - \delta_m) + X_{m,j}^i(t)$$

(4)

and

$$K_{u,j}^i(t + 1) \leq K_{u,j}^i(t)(1 - \delta_u) + X_{u,j}^i(t).$$

(5)

Labor N in country i is allocated across the local parent and foreign-owned affil-
iates:

$$N_j(t) = \sum_{i=1}^{J} N_j^i(t)$$

(6)
3.3 Taxation

Households pay taxes on dividends d^i from their home multinational firm $\tau^{i,d}$. The proceeds of each country’s taxes are rebated to the domestic household as lump sum transfer $\Psi^i(t)$. Each household i faces the budget constraint:

$$\sum_{t=0}^{\infty} p^i(t)c^i(t) \leq \sum_{t=0}^{\infty} p^i(t) \{ (1 - \tau^{i,d})d^i(t) + w^i(t)n^i(t) + \Psi^i(t) \}$$

(7)

Dividends are given by:

$$d^i(t) = \sum_j p_j(t) \{ Y^i_j(t) - X^{u,i}_j(t) - X^{m,i}_j(t) - w^i(t)N^i_j(t) - (\tau^i_j + \tau^{i,f}_j)\pi^i_j \}$$

(8)

where τ^i_i is the government in country i’s corporate income tax on firms in i, $\tau^{i,f}_j$ is the corporate income tax on foreign profits of affiliate in country j of country i’s MNC and

$$\pi^i_j = Y^i_j(t) - \delta_m K^{m,i}_j(t) - X^{u,i}_j(t) - w_j(t)N^i_j(t)$$

(9)

Corporate income of foreign affiliates may be taxed both in the country it is based in and in the parent’s home country.

The government maintains budget balance in each period, so its budget constraint is given by:

$$\Psi^i(t) \leq p^i(t)[\tau^{i,d}d^i(t) + \sum_{j=1}^{I} \{ \tau^i_j\pi^i_j + \tau^{i,f}_j\pi^i_j \}]$$

(10)

3.4 Equilibrium

The representative household in country i’s problem is to maximize utility (equation 1) subject to the budget constraint (equation 7). The representative multinational’s problem is to maximize $\sum_{t=0}^{\infty}(1 - \tau^{i,d})d^i(t)$, where $d^i(t)$ is given by equation 8, subject to the laws of motion (equations 5 and 4).

The definition of equilibrium is standard.

Definition 3.1. An equilibrium is sequences of prices $\{p^i(t), w^i(t)\}$ and quantities $\{Y^i_j(t), C^i_j(t), K^{m,i}_j(t), K^{u,i}_j(t), X^{m,i}_j(t), X^{u,i}_j(t), d_j(t), N^i_j(t)\}$ such that
1. Households choose \{C^i\} to solve their problem,

2. Firms choose \{X_j^{m,i}(t), X_j^{u,i}(t), d_j(t), N_j^i(t)\} to solve their problem,

3. Allocations are feasible.

4 Model Results

As documented above, the gap in returns is a long standing phenomenon. In this section, I show that taxation may be an important part of the explanation of the returns gap.

High rates of corporate income taxes increase the incentive to hold intangible assets. Since investment in intangible capital can be expensed, investment in intangible assets reduce the tax burden. Higher taxes reduce the marginal cost of this investment. From the solution to the firm’s problem, we have:

\[
1 - \tau_j^i - \tau_j^{i,f} = \frac{\alpha_u Y_j^i}{K_j^{u,i}} - \delta_u - \frac{\alpha_m Y_j^i}{K_j^{m,i}} - \delta_m
\]

(11)

With higher taxes, the firm sets the marginal product of intangible capital lower relative to that of tangible capital implying that \(K_u^i\) is higher relative to \(K_m^i\). Worldwide taxes effectively make the tax rates faced by an MNC the maximum of the foreign and domestic rates. Countries with high corporate tax rates and worldwide taxation are likely to hold more of their assets as intangibles. (In effect, high corporate income taxes act as a spur to R&D!) The United States has been on the high end of corporate tax rates, so it is more likely to hold intangible assets.

4.1 Taxes and Returns

There are two basic systems for taxing corporate income of multinationals: territorial and worldwide. Under territorial taxation, foreign subsidiaries pay the taxes of country they are located in and do not have any additional tax burden in the parent country.

Worldwide taxation treats the entire MNC as a unified company that faces taxation in the parent country. All profits in all countries that the MNC has affiliates in are
Table 1: Taxation of Multinationals: Average 1990-2001

<table>
<thead>
<tr>
<th>Country</th>
<th>Tax Basis</th>
<th>Avg. CIT</th>
<th>Data Avg. CIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canada</td>
<td>Territorial</td>
<td>35.9</td>
<td>34.4</td>
</tr>
<tr>
<td>France</td>
<td>Territorial</td>
<td>36.9</td>
<td>33.7</td>
</tr>
<tr>
<td>Germany</td>
<td>Territorial</td>
<td>54.6</td>
<td>34.2</td>
</tr>
<tr>
<td>Japan</td>
<td>Worldwide</td>
<td>47.6</td>
<td>50.3</td>
</tr>
<tr>
<td>Netherlands</td>
<td>Territorial</td>
<td>35.0</td>
<td>13.4</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>Worldwide</td>
<td>32.0</td>
<td>24.8</td>
</tr>
<tr>
<td>United States</td>
<td>Worldwide</td>
<td>39.1</td>
<td>39.1</td>
</tr>
</tbody>
</table>

subject to tax in their parent’s country. These affiliates must pay taxes in their country of residence on the profits earned locally. These local tax payments are deducted from the total tax bill of the MNC. (Otherwise, an affiliate could face over 100 percent taxation). If the tax rate in the parent’s country is lower than in that of the affiliate, the affiliate is not subject to additional tax and the “overpayment” may be used to offset tax burden of other affiliates. If the tax rate is higher, the difference must be paid to the parent’s home government. However, the difference is only due when the profits are repatriated in the home country. Table 1 shows the tax basis and average rates for the largest investors in the United States.

The return data is net of taxes, so ROA should be equalized. However, worldwide taxation can introduce gaps in rates of return that cause the rates of return in the data to deviate from that of the theory. The model predicts that after-tax rates of return are equalized across affiliates:

\[(r_{j}^{m,i} - \delta_{m})(1 - \tau_{j}^{i} - \tau_{j}^{i,f}) = (r_{j}^{m,i} - \delta_{m})(1 - \tau_{j}^{i} - \tau_{j}^{i,f})\] (12)

They are also equalized between affiliates and with the parent:

\[(r_{j}^{m,i} - \delta_{m})(1 - \tau_{i}^{j}) = (r_{j}^{m,i} - \delta_{m})(1 - \tau_{j}^{i} - \tau_{j}^{i,f})\] (13)
With worldwide taxation, the repatriation taxes are not recorded in the affiliates’ accounts: \(\tau_{i,f} \) is not deducted from their profits since the balance of payments is concerned with cross border transactions. Repatriation taxes are payments of domestically owned firms to the home government. Therefore, some of the tax paid on affiliate profits is recorded in the parent’s accounts. This shift increases the affiliates’ measured return on assets and reduces the parent’s returns, since returns are calculated net of taxes. Therefore, we have:

\[
(r^m_{i,i} - \delta_m)(1 - \tau_i) - \sum_j \frac{K_{j,i}}{K_{i,i}} \tau_{j,f}(r^m_{j,i} - \delta_m) \leq (r^m_{i,i} - \delta_m)(1 - \tau_j) \quad (14)
\]

As shown in Figure 3, the gap between rates paid by U.S. affiliates abroad and the U.S. tax rate has been growing. Corporate tax rates around the world have been falling during this period and investment has shifted to lower tax countries.

Figure 3: Foreign Corporate Income Tax Rates, 1982-2005
4.2 Balanced Growth Path

To examine the quantitative effects of multinational taxation, I calculate and calibrate a balanced growth path equilibrium.

With population growth γ_N, the economy grows at $1 + \gamma_Y = (1 + \gamma_A) \ast (1 + \gamma_N)$. Per capita income grows at the common productivity trend. The composition of an affiliate’s asset portfolio is given by:

$$\frac{K_u}{K_m} = \frac{\alpha_u}{\alpha_m} \left(\frac{\frac{1+\gamma_A}{\beta} - 1}{\frac{1+\gamma_A}{\beta} - 1 + \delta_u} \right) \left(1 + \gamma_N \right)$$

(15)

Higher taxes shift the affiliate’s assets into intangibles. In the steady state, higher corporate taxes lead to higher pre-tax returns as measured by profits over measured capital $\frac{\pi}{K^m}$. When repatriation taxes are not included, this effect induces a measured rate of return gap.

Proposition 4.1. On BGP, if country i has worldwide taxation and $\tau_{i,f} > 0$, then $\frac{(1-\tau_{i,f})\pi_i}{K_{i,m}^i} > \frac{(1-\tau_{i})\pi_i}{K_{j,m}^i}$, measured after-tax rate of return of country i’s affiliate in territorial taxation country j is higher than j’s affiliates in country i.

Proof. The return on measured assets is given by:

$$\frac{(1-\tau_{i,f})\pi_i}{K_{i,m}^i} = \frac{1}{\alpha_m} \left(\frac{\frac{1+\gamma_A}{\beta} - 1}{1 - \tau_{i,f} + \delta_m} \right) (\alpha_m + \alpha_u - \alpha_u (\frac{\delta_u + \gamma_N}{1 + \gamma_A - 1 + \delta_u}) - \delta_m)$$

(16)

The tax rate faced by both affiliates is $\tau_{j} + \tau_{i,f} = \tau_{i}^i$ but the $\tau_{i,f}$ portion is not measured for country j.

Higher taxes drive up the measured rate of return on assets since there are more intangible assets that are earning returns attributed to tangible assets. Worldwide taxes cause a measured gap since not all affiliates in a country are paying the same tax rate, with territorial tax countries paying the local rate and worldwide tax countries paying their home rate if it is higher. There is a further effect since the Balance of Payments omits the repatriation tax payment since it is a local transaction.
Table 2: Parameters

<table>
<thead>
<tr>
<th>α_m</th>
<th>α_u</th>
<th>δ_m</th>
<th>δ_u</th>
<th>τ</th>
<th>β</th>
<th>γ_A</th>
<th>γ_N</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.23</td>
<td>0.1</td>
<td>0.05</td>
<td>0.07</td>
<td>0.39</td>
<td>0.98</td>
<td>0.012</td>
<td>0.01</td>
</tr>
</tbody>
</table>

5 Quantitative Results

This section uses the insights of the previous section to adjust rates of return and examine the quantitative effects of different tax treatment. I adjust for the presence of intangible capital and repatriation taxes.

To get a baseline estimate of the effect of taxes on the returns gap, I calibrate the model to estimate intangible capital stocks on the balanced growth path. Capital shares, growth rates and depreciation rates are drawn from McGrattan & Prescott (2008). The tax rate is the average CIT in the United States, including state taxes. Since U.S. affiliates face repatriation taxes, they are taxed at the domestic rate. Tangible capital data are drawn from the BEA’s surveys on foreign direct investment. I use value added to measure output Y_i and net property, plant and equipment plus inventories to measure tangible capital $K_{j,m,i}$.

I consolidate FDI across countries to form inward and outward FDI with respect to the United States. Outward investment is subject to repatriation taxes. Over the sample period, U.S. affiliates paid an average of 24.9 percent in corporate income taxes to foreign governments. This implies that the repatriation tax that they face is 14.2 percent.

I do not make any such adjustment for foreign owned affiliates. Most major investor countries use territorial taxation, so are not subject to repatriation taxes. The major investor country with worldwide taxation, the United Kingdom, has a lower tax rate so is also not subject to repatriation taxes on their U.S. investments.

Table 3 compares the model predictions for measured rates of returns to the data. Adding intangible capital induces a gap of 1.1 percentage points, about a quarter of the observed gap 4.7 percent.
Table 3: Data and Model, 1990-2001

<table>
<thead>
<tr>
<th>Data Model</th>
<th>Data</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inward measured ROA</td>
<td>1.65</td>
<td>4.73</td>
</tr>
<tr>
<td>Outward measured ROA</td>
<td>6.37</td>
<td>5.83</td>
</tr>
<tr>
<td>Gap</td>
<td>4.72</td>
<td>1.33</td>
</tr>
</tbody>
</table>

When these results are applied to the overall asset position, the gap between foreign and U.S. ROA is strongly diminished. Foreigners hold relatively more of their assets in non-FDI assets: FDI assets average 26 percent of inward investment, versus 35 percent for outward. Under the assumption that 1.1 percentage points of the gap is due to the effects of multinational taxation, I reduce U.S. outward FDI ROA by this amount, giving a total of 4.67 for U.S. assets abroad. This reduces the overall gap in the rates of return by a third, from 1.14 to 0.82 percentage points.

In the balanced growth path equilibrium calculated above, after-tax returns are declining in tax rates. Since there are no transaction costs and all countries are the same, rates of return are equalized in the model across countries as well. If there were technology differences or differences in cost of funds, rates of return across countries need not be equalized.

While the model generates a gap in returns, model does not match the low returns on inward investment. In the above analysis, I assumed that the economy was on a balanced growth path. The balanced growth path does not capture the low rates of return on inward investment. I discuss reasons for the low return below.

I relax the balanced growth path assumption and parameterize Equation 11 to generate an estimate of the intangible capital-output ratio to expand observed tangible asset holdings. The rate of return on assets are adjusted using the expression. Equation 11 holds in all equilibria, even off the balanced growth path.

\[
ROA_{\text{Adj}} = ROA \frac{K^m}{Y} \frac{Y}{K^m + K^u} \tag{17}
\]
The gap between the ROA on direct investment abroad and in the United States in reduced from 4.7 to 1.1 percentage points, or three quarters of the gap. Adding intangibles reduces all rates of returns since the observed returns are spread over more assets. However, U.S. returns are reduced more since those firms devote relatively more of their investment to (unmeasured) intangibles while foreign firms invest in (measured) tangible assets. While foreign owned affiliates in the United States and U.S. affiliates abroad have similar R&D expenditures, foreign owned affiliates are much more (tangible) capital intensive.

Replacing these estimates of the rates of return for FDI in the overall return on international assets gives and annual ROA for foreign owned assets of 3.7 versus 3.8 for U.S. assets abroad. These results indicate that intangibles may be an important factor in the returns gap for FDI.

6 United Kingdom

The United States is not the only country to show a gap in returns. The United Kingdom has a situation very similar to the United States. This section uses the theory to examine this example. The analysis is limited somewhat since the UK does not keep the detailed data on the operations of multinationals that the United States does. However, the available evidence is consistent with multinational taxation being a part of the explanation of return gap.

As can be seen in Figure 4, in mid-1990s the United Kingdom developed a situa-
tion similar to the U.S. case, with positive earnings on a negative international investment position. Like the United States, the positive earnings despite a negative international investment position is due a gap in ROA, specifically in FDI assets (Figure 5).

The United Kingdom taxes MNCs using worldwide taxation. Since the UK does not keep data on the balance sheets of its foreign affiliates, we do not know what repatriation taxes, if any, British MNCs face. In the mid-1980s, it went from taxing corporate profits at relatively high rates to low rates, which suggests that they may not have repatriation taxes. However, at the same time, FDI shifted from higher tax countries such as France and Germany to low tax countries such as the Netherlands and Ireland. More recently corporate income tax rates in other countries have fallen, making the UK a relatively high tax country in Europe. Despite having relatively taxes that are low relative to the United States, the UK likely still faces some repatriation taxes.

The UK does not collect the data required to do the same adjustments as were done for the United States. As a rough estimate, I adjust the UK rates of return using

\[\text{Net Income (Times 10)} \]

\[\text{Int'l Investment Position} \]

\[\text{Net Income (Times 10)} \]

\[\text{Int'l Investment Position} \]

\[^2 \text{Unlike the United States, which reports current cost estimates, the UK data only values FDI assets at book value.} \]
the average statutory corporate income tax for the UK (0.318) and the overseas tax rate for U.S. affiliates (0.249). I use the rate of return equalization method rather than calculating the balance growth path since both inward and outward FDI grew rapidly during this period, suggesting that the UK was not on a balanced growth path. The technology parameters are held constant and I use the tangible capital/value added ratio for all British non-financial private corporations from the Blue Book for both inward and outward investment (from the perspective of UK). In this calculation, intangibles close almost half of the gap.
Table 5: Adjusting UK FDI Rates of Return, 1990-2001 (Percent)

<table>
<thead>
<tr>
<th></th>
<th>Inward</th>
<th>Outward</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_u^Y</td>
<td>0.9</td>
<td>0.8</td>
</tr>
<tr>
<td>K_m^Y</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Unadjusted ROA</td>
<td>7.12</td>
<td>10.38</td>
</tr>
<tr>
<td>Intangible Adj. ROA</td>
<td>4.95</td>
<td>7.31</td>
</tr>
<tr>
<td>Repatriation & Intan. Adj. ROA</td>
<td>4.95</td>
<td>6.81</td>
</tr>
</tbody>
</table>

While this calculation is necessarily rough, there is evidence that intangibles are an important part of the gap. Nickell (2006) has argued that the gap can be explained by the undervaluation of FDI assets, which are valued at book value. Pratten (1996) estimates the 1991 ratio of market value to book value of British FDI assets abroad and foreign owned assets in the UK to be 1.75 and 1.50 respectively. Kubelec, Orskaug & Tanaka (2007) updates this estimate for 2005 using stock market index changes to obtain 2.05 and 1.65. The higher value of British assets abroad is enough to flip the net international investment position from negative to positive.

As further evidence, it is notable that R&D expenditures as a share of GDP fell during the 1980s, from 1.9 percent in 1981 to 1.5 percent in the mid-1990s, suggesting that expenditures on intangibles fell after corporate taxes were cut.

7 Discussion

This section discusses the validity of the underlying assumptions and the results.

The methodology does not allow for high frequency estimates of intangibles and exclude intangible capital obtained from parents and sister affiliates in other countries.

The adjustments use parameter values that are not directly observable to measure assets that are not currently measured. Therefore, they are subject to error. This section presents some checks on the results to see if they are consistent with other data and parameter values. I find that the results hold up under a number of robustness checks.
7.1 Openness

In the model all intangible investment is done locally. For some types of intangibles, this assumption is not very strong. It is unlikely that much of the organization capital identified by Prescott & Visscher (1980), such as job-employee matches and firm specific human capital, is likely the result of investment done outside that affiliate. However, some intangibles (what McGrattan & Prescott (2008) refer to as “technology capital”), such as process innovations or brands, may flow between countries. Unlike physical assets, whose location can easily be determined, intangibles may move within a firm without leaving a trail.

Intangible capital mobility likely strengthens the results. MNCs based in countries with territorial taxation have an incentive to expense their intangible investment in countries with high taxes since it reduces measured profits. Countries with worldwide taxation have less incentive to do so since the tax burden is determined by the MNC’s total profits. Shifting profits across does not reduce the tax burden when they are repatriated. Relatively high taxes gives inward investors an incentive to do their intangible investment in their U.S. affiliates, lowering measured U.S. returns. Therefore, high tax locations will appear to have abnormally low returns. The model is a lower bound on the effects of taxes since it does not include this effect.

There is evidence that MNCs do some investment in R&D in the United States for export to other countries. Griffith, Harrison & Reenen (2004) find that U.S. R&D spending flows to British firms if the British firm has a presence in the United States. The United States runs a surplus in royalty payments (Robbins 2006).

McGrattan & Prescott (2008) argue that historically the United States has been relatively closed to foreign investment until the 1970s. Indeed, there have been substantial capital flows into the United States since then. During a transition to a new steady state brought about by opening to foreign capital, foreign-owned assets in the United States may yield low measured returns since investment in intangibles will be higher than in the steady state. Since this investment is expensed, measured returns will be reduced. (McGrattan & Prescott (2008) use the return differential to identify the difference in openness.) Part of the lower return is young firms building up organization capital (Mataloni 2000). (For a model of this process, see Atkeson & Kehoe (2005).)
Table 6: Alternative Adjustment to Rates of Return, 1990-2001 (Percent)

<table>
<thead>
<tr>
<th></th>
<th>U.S. Bus. Sector</th>
<th>Inward</th>
<th>Outward</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{RD}{Y}$</td>
<td>2.1</td>
<td>5.5</td>
<td>3.2</td>
</tr>
<tr>
<td>$\frac{K^m}{Y}$</td>
<td>1</td>
<td>1.9</td>
<td>1.3</td>
</tr>
<tr>
<td>$\frac{K^u}{Y}$</td>
<td>0.65</td>
<td>0.88</td>
<td>0.68</td>
</tr>
<tr>
<td>Unadjusted ROA</td>
<td>4.1</td>
<td>1.6</td>
<td>6.4</td>
</tr>
<tr>
<td>Intangible Adj. ROA</td>
<td>2.4</td>
<td>0.9</td>
<td>3.6</td>
</tr>
</tbody>
</table>

This factor very well may be an important part of the solution. Tax differentials do not completely close the gap, nor does the openness. A combination of both may more fully explain the difference.

7.2 Robustness

As a robustness check, I re-estimate intangible capital using a procedure from McGrattan & Prescott (2005). They estimate intangible capital stock for the United States using a growth accounting framework. They estimate the United Kingdom’s intangible capital stocks by assuming that the ratio of the intangible capital-output ratio and R&D expenditure share of output in the UK are the same as in the United States. An advantage of this approach is that we do not need to take a stand on the depreciation rate on intangible capital.

Let RD_j be its research and development expenditures. Intangible assets are calculated by comparing affiliate R&D expenditures with those of a reference economy, in this case the U.S. private business sector.

$$\frac{K^u_j}{Y_j} = \frac{K^u_{US}}{Y_{US}} \frac{RD_j}{Y_j} \frac{Y_{US}}{RD_{US}}$$ \hspace{1cm} (18)

Table 6 presents the results of this alternative approach. The results are very similar to the non-balance growth path estimate.
7.3 Taxes

Implementing taxes in the model raises a number of difficulties. While they are represented by a single rate in the model, in reality the corporate tax code is extremely complex. While corporate income taxes are generally not progressive, a major issue is calculating personal income taxes, there are a number of complexities. Different industries may be subject to different tax rates. FDI investments may get tax breaks to encourage the selection of a particular area for investment. The use of tax havens and financial engineering may trim tax burdens. Backus, Henriksen & Storesletten (2008) note that statutory rates do not appear to match very well with actual tax payments or investment behavior.

Worldwide taxation introduces additional complexity to the taxes faced by MNCs. Foreign-owned affiliates under territorial taxes largely face the same incentives as domestic firms since they are taxed the same way. Since worldwide taxation can induce repatriation tax liabilities, there may be an incentive to retain earnings strategically (Hines 1999, Desai, Foley & Hines 2001). Kozlow & Abaroa (2006) argue that MNC behavior as a response to the American Jobs Creation Act (AJCA) shows that such strategic behavior is important. Given that such strategic behavior, it is not clear that repatriation taxes should be counted by their full value if at all. The theoretical literature has not developed a consensus. (For example, see Altshuler, Newlon & Randolph (1995) and Altshuler & Grubert (2002).)

It is notable that MNCs appear to be equalizing rates of return according to statutory rates. The average after-tax ROA for U.S. Parents from 1993 to 2001 was 2.9 percent. The pre-tax ROA for Majority-Owned Foreign Affiliates (MOFAs) over that period was 5.1 percent. The implied tax rate on MOFA’s profits to set the two rates equal is 43.1 percent, not far from the statutory rate of 39.1 percent. Since affiliates only recorded a tax rate of 24.9 percent, the actual ROA is 3.9 percent. The data is consistent with MNC’s equalizing rates of return subject to the home tax rate.

Even if repatriation taxes do not reduce returns by the full amount, the inclusion of intangible assets alone close the gap a great deal. The fact that affiliates under worldwide taxes hold more retained earnings suggests that repatriation taxes do bind MNC’s behavior at least to some degree. The reaction to the AJCA shows that MNC’s
behavior is not neutral to taxes. Therefore, it is reasonable that different tax systems
induce different investment portfolios. Investing in intangible assets provides a partial
way around corporate income taxes, which may be used even if financial engineering can
be used to reduce the repatriation tax burden.

It is notable that countries with worldwide taxation tend to have returns sur-
pluses. Japan and the UK both have such taxes and earn higher returns abroad (Gourinchas
& Rey 2006). (While the UK has low CITs relative to other wealthy economies, its FDI
is concentrated in economies with even lower tax rates so is still subject to repatriation
taxes.) This provides additional that worldwide taxes induce returns gaps.

8 Conclusion

This paper estimates aggregate intangible capital stocks for foreign owned affiliates.
While the particular calculations in this paper are necessarily rough, but do suggest a
significant role for intangible assets. It also suggests that tax policy is an important
driver of holding different portfolios of assets across countries.

While the results are consistent with intangible assets being an important source
of the gap, other factors may account for it. Indeed, the analysis does not account for
the full gap indicating that additional factors are at work.

By the nature of the methodology, the results only apply to long run averages.
It does not have as much application to the recent controversy over how sustainable the
recent increase in the U.S. current account is. (For example, Caballero et al. (2008) and
Mendoza, Quadrini & Rios-Rull (2007).) This especially true since the counterbalancing
surplus in the financial account has been driven by financial asset accumulation whereas
this paper deals with FDI.

A Data Appendix

Table 1

- Average Statutory Corporate Income Tax: Devereux, Griffith & Klemm (2002).
• Average Empirical Corporate Income Tax: U.S.: NIPA Table 6.17B. Corporate Profits Before Tax by Industry. Other Countries: USDIA Table III.E.1.

Table 4

• Return on Assets: Payments to direct investment divided by direct investment assets with market value adjustment.

• $\frac{RD}{Y}$: R&D performed by affiliates divided by value added.

• $\frac{K^M}{Y}$: Net gross property, plant and equipment plus inventories divided by value added.

Figure 1

• Assets: International Investment Position, Table 1, Line 1.

• Net Income: Balance of Payments, Table 1, lines 12 and 29.

Figure 2

• FDI Assets: International Investment Position, FDI assets with market pricing adjustment.

• Non-FDI Assets: Total non-financial derivatives assets less FDI.

• Net Income: Balance of Payments, Table 1, lines 12 and 29 less income to FDI.

Figure 3

• Statutory Corporate Income Tax: Devereux et al. (2002).

• Affiliate tax rate: Foreign corporate income tax paid over pre-tax net income, majority owned foreign affiliates.
Figure 4

Figure 5
- ROA: U.K. National Statistics Office, series HBOH, HBOI.

References

Bernard, Andrew, J. Bradford Jensen & Peter Schott (2006), Transfer pricing by U.S. based multinational firms, Manuscript, Tuck School of Business, Dartmouth University.

Griffith, Rachel, Rupert Harrison & John Van Reenen (2004), How special is the special relationship?: Using the impact of U.S. R&D spillovers as a test of technology sourcing, Discussion Paper 4698, CEPR.

Kapicka, Marek (2008), How important is technology capital?: Measurement and theory, mimeo, UCSB.

Kozlow, Ralph & Patricia Abaroa (2006), U.S. multinational companies, dividends, and taxes, mimeo, Bureau of Economic Analysis.

Pratten, Cliff (1996), The Valuation of Outward and Inward Direct Investment, Cambridge University.

Robbins, Carol (2006), Measuring payments for the supply and use of intellectual property, mimeo, Bureau of Economic Analysis.

U.S. Department of the Treasury Internal Revenue Service (1999), Measuring payments for the supply and use of intellectual property, Publication 3218 (4-1999).